國立臺北大學自然資源與環境管理研究所 109 學年度第二學期『環境系統分析專題』

課程講義(03):線性規劃回顧與進階主題 Review of Linear Programming and Advanced Topics

- MORE ON COMPOSITE INDICATORS
 - □ Composite Indicators or Indices for Environmental Quality
 - ⇒ AQI (PSI); RPI (QWI); CTSI
 - \Rightarrow Risk Assessment => Cancerogenic Risk 10⁻⁶; Hazard Index for Acute Toxicity
 - □ Environmental Performance Index (EPI)
 - ⇒ "Using 32 performance indicators across 11 issue categories, the EPI ranks 180 countries on environmental health and ecosystem vitality."
 - ⇒ Indicators => Transformation, Standardization, Normalization
 - \Rightarrow EPI => Weighted sum

The 2020 EPI Framework - Weights

- □ The Global Risks Report 2021 (16th Edition)
 - ⇒ "Survey respondents (650 members) were asked to assess the likelihood and impact of the individual global risk on a scale of 1 to 5."

• COMPONENTS OF AN OPTIMIZATION MODEL

- \Box Objective Function(s)
 - \Rightarrow Single vs. Multiple
 - ⇒ Linear vs. Nonlinear
 - \Rightarrow Convex (Concave) vs. Non-convex
 - \Box Constraints
 - ⇒ Constrained vs. Un-constrained
 - ⇒ Linear vs. Nonlinear
 - ⇒ Convex vs. Non-convex Feasible Regions
 - Decision Variables
 - ⇒ Continuous vs. Discrete
 - ⇒ Deterministic vs. Stochastic
 - □ System Parameters (Coefficients)
 - ⇒ Deterministic vs. Stochastic
 - ⇒ Division into Sub-Models
 - □ Formulation of Optimization Models
 - ⇒ Plain Form: Straightforward but not suitable for large-scaled or complex problems
 - ⇒ Algebraic Formulations => Parameters (Scalars), Vectors, and Matrices (Tables)
 - \Rightarrow Algebraic Formulations with text description of variables and parameters
 - \Rightarrow Sets and Indices => Equation Editor
- PROPERTIES OF AN LP
 - □ Proportionality, Additivity, Divisibility, Certainty, and Non-Negativity
 - □ Non-negative Decision Variables => What if negative values are needed?
 - □ A "Convex Programming" Model
 - Additional Terminology
 - ⇒ Feasible Region or Solution Space
 - ⇒ Vertex, Extreme Points or Corner Points
 - ⇒ Decision Space or Objective Space
- SOLUTION PROCEDURE OF AN LP
 - Dere-Optimal Analysis, Optimization (Solution) and Post-Optimization Analysis
 - □ Graphical, Simplex, Dual Simplex, Interior Point and Other Methods
 - □ Infeasible, Un-bounded and Degenerate Solutions
 - □ A "Convex Programming" Model: Feasible Region and Extreme Points
 - ⇒ Characteristics of Feasible Region for the LP: Convex, Compact, and Continuous
 - ⇒ Extreme Points (Corner Points) vs. Interior Points
- THE SIMPLEX METHOD
 - □ Augmented Form of the LP Models
 - ⇒ "Less-than-and-equal-to" Inequality constraints => Slack variables
 - ⇒ "Greater-than-and-equal-to" Inequality constraints => Surplus & Artificial Variables
 - ⇒ Equality constraints => Artificial variables => 'Big-M Treatment'
 - □ Terminology and Procedure of the Simplex Method
 - ⇒ Basic vs. non-basic variables
 - ⇒ Feasible basic solution => "Adjacent"

- \Rightarrow Ratio test for Pivoting
- ⇒ "Optimality"
- □ Simplex Tableaus and <u>An Animated Presentation</u>

• EXAMPLES OF LINEAR PROGRAMMING

- $\hfill\square$ Homewood Masonry -- A Material Production Problem
 - ⇒ Objective Function: Maximizing the production profit
 - \Rightarrow Decision Variables: Two building products to be produced
 - ⇒ Constraints: Resource availability, work hours, and curing vat capacity

Resource	HYDIT	FILIT	Availability
Wahash Red Clay	$2 \text{ m}^3/\text{ton}$	$4 \text{ m}^3/\text{ton}$	28 m ³ /wk
Blending time	5 hr/ton	5 hr/ton	50 hr/wk
Curing vat capacity	8 tons	6 tons	
Profit	\$140/ton	\$160/ton	

1. Algebraic formulation with numerical coefficients

Maximize Profit $z = 140x_1 + 160x_2$

Subject to

$$2x_1 + 4x_2 \le 28$$
$$5x_1 + 5x_2 \le 50$$
$$x_1 \le 8$$
$$x_2 \le 6$$

2. Algebraic formulation with symbolic coefficients

Maximize Profit
$$z = \sum_{j=1}^{2} c_j x_j$$

Subject to

$$\sum_{j=1}^{2} a_{ij} x_j \le b_i; \quad i = 1, \cdots, 4$$

$$\boldsymbol{c} = \{c_j\} = \begin{bmatrix} 140, 160 \end{bmatrix} \quad \boldsymbol{b} = \{b_i\} = \begin{bmatrix} 28\\50\\8\\6 \end{bmatrix} \quad \boldsymbol{A} = \{a_{ij}\} = \begin{bmatrix} 2 & 4\\5 & 5\\1 & 0\\0 & 1 \end{bmatrix}$$

3. Matrix formulation

Maximize Profit
$$z = c' \cdot x$$

$$z = \begin{bmatrix} 140, 160 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Subject to

 $A \cdot x \leq b$

$$\begin{bmatrix} 2 & 4 \\ 5 & 5 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 28 \\ 50 \\ 8 \\ 6 \end{bmatrix}$$

- SENSITIVITY ANALYSIS
 - Overview and Post-Optimality Analysis
 - □ Sensitivity Analysis on RHS (Resource) Coefficients
 ⇒ Shadow price, marginal value of a resource and economic interpretation
 - □ Sensitivity Analysis on Objective Function Coefficients
 - □ Graphical Illustration
 - □ Parametric Programming
- DUALITY THEORY
 - Model Formulations
 - Dual-Primal Relationships
 - ⇒ Implementation from Production Problem
 - \Rightarrow Implementation from Resource Allocation Problem
 - □ Primal-Dual Methods for Optimization (Lagrange Algorithms)
- HOMEWORK #2 (2021/03/1 Due) : *Formulate* and *Solve* the example problem of Homewood Masonry (ReVelle et al., 2004) by using R and Euler Math Toolbox.