國立臺北大學自然資源與環境管理研究所 113 學年度第二學期『資源管理與環境系統分析』

課程講義(02&03):線性規劃

Linear Programming

• COMPONENTS OF AN OPTIMIZATION MODEL

- □ Objective Function(s)
 - ⇒ Single vs. Multiple; Linear vs. Nonlinear
 - \Rightarrow Convex (Concave) vs. Non-convex
 - \Box Constraints
 - ⇒ Constrained vs. Unconstrained; Linear vs. Nonlinear
 - ⇒ Convex vs. Non-convex Feasible Regions
 - Decision Variables
 - ⇒ Continuous vs. Discrete; Deterministic vs. Stochastic
 - □ System Parameters (Coefficients)
 - \Rightarrow Deterministic vs. Stochastic => Division into Sub-Models
 - $\hfill\square$ Formulation of Optimization Models
 - ⇒ Plain Form: Straightforward but not suitable for large-scaled or complex problems
 - ⇒ Algebraic Formulations => Parameters (Scalars), Vectors, and Matrices (Tables)
 - ⇒ Algebraic Formulations with text (symbolic) description of variables and parameters
 - \Rightarrow Sets and Indices => Equation Editor for symbolic expressions

• PROPERTIES OF AN LP AND ITS SOLUTION

- □ Proportionality, Additivity, Divisibility, Certainty, and Non-Negativity
- \Box Non-negative Decision Variables => What if negative values are needed?
- □ A "Convex Programming" Model
 - ⇒ Linear (either Concave or Convex) Objective Function
 - ⇒ Convex, Compact, and Continuous Feasible Region
- \Box Solution Procedure of an LP
 - ⇒ Pre-Optimal Analysis, Optimization (Solution) and Post-Optimization Analysis
 - ⇒ Graphical, Simplex, Dual Simplex, Interior Point and Other Methods
 - ⇒ Optimal Solution => Infeasible, Un-bounded and Degenerate Solutions

• EXAMPLES OF LINEAR PROGRAMMING

- Homewood Masonry -- A Material Production Problem
 - ⇒ Objective Function: Maximizing the production profit.
 - ⇒ Decision Variables: Two building products to be produced.
 - ⇒ Constraints: Resource availability, work hours, and curing vat capacity

Resource	HYDIT	FILIT	Availability
Wahash Red Clay	$2 \text{ m}^3/\text{ton}$	$4 \text{ m}^3/\text{ton}$	28 m ³ /wk
Blending time	5 hr/ton	5 hr/ton	50 hr/wk
Curing vat capacity	8 tons	6 tons	
Profit	\$140/ton	\$160/ton	

1. Algebraic formulation with numerical coefficients

Maximize Profit $z = 140x_1 + 160x_2$

Subject to

$$2x_1 + 4x_2 \le 28$$
$$5x_1 + 5x_2 \le 50$$
$$x_1 \le 8$$
$$x_2 \le 6$$

2. Algebraic formulation with symbolic coefficients

Maximize Profit
$$z = \sum_{j=1}^{2} c_j x_j$$

Subject to

$$\sum_{j=1}^{2} a_{ij} x_j \le b_i; \quad i = 1, \cdots, 4$$

$$\boldsymbol{c} = \{c_j\} = \begin{bmatrix} 140, 160 \end{bmatrix} \quad \boldsymbol{b} = \{b_i\} = \begin{bmatrix} 28\\50\\8\\6 \end{bmatrix} \quad \boldsymbol{A} = \{a_{ij}\} = \begin{bmatrix} 2 & 4\\5 & 5\\1 & 0\\0 & 1 \end{bmatrix}$$

3. Matrix formulation

Maximize Profit $z = c' \cdot x$

$$z = \begin{bmatrix} 140, 160 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

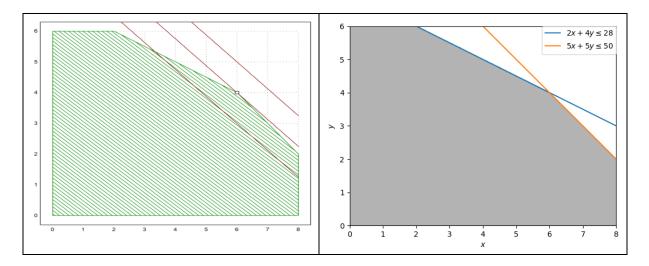
Subject to

$$A \cdot x \leq b$$

$$\begin{bmatrix} 2 & 4 \\ 5 & 5 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 28 \\ 50 \\ 8 \\ 6 \end{bmatrix}$$

- THE SIMPLEX METHOD
 - $\hfill\square$ Augmented Form of the LP Models
 - ⇒ "Less-than-and-equal-to" Inequality constraints => Slack variables
 - ⇒ "Greater-than-and-equal-to" Inequality constraints => Surplus & Artificial Variables
 - \Rightarrow Equality constraints => Artificial variables => 'Big-M Treatment'
 - □ Terminology and Procedure of the Simplex Method
 - ⇒ Basic vs. non-basic variables

- ⇒ Feasible basic solution => "Adjacent"
- \Rightarrow Ratio test for Pivoting
- \Rightarrow Check of "Optimality"
- □ Simplex Tableaus and <u>An Animated Presentation</u> => Copilot Answer



- SENSITIVITY ANALYSIS
 - Overview and Post-Optimality Analysis
 - □ Sensitivity Analysis on RHS (Resource) Coefficients
 ⇒ Shadow price, marginal value of a resource and economic interpretation
 - Sensitivity Analysis on Objective Function Coefficients
 - □ Graphical Illustration
 - Parametric Programming
- DUALITY THEORY
 - Model Formulations
 - Dual-Primal Relationships
 - ⇒ Implementation from Production Problem
 - \Rightarrow Implementation from Resource Allocation Problem
 - Primal-Dual Methods for Optimization (Lagrange Algorithms)
- DEMONSTRATION CODES
 - Delease install R, Rstudio, and Euler Math Toolbox in advance!
 - Euler Math Toolbox with built-in functions package and 'lpsolve'
 - □ R with packages of 'lpsolve' and 'gMOIP'
 - □ Excel with Solver (規劃求解) Add-in
 - \Box <u>lpsolveIDE</u>?
 - □ GNU Octave with functions of 'glpk' and 'plot' => ChatGPT?
 - □ Python with packages of 'gilp' and 'lpsolve' (pip install --only-binary :all: gilp)
- HOMEWORK #2 (2025/03/10 Due): *Formulate* and *Solve* the example problem of Homewood Masonry (ReVelle et al., 2004) by using Excel, R, and Euler Math Toolbox.