國立臺北大學自然資源與環境管理研究所 107 學年度第二學期『環境系統分析專題』

課程講義(03):線性規劃回顧與進階主題 Review of Linear Programming and Advanced Topics

• Coi	MPONENTS OF AN OPTIMIZATION MODEL
	Objective Function(s)
	⇒ Single vs. Multiple
	⇒ Linear vs. Nonlinear
	⇒ Convex (Concave) vs. Non-convex
	Constraints
	⇒ Constrained vs. Un-constrained
	□ Linear vs. Nonlinear
	⇒ Convex vs. Non-convex Feasible Regions
	Decision Variables
	⇒ Continuous vs. Discrete
	⇒ Deterministic vs. Stochastic
	System Parameters (Coefficients)
	⇒ Deterministic vs. Stochastic
	⇒ Division into Sub-Models
	Formulation of Optimization Models
	⇒ Plain Form: Straightforward but not suitable for large-scaled or complex problems
	⇒ Algebraic Formulations => Parameters (Scalars), Vectors, and Matrices (Tables)
	⇒ Algebraic Formulations with text description of variables and parameters
	⇒ Sets and Indices => Equation Editor
• PRO	OPERTIES OF AN LP
	Proportionality, Additivity, Divisibility, Certainty, and Non-Negativity
	Non-negative Decision Variables => What if negative values are needed?
	A "Convex Programming" Model
	Additional Terminology
	⇒ Feasible Region or Solution Space
	⇒ Vertex, Extreme Points or Corner Points
	⇒ Decision Space or Objective Space
• \$01	LUTION PROCEDURE OF AN LP
	Pre-Optimal Analysis, Optimization (Solution) and Post-Optimization Analysis
	Graphical, Simplex, Dual Simplex, Interior Point and Other Methods
	Infeasible, Un-bounded and Degenerate Solutions
	A "Convex Programming" Model: Feasible Region and Extreme Points
	⇒ Characteristics of Feasible Region for the LP: Convex, Compact, and Continuous
	- Characteristics of Featible Region for the Lift Convert, Compact, and Continuous

⇒ Extreme Points (Corner Points) vs. Interior Points

• THE SIMPLEX METHOD

- □ Augmented Form of the LP Models
 - ⇒ "Less-than-and-equal-to" Inequality constraints => Slack variables
 - ⇒ "Greater-than-and-equal-to" Inequality constraints => Surplus & Artificial Variables
 - ⇒ Equality constraints => Artificial variables => 'Big-M Treatment'
- ☐ Terminology and Procedure of the Simplex Method
 - ⇒ Basic vs. non-basic variables
 - ⇒ Feasible basic solution => "Adjacent"
 - ⇒ Ratio test for Pivoting
 - ⇒ "Optimality"
- ☐ Simplex Tableaus and An Animated Presentation

• EXAMPLES OF LINEAR PROGRAMMING

- □ Homewood Masonry -- A Material Production Problem
 - ⇒ Objective Function: Maximizing the production profit
 - ⇒ Decision Variables: Two building products to be produced
 - ⇒ Constraints: Resource availability, work hours, and curing vat capacity

Resource	HYDIT	FILIT	Availability
Wahash Red Clay	2 m ³ /ton	4 m ³ /ton	$28 \text{ m}^3/\text{wk}$
Blending time	5 hr/ton	5 hr/ton	50 hr/wk
Curing vat capacity	8 tons	6 tons	
Profit	\$140/ton	\$160/ton	

1. Algebraic formulation with numerical coefficients

Maximize Profit $z = 140x_1 + 160x_2$	Lingo Code	
Subject to	Max=140*x1+160*x2;	
$2x_1 + 4x_2 \le 28$	2*x1+4*x2 <= 28;	
$5x_1 + 5x_2 \le 50$	5*x1+5*x2 <= 50;	
$x_1 \le 8$	x1 <= 8;	
$x_2 \le 6$	x2 <= 6;	

2. Algebraic formulation with symbolic coefficients

Maximize Profit
$$z = \sum_{j=1}^{2} c_j x_j$$

Subject to

$$\sum_{j=1}^{2} a_{ij} x_j \le b_i; \quad i = 1, \dots, 4$$

$$c = \{c_j\} = [140, 160]$$
 $b = \{b_i\} = \begin{bmatrix} 28\\50\\8\\6 \end{bmatrix}$ $A = \{a_{ij}\} = \begin{bmatrix} 2&4\\5&5\\1&0\\0&1 \end{bmatrix}$

3. Matrix formulation

SENSITIVITY ANALYSIS

- □ Overview and Post-Optimality Analysis
- ☐ Sensitivity Analysis on RHS (Resource) Coefficients
 - ⇒ Shadow price, marginal value of a resource and economic interpretation
 - ⇒ Dual price (?)
- ☐ Sensitivity Analysis on Objective Function Coefficients
- ☐ Graphical Illustration
- □ Outputs from Optimization Packages and Analytical Interpretation (?)
- □ Parametric Programming

• DUALITY THEORY

- □ Model Formulations
- □ Dual-Primal Relationships
 - ⇒ Implementation from Production Problem
 - ⇒ Implementation from Resource Allocation Problem
- □ Shadow Price
- □ Primal-Dual Methods for Optimization (Lagrange Algorithms)
- HOMEWORK #2 (2019/03/19 Due): *Solve* the example problem of Homewood Masonry (ReVelle et al., 2004) by using What's Best, LINGO, and Euler Math Toolbox.