國立臺北大學自然資源與環境管理研究所 113 學年度第二學期『資源管理與環境系統分析』期中考試

(紙本答案卷繳交日期:2025年05月06日;請嚴守學術倫理規範)

1. (15%) 以下為詢問 Copilot 有關"Business Analytics"之對話內容,請就課堂舉例「股票投資」以外之領域,例如,醫療服務、企業減碳、環境影響評估作業等,挑選一應用領域,以闡述三項分析類別 (analytics categories) 之可能應用實例:

Business analytics is the practice of using data to improve decision-making and performance in organizations. It encompasses various methods and tools to collect, analyze, and interpret data effectively. The key components are:

1. Data Collection:

o Gathering data from various sources, such as customer feedback, operational metrics, and financial records.

2. Data Analysis:

o Applying statistical methods, algorithms, and software tools to uncover insights, trends, and patterns.

3. **Decision Support**:

 \circ Using the insights to make strategic decisions and solve business problems.

Business analytics can be divided into three main categories:

- Descriptive Analytics (examines past data),
- Predictive Analytics (forecasts future trends),
- Prescriptive Analytics (suggests optimal actions).

It's widely used across industries like retail, healthcare, finance, and manufacturing to enhance efficiency, maximize profits, and improve customer experience.

2. (25%) 給定一最短路徑問題圖示如下:

請嘗試比照 Hillier and Lieberman (2021)之"the Seervada Park Shortest-Path Problem"建構一 Excel 工作表,並應用『名稱定義』功能與『規劃求解』增益集,求解上述問題。線性規劃模型之目標函數為最小化通行路徑,決策變數則為每段連結是否在最短路徑上(二元決策變數),限制式則為各節點若有進入則必須也是下一階段之出發點。

3. (30%) 給定 MaxDEA「《数据包络分析方法与 MaxDEA 软件》第 2 版书稿 X」中之表 2-3 案例,請嘗試應用 Excel 繪製如圖 2-1 之圖示,並應用 MaxDEA、DEAFrontier或 pyDEA 求解該問題。

【加分題】:應用 Excel 建構 7 個線性規劃模型 (投入導向之乘子模型) 求解

DMU	X ₁	X2	y
A	10	40	10
В	15	25	10
C	32	24	16
D	48	16	16
E	24	48	16
F	54	27	18
G	50	60	20

4. (30%)「污染總量分配 Waste Allocation」為一典型之環境系統分析問題,近期有一學術論文 Zhou, Y, B. Yang, J.C. Han, and Y.F. Huang. 2019. "Robust Linear Programming and Its Application to Water and Environmental Decision-Making under Uncertainty", Sustainability, 11, No.1:33. https://doi.org/10.3390/su11010033. 探討"A semi-hypothetical regional water quality management problem",其問題為分配污染源排入河川之污染總量,並以最小化處理成本為目標函數。請先檢視該線性規劃模型(EQ.14~EQ.17)

Figure 1. A schematic diagram of the regional water quality management problem.

This water quality management problem can be formulated as the following optimization model:

$$\min \sum_{i=1}^{n} C_i B_i x_i + \sum_{i=1}^{n} S_i y_i \tag{14}$$

Subject to:

(Water quality requirement)

$$\sum_{i=1}^{n} B_i (1 - E_i) x_i \le L, \forall i$$
(15)

(Wastewater treatment capacity)

$$x_i \le W_i, \forall i \tag{16}$$

(Wastewater discharge capacity)

$$y_i = W_i - x_i, \forall i \tag{17}$$

where:

 C_i = the cost of BOD removal at factory i (\$/ton)

 B_i = the BOD concentration of wastewater at factory i (10⁻⁶ ton/m³)

 S_i = the service fee of wastewater discharged into the municipal sewage system from factory i (\$/m³)

 E_i = the BOD removal efficiency of the wastewater treatment system at factory i (%)

L =the BOD mass limit (10^{-3} ton)

 W_i = the daily volume of wastewater produced at factory i (m³/day)

 x_i = the volume of wastewater treated by the wastewater treatment system of factory i (m³)

 y_i = the volume of wastewater discharged into the municipal sewage system from factory i (m³)

Table 1. Parameter values for the regional water quality management problem illustrated in Figure 1.

	Influent BOD (mg/L)	Wastewater (m³/d)	BOD Treatment Cost (\$/ton)	BOD Removal Efficiency	Sewage Fee (\$/m³)
Dairy factory	850	1200	400	0.9	0.56
Beverage factory	400	4000	500	0.95	0.25
BOD mass limit (kg)	170				
Penalty (\$/ton)	5000				