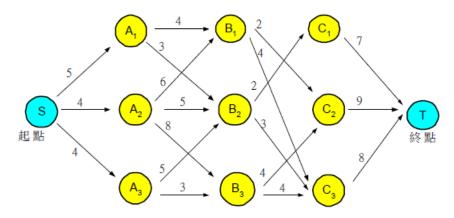

國立臺北大學自然資源與環境管理研究所 113 學年度第二學期『資源管理與環境系統分析』


課程講義(07): 動態規劃與目標規劃 Dynamic Programming and Goal Programming

• INTRODUCTION TO DYNAMIC PROGRAMMING

- □ Dynamic Programming = Divide and Conquer + Memorization
- □ No Specific Forms or Formulations=> Principle of Optimality
- ☐ Terminology: Stage, State, Decision, Return, Recursive Equation
- □ Dynamic programming is a technique for solving problems with a recursive structure with the following characteristics:
 - ⇒ Optimal substructure (principle of optimality): An optimal solution to a problem can be decomposed into optimal solutions for sub-problems.
 - ⇒ A small number of sub-problems: The total number of sub-instances to be solved is small.
 - ⇒ Overlapping sub-problems: During the computation same instances are referred to repeatedly.

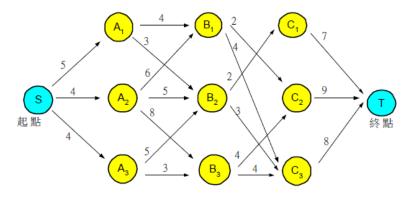
- ☐ An Example of Dynamic Programming: The Shortest Path Problem
 - ⇒ Divide the problem into 4 subproblems (Stages)
 - \Rightarrow Find the optimal solution in the stage *i* and 'pass' into stage *i*+1.
 - ⇒ Formulate the recursive equation between stages.
 - ⇒ Backward vs. Forward => Can find the same optimal solution under deterministic conditions

• GOAL PROGRAMMING

- ☐ Criteria for Decision-Making: Attribute, Objective, Target, and Goal

 ⇒ The UN SDGs: Goals, Targets, and Indicators
- □ Multiple Criteria Decision Making: Multiple Attribute and Multiobjective
- □ Classification of Goal Programming: Non-Preemptive vs. Preemptive
- □ Non-Preemptive Goal Programming
 - ⇒ Complementary relationship
 - ⇒ One-sided vs. Two-sided
- ☐ Preemptive Goal Programming or Lexicographic GP
- □ Drawbacks: Normalization and Weighting; Pareto Optimality?
- ☐ An Example of Goal Programming: Expansion of Production Lines
 - ⇒ Deviational variables => slack vs. surplus => Minimize penalty weighted deviations
 - ⇒ Maximize the profit => allow overshooting and penalty on undershooting
 - ⇒ Remain employee level => penalty on both sides (may have different weights)
 - ⇒ Minimize the investment => penalty on overshooting and allow undershooting

例題 3-1:


某一家公司考慮製造三種產品取代目前的產品,決策者優先考慮了三個主要因子: 長期利潤、勞動力之穩定性和投資資本額。目標如下:

- (1) 三種產品之長期利潤至少 125,000,000 元。
- (2) 儘量維持現有雇用水準爲員工 4,000 人。
- (3) 固定投資資本額少於 55,000,000 元。

所定的標準如下表 3.1:

表 3.1 ※例題 3-1 中之系統規劃條件

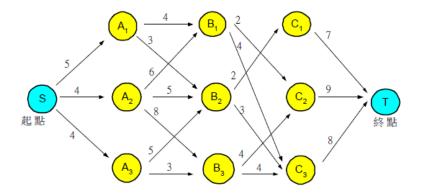
田マ	產品之生產參數		參數	4.55 / PB / 1-1	懲罰權重	
因子	1	2	3	標的 (單位)	(penalty weight)	
長期利潤	10 0				_	
(103\$/產品)	12	9	15	≥125(百萬元/年)	5	
雇用水準	_		.	40/ = 4 = - 7 (c)	2() 4()	
(人)	5	3	4	=40(百名員工/年)	2(+) , 4(-)	
投資資本額	, i					
(10 ³ \$/產品)	5	7	8	≤55(百萬元/年)	3	

