國立臺北大學自然資源與環境管理研究所 111 學年度第二學期『資源管理與環境系統分析』

課程講義(03):線性規劃回顧與進階主題 Review of Linear Programming and Advanced Topics

 COMPONENTS OF AN OPTIMIZATION MODEL 	
□ Objective Function(s)	
⇒ Single vs. Multiple; Linear vs. Nonlinear	
⇒ Convex (Concave) vs. Non-convex	
□ Constraints	
⇒ Constrained vs. Unconstrained; Linear vs. Nonlinear	
⇔ Convex vs. Non-convex Feasible Regions	
☐ Decision Variables	
⇒ Continuous vs. Discrete; Deterministic vs. Stochastic	
☐ System Parameters (Coefficients)	
⇒ Deterministic vs. Stochastic => Division into Sub-Models	
☐ Formulation of Optimization Models	
⇒ Plain Form: Straightforward but not suitable for large-scaled o	r complex problems
⇒ Algebraic Formulations => Parameters (Scalars), Vectors, and	Matrices (Tables)
⇒ Algebraic Formulations with text (symbolic) description of var	riables and parameter
⇒ Sets and Indices => Equation Editor for symbolic expressions	
Droppering of the I Day of Column	
Properties of an LP and its Solution	
□ Proportionality, Additivity, Divisibility, Certainty, and Non-N	•
□ Non-negative Decision Variables => What if negative values	are needed?
☐ A "Convex Programming" Model	
□ Linear (either Concave or Convex) Objective Function	
⇒ Convex, Compact, and Continuous Feasible Region	
□ Solution Procedure of an LP	
⇒ Pre-Optimal Analysis, Optimization (Solution) and Post-Optim	•
⇒ Graphical, Simplex, Dual Simplex, Interior Point and Other M	
⇒ Optimal Solution => Infeasible, Un-bounded and Degenerate S	Solutions
• THE SIMPLEX METHOD	
□ Augmented Form of the LP Models	1.1
⇒ "Less-than-and-equal-to" Inequality constraints => Slack varia	
 ⇒ "Greater-than-and-equal-to" Inequality constraints => Surplus ⇒ Equality constraints => Artificial variables => 'Big-M Treatmeters' 	
	/III
 □ Terminology and Procedure of the Simplex Method ⇒ Basic vs. non-basic variables 	
→ Basic vs. non-oasic variables ⇒ Feasible basic solution => "Adjacent"	

⇒ Ratio test for Pivoting⇒ Check of "Optimality"

☐ Simplex Tableaus and <u>An Animated Presentation</u>

• EXAMPLES OF LINEAR PROGRAMMING

- ☐ Homewood Masonry -- A Material Production Problem
 - ⇒ Objective Function: Maximizing the production profit.
 - ⇒ Decision Variables: Two building products to be produced.
 - ⇒ Constraints: Resource availability, work hours, and curing vat capacity

Resource	HYDIT	FILIT	Availability
Wahash Red Clay	2 m ³ /ton	4 m ³ /ton	$28 \text{ m}^3/\text{wk}$
Blending time	5 hr/ton	5 hr/ton	50 hr/wk
Curing vat capacity	8 tons	6 tons	
Profit	\$140/ton	\$160/ton	

1. Algebraic formulation with numerical coefficients

Maximize Profit
$$z = 140x_1 + 160x_2$$

Subject to

$$2x_1 + 4x_2 \le 28$$
$$5x_1 + 5x_2 \le 50$$
$$x_1 \le 8$$
$$x_2 \le 6$$

2. Algebraic formulation with symbolic coefficients

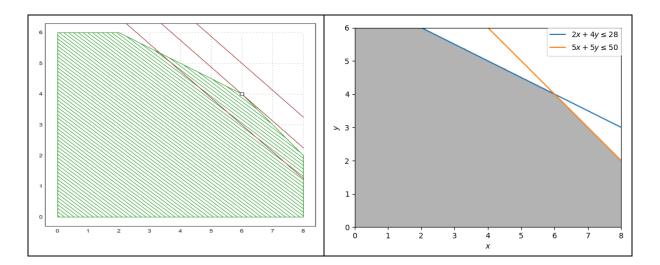
Maximize Profit
$$z = \sum_{j=1}^{2} c_j x_j$$

Subject to

$$\sum_{j=1}^{2} a_{ij} x_{j} \le b_{i}; \quad i = 1, \dots, 4$$

$$c = \{c_j\} = [140, 160]$$
 $b = \{b_i\} = \begin{bmatrix} 28 \\ 50 \\ 8 \\ 6 \end{bmatrix}$ $A = \{a_{ij}\} = \begin{bmatrix} 2 & 4 \\ 5 & 5 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$

3. Matrix formulation


Maximize Profit
$$z = c' \cdot x$$

$$z = \begin{bmatrix} 140, 160 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Subject to

$$A \cdot x \leq b$$

$$\begin{bmatrix} 2 & 4 \\ 5 & 5 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 28 \\ 50 \\ 8 \\ 6 \end{bmatrix}$$

• SENSITIVITY ANALYSIS

- □ Overview and Post-Optimality Analysis
- □ Sensitivity Analysis on RHS (Resource) Coefficients
 - ⇒ Shadow price, marginal value of a resource and economic interpretation
- □ Sensitivity Analysis on Objective Function Coefficients
- □ Graphical Illustration
- □ Parametric Programming

• DUALITY THEORY

- □ Model Formulations
- □ Dual-Primal Relationships
 - ⇒ Implementation from Production Problem
 - ⇒ Implementation from Resource Allocation Problem
- □ Primal-Dual Methods for Optimization (Lagrange Algorithms)

• DEMONSTRATION CODES

- □ Please install GNU Octave and Euler Math Toolbox in advance!
- ☐ GNU Octave with functions of 'glpk' and 'plot' => ChatGPT?
- □ Euler Math Toolbox with built-in functions package and 'lpsolve'
- □ Python with packages of 'gilp' and 'lpsolve' (pip install --only-binary :all: gilp)
- ☐ R with packages of 'lpsolve' and 'gMOIP'
- □ Excel with Solver (規劃求解) Add-in
- □ Lindo Systems Lingo? lpsolveIDE?
- HOMEWORK #2 (2023/03/14 Due): *Formulate* and *Solve* the example problem of Homewood Masonry (ReVelle et al., 2004) by using Excel, R, and Euler Math Toolbox.