國立臺北大學自然資源與環境管理研究所 113 學年度第二學期『資源管理與環境系統分析』 課程講義(07): 動態規劃與目標規劃 Dynamic Programming and Goal Programming #### • INTRODUCTION TO DYNAMIC PROGRAMMING - □ Dynamic Programming = Divide and Conquer + Memorization - □ No Specific Forms or Formulations=> Principle of Optimality - ☐ Terminology: Stage, State, Decision, Return, Recursive Equation - □ Dynamic programming is a technique for solving problems with a recursive structure with the following characteristics: - ⇒ Optimal substructure (principle of optimality): An optimal solution to a problem can be decomposed into optimal solutions for sub-problems. - ⇒ A small number of sub-problems: The total number of sub-instances to be solved is small. - ⇒ Overlapping sub-problems: During the computation same instances are referred to repeatedly. - ☐ An Example of Dynamic Programming: The Shortest Path Problem - ⇒ Divide the problem into 4 subproblems (Stages) - \Rightarrow Find the optimal solution in the stage *i* and 'pass' into stage *i*+1. - ⇒ Formulate the recursive equation between stages. - ⇒ Backward vs. Forward => Can find the same optimal solution under deterministic conditions #### • GOAL PROGRAMMING - ☐ Criteria for Decision-Making: Attribute, Objective, Target, and Goal ⇒ The UN SDGs: Goals, Targets, and Indicators - □ Multiple Criteria Decision Making: Multiple Attribute and Multiobjective - □ Classification of Goal Programming: Non-Preemptive vs. Preemptive - □ Non-Preemptive Goal Programming - ⇒ Complementary relationship - ⇒ One-sided vs. Two-sided - ☐ Preemptive Goal Programming or Lexicographic GP - □ Drawbacks: Normalization and Weighting; Pareto Optimality? - ☐ An Example of Goal Programming: Expansion of Production Lines - ⇒ Deviational variables => slack vs. surplus => Minimize penalty weighted deviations - ⇒ Maximize the profit => allow overshooting and penalty on undershooting - ⇒ Remain employee level => penalty on both sides (may have different weights) - ⇒ Minimize the investment => penalty on overshooting and allow undershooting #### 例題 3-1: 某一家公司考慮製造三種產品取代目前的產品,決策者優先考慮了三個主要因子: 長期利潤、勞動力之穩定性和投資資本額。目標如下: - (1) 三種產品之長期利潤至少 125,000,000 元。 - (2) 儘量維持現有雇用水準爲員工 4,000 人。 - (3) 固定投資資本額少於 55,000,000 元。 所定的標準如下表 3.1: 表 3.1 ※例題 3-1 中之系統規劃條件 | 田マ | 產品之生產參數 | | 參數 | 4.55 / PB / 1-1 | 懲罰權重 | | |-------------------------|---------|---|----|--|------------------|--| | 因子 | 1 | 2 | 3 | 標的 (單位) | (penalty weight) | | | 長期利潤 | 10 0 | | | | _ | | | (103\$/產品) | 12 | 9 | 15 | ≥125(百萬元/年) | 5 | | | 雇用水準 | _ | | . | 40/ = 4 = - 7 (c) | 2() 4() | | | (人) | 5 | 3 | 4 | =40(百名員工/年) | 2(+) , 4(-) | | | 投資資本額 | , i | | | | | | | (10 ³ \$/產品) | 5 | 7 | 8 | ≤55(百萬元/年) | 3 | | ### 階段1 (Stage 1): | S_1 | d_1 | $f(S_1, d_1)$ | $f(S_1, d_1) + g*(S_0)$
