國立臺北大學自然資源與環境管理研究所

九十七學年度第二學期

『環境系統分析』課程講義(五、六)

進度:不確定性分析與隨機規劃

- PROBABILITY THEORY, STOCHASTIC PROCESS AND RANDOM FIELD
 - Deterministic vs. Stochastic Systems
 - ⇒ Vagueness, Uncertainty and 'Stochasticity'
 - ⇒ Possibility, Likelihood, and Probability
 - □ Probability Theory
 - ⇒ The Axioms of Probability
 - ⇒ Random Variables: Discrete and Continuous
 - ⇒ Statistics (Moments) of a Random Variable: Expected Value, Variance, ... etc.
 - ⇒ Multiple Random Variables: Multivariate Statistics => Covariances
 - ⇒ Distribution: Probability Density Function, Cumulated Distribution Function
 - ⇒ Conditional Probability and Baye's Theorem => Bayesian Decision Analysis
 - □ Normal Distribution
 - ⇒ Two-Parameter Distribution: Location and Dispersion => Mean and Variance
 - ⇒ Standardization and *t*-Distribution
 - ⇒ Confidence Interval and Standard Deviation
 - ⇒ Multivariate Gaussian Distribution
 - \square Stochastic Process
 - ⇒ Serial Random Variables: Temporal, Spatial, Spatio-Temporal Stochastic Processes
 - ⇒ Serial Correlation => Deterministic Term (Trend) + Disturbance (Noise)
 - ⇒ Poisson Process, Markov's Chains, and Random Walks
 - \square Random Field
 - ⇒ Random Variables Distributed ('Regionalized') in Space
 - ⇒ Spatial Variability (Correlation) => Trend + Disturbance
 - ⇒ Geostatistics: Kriging (Simple, Ordinary, Universal...) => GIS
- STOCHASTIC PROGRAMMING
 - □ Uncertainty Analysis
 - ⇒ Mathematical (Quantitative) Analyses Related to the Uncertainties about 'Systems'
 - ⇒ System Uncertainties: Uncertainties about Measurement, Modeling, and Parameters
 - □ Uncertainties Related to Mathematical Programming Systems
 - ⇒ Modeling Uncertainties: Assumptions, Objective Functions, and Constraints
 Mathematical Program with Recourse: Multi-Stage Stochastic Programming
 - ⇒ Uncertainties 'Embedded' in Decision Variables: Fuzziness, Grey Information...
 Intervals or Specified Ranges => Grey Numbers => Grey Programming
 Degree of Set Membership => Fuzzy Set => Fuzzy Programming
 - \Rightarrow Uncertainties about Model Parameters: Coefficients of Objective Function, RHS, A_{ii}

- o Parameters (Coefficients) of the Optimization Model are Random Variables
- \circ Treat Decision Variables as 'Deterministic Variables' to be determined
- Probabilistic Constraints => Chance-Constrained Programming
- □ Other Considerations
 - ⇒ Stochastic Dynamic Programming and Markov Decision Process
 - ⇒ Optimal Control and System Dynamics
- TWO-STAGE STOCHASTIC PROGRAMMING WITH RECOURSE
 - □ What is "recourse"? "Wait-and-See"?
 - \Rightarrow Recourse is the ability to take corrective action after a random event has taken place.
 - □ Scenarios and Stages
 - ⇒ Deterministic Equivalent => Expected-Value Formulatoin
 - □ <u>An Example (http://wiki.mcs.anl.gov/NEOS/index.php/Stochastic_Programming</u>)
- CHANCE CONSTRAINED PROGRAMMING
 - □ What are Chance Constraints?
 - □ Significance Level => System Reliability
 - □ Row Independence => Independently and Identically Distributed (iid)
 - □ Right-Hand-Side Random => Univariate Normal Distribution
 - □ Technical Coefficients Random => Multivariate Normal Distribution
 - □ Row Dependence => Joint Chance Constraint (relatively complicated!)

Chance Constraints:
$$p\left(\sum_{j=1}^{n} a_{ij} \cdot x_j \propto b_i\right) \ge 1 - \alpha_i; \quad \forall i = 1, \dots m$$

(1) RHS b_i Random: Univariate probability distribution of b_i

i.
$$\alpha \equiv \geq$$

 $p\left(\sum_{j=1}^{n} a_{ij} \cdot x_j \geq b_i\right) \geq 1 - \alpha_i \Rightarrow p\left(b_i \leq \sum_{j=1}^{n} a_{ij} \cdot x_j\right) \geq 1 - \alpha_i \Rightarrow F(b_i = \sum a_{ij}x_j) \geq 1 - \alpha_i$
ii. $\alpha \equiv \leq$

$$p\left(\sum_{j=1}^{n} a_{ij} \cdot x_{j} \le b_{i}\right) \ge 1 - \alpha_{i} \Longrightarrow p\left(b_{i} \ge \sum_{j=1}^{n} a_{ij} \cdot x_{j}\right) \ge 1 - \alpha_{i} \Longrightarrow 1 - F(b_{i} = \sum a_{ij}x_{j}) \ge 1 - \alpha_{i}$$

(2) Technical Coefficients a_{ij} Random: Multivariate probability distribution of $\sum a_{ij}x_j$ \Rightarrow Variance-Covariance Matrix: Positively definite (symmetric) matrix

- HOMEWORK #3 (04/09/2009 Due)
 - 1. Suppose that the third constraint of the Prototype Example (the Glass Production at Wyndor Co.) in Hillier and Lieberman (2003) is a chance constraint (RHS random), please construct the deterministic equivalent of the stochastic programming model.
 - 2. Suppose that the RHS of the third constraint is a random number with normal distribution of $b_3 \rightarrow N(18, 3^2)$. Please use What'sBest and GAMS to solve the deterministic equivalent model and compare the objective values with respect to the variations of significance levels of 0.5%, 1%, 5%, and 10%.