階段1 (Stage 1):

S_1	d_1	$f(S_1, d_1)$	$f(S_1, d_1) + g*(S_0)$ $S_0 = T, g*(S_0) = g*(T) = 0$	$g^*(S_1)$	d_1^*
C	T	7	7 + 0	7	T
C	T	9	9 + 0	9	T
C	T	8	8 + 0	8	T

階段2 (Stage 2):

S_2	d_2	$f(S_2, d_2)$	$f(S_2, d_2) + g*(S_1)$ $S_1 = d_2$	$g^*(S_2)$	d_2^*
\mathbf{B}_1	C_2	2	2 + 9	11	C_2
	C_3	4	4 + 8		
B_2	\mathbf{C}_1	2	2 + 7	9	C_1
	C_3	3	3 + 8		
\mathbf{B}_3	C_2	4	4 + 9		
	C_3	5	4 + 8	12	C_3


階段3 (Stage 3):

S_3	d_3	$f(S_3, d_3)$	$f(S_3, d_3) + g*(S_2)$ $S_2 = d_3$	$g^*(S_3)$	d_3^*
A_1	\mathbf{B}_1	4	4 + 11		
	B_2	3	3 + 9	12	B_2
A_2	\mathbf{B}_1	6	6+11		
	B_2	5	5 + 9	14	B_2
	B_3	8	8 + 12		
A_3	B_2	5	5 + 9	14	B_2
	B_3	3	3 + 12		

階段4 (Stage 4):

101/0-1	(•)•			
S_4	d_4	$f(S_4, d_4)$	$f(S_4, d_4) + g*(S_3)$ $S_3 = d_4$	$g^*(S_4)$	${d_4}^*$
S	A_1	5	5 + 12	17	A_1
	A_2	4	4 + 14		
	A ₃	4	4 + 14		

 $S \rightarrow A_1 \rightarrow B_2 \rightarrow C_1 \rightarrow T$

階段1 (Stage 1):

S_1	d_1	$f(S_1, d_1)$	$g^*(S_0) + f(S_1, d_1)$ $S_0 = S, g^*(S_0) = g^*(S) = 0$	$g^*(S_1)$	d_1^*
S	A_1	5	0 + 5	5	A_1
	A_2	4	0 + 4	4	A_2
	A_3	4	0 + 4	4	A_3

階段2 (Stage 2):

S_2	d_2	$f(S_2, d_2)$	$g*(S_1) + f(S_2, d_2)$ $S_1 = d_1$	$g^*(S_2)$	d_2^*
A_1	B_1	4	5 + 4		
	B_2	3	5 + 3	8	\mathbf{B}_2
A_2	\mathbf{B}_1	6	4 + 6		
	B_2	5	4 + 5	9	
	B_3	8	4 + 8		
A_3	B_2	5	4 + 5		
	B_3	3	4 + 3	7	B_3

階段3 (Stage 3):

S_3	d_3	$f(S_3, d_3)$	$g*(S_2) + f(S_3, d_3)$ $S_2 = d_2$	$g^*(S_3)$	d_3^*
B_1	C_2	2			
	C_3	4			
B_2	C_1	2	8 + 2	10	C_1
	C_3	3	8 + 3		
\mathbf{B}_3	C_2	4	7 + 4	11	C_2
	C_3	5	7 + 5		

階段4 (Stage 4):

S_4	d_4	$f(S_4, d_4)$	$g*(S_3) + f(S_4, d_4)$ $S_3 = d_3$	$g^*(S_4)$	d_4^*
\mathbf{C}_1	T	7	10 + 7	17	T
\mathbf{C}_2	T	9	11 + 9	20	T
C_3	T	8			

 $T \rightarrow C_1 \rightarrow B_2 \rightarrow A_1 \rightarrow S$