$S_0 = T, g*(S_0) = g*(T) = 0$ | $g^*(S_1)$ | d_1^* | |-------|-------|---------------|---|------------|---------| | C | T | 7 | 7 + 0 | 7 | T | | C | T | 9 | 9 + 0 | 9 | T | | C | T | 8 | 8 + 0 | 8 | T | #### 階段2 (Stage 2): | S_2 | d_2 | $f(S_2, d_2)$ | $f(S_2, d_2) + g*(S_1)$
$S_1 = d_2$ | $g^*(S_2)$ | d_2^* | |----------------|----------------|---------------|--|------------|---------| | \mathbf{B}_1 | C_2 | 2 | 2 + 9 | 11 | C_2 | | | C_3 | 4 | 4 + 8 | | | | B_2 | \mathbf{C}_1 | 2 | 2 + 7 | 9 | C_1 | | | C_3 | 3 | 3 + 8 | | | | \mathbf{B}_3 | C_2 | 4 | 4 + 9 | | | | | C_3 | 5 | 4 + 8 | 12 | C_3 | # 階段3 (Stage 3): | S_3 | d_3 | $f(S_3, d_3)$ | $f(S_3, d_3) + g*(S_2)$
$S_2 = d_3$ | $g^*(S_3)$ | d_3^* | |-------|----------------|---------------|--|------------|----------------| | A_1 | \mathbf{B}_1 | 4 | 4 + 11 | | | | | B_2 | 3 | 3 + 9 | 12 | B_2 | | A_2 | \mathbf{B}_1 | 6 | 6+11 | | | | | B_2 | 5 | 5 + 9 | 14 | B_2 | | | B_3 | 8 | 8 + 12 | | | | A_3 | B_2 | 5 | 5 + 9 | 14 | B_2 | | | B_3 | 3 | 3 + 12 | | | #### 階段4 (Stage 4): | 101/0-1 | (| •)• | | | | |---------|----------------|---------------|--|------------|-----------| | S_4 | d_4 | $f(S_4, d_4)$ | $f(S_4, d_4) + g*(S_3)$
$S_3 = d_4$ | $g^*(S_4)$ | ${d_4}^*$ | | S | A_1 | 5 | 5 + 12 | 17 | A_1 | | | A_2 | 4 | 4 + 14 | | | | | A ₃ | 4 | 4 + 14 | | | $S \rightarrow A_1 \rightarrow B_2 \rightarrow C_1 \rightarrow T$ # 階段1 (Stage 1): | S_1 | d_1 | $f(S_1, d_1)$ | $g^*(S_0) + f(S_1, d_1)$
$S_0 = S, g^*(S_0) = g^*(S) = 0$ | $g^*(S_1)$ | d_1^* | |-------|-------|---------------|--|------------|---------| | S | A_1 | 5 | 0 + 5 | 5 | A_1 | | | A_2 | 4 | 0 + 4 | 4 | A_2 | | | A_3 | 4 | 0 + 4 | 4 | A_3 | # 階段2 (Stage 2): | S_2 | d_2 | $f(S_2, d_2)$ | $g*(S_1) + f(S_2, d_2)$
$S_1 = d_1$ | $g^*(S_2)$ | d_2^* | |-------|----------------|---------------|--|------------|----------------| | A_1 | B_1 | 4 | 5 + 4 | | | | | B_2 | 3 | 5 + 3 | 8 | \mathbf{B}_2 | | A_2 | \mathbf{B}_1 | 6 | 4 + 6 | | | | | B_2 | 5 | 4 + 5 | 9 | | | | B_3 | 8 | 4 + 8 | | | | A_3 | B_2 | 5 | 4 + 5 | | | | | B_3 | 3 | 4 + 3 | 7 | B_3 | ## 階段3 (Stage 3): | S_3 | d_3 | $f(S_3, d_3)$ | $g*(S_2) + f(S_3, d_3)$
$S_2 = d_2$ | $g^*(S_3)$ | d_3^* | |----------------|-------|---------------|--|------------|---------| | B_1 | C_2 | 2 | | | | | | C_3 | 4 | | | | | B_2 | C_1 | 2 | 8 + 2 | 10 | C_1 | | | C_3 | 3 | 8 + 3 | | | | \mathbf{B}_3 | C_2 | 4 | 7 + 4 | 11 | C_2 | | | C_3 | 5 | 7 + 5 | | | ### 階段4 (Stage 4): | S_4 | d_4 | $f(S_4, d_4)$ | $g*(S_3) + f(S_4, d_4)$
$S_3 = d_3$ | $g^*(S_4)$ | d_4^* | |----------------|-------|---------------|--|------------|---------| | \mathbf{C}_1 | T | 7 | 10 + 7 | 17 | T | | \mathbf{C}_2 | T | 9 | 11 + 9 | 20 | T | | C_3 | T | 8 | | | | $T \rightarrow C_1 \rightarrow B_2 \rightarrow A_1 \rightarrow S$