Decoding BCH/RS Codes

Yunghsiang S. Han

Graduate Institute of Communication Engineering,
National Taipei University
Taiwan
E-mail: yshan@mail.ntpu.edu.tw

Decoding Procedure

- The $\mathrm{BCH} / \mathrm{RS}$ codes decoding has four steps:

1. Syndrome computation
2. Solving the key equation for the error-locator polynomial $\Lambda(x)$
3. Searching error locations given the $\Lambda(x)$ polynomial by simply finding the inverse roots
4. (Only nonbinary codes need this step) Determine the error magnitude at each error location by error-evaluator polynomial $\Omega(x)$

- The decoding procedure can be performed in time or frequency domains.
- This lecture only considers the decoding procedure in
time domain. The frequency domain decoding can be found in $[1,2]$.

Syndrome Computation

- Let $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ be the $2 t$ consecutive roots of the generator polynomial for the $\mathrm{BCH} / \mathrm{RS}$ code, where α is an element in finite field $G F\left(q^{m}\right)$ with order n.
- Let $y(x)$ be the received vector. Then define the syndrome $S_{j}, 1 \leq j \leq 2 t$, as follows:

$$
\begin{align*}
S_{j} & =y\left(\alpha^{j}\right)=c\left(\alpha^{j}\right)+e\left(\alpha^{j}\right)=e\left(\alpha^{j}\right) \\
& =\sum_{i=0}^{n-1} e_{i}\left(\alpha^{j}\right)^{i} \tag{1}\\
& =\sum_{k=1}^{v} e_{i_{k}} \alpha^{i_{k} j}
\end{align*}
$$

where n is the code length and it is assumed that v errors occurred in locations corresponding to time indexes $i_{1}, i_{2}, \ldots, i_{v}$.

- When n is large one can calculate syndromes by the minimum polynomial for α^{j}.
- Let $\phi_{j}(x)$ be the minimum polynomial for α^{j}. That is, $\phi_{j}\left(\alpha^{j}\right)=0$. Let $y(x)=q(x) \phi_{j}(x)+r_{j}(x)$, where $r_{j}(x)$ is the remainder and the degree of $r_{j}(x)$ is less than the degree of $\phi_{j}(x)$, which is at most m.
- $S_{j}=y\left(\alpha^{j}\right)=q\left(\alpha^{j}\right) \phi_{j}\left(\alpha^{j}\right)+r_{j}\left(\alpha^{j}\right)=r_{j}\left(\alpha^{j}\right)$.
- For ease of notation we reformulate the syndromes as

$$
S_{j}=\sum_{k=1}^{v} Y_{k} X_{k}^{j}, \text { for } 1 \leq j \leq 2 t
$$

where $Y_{k}=e_{i_{k}}$ and $X_{k}=\alpha^{i_{k}}$.

- The system of equations for syndromes is

$$
\begin{array}{cc}
S_{1}= & Y_{1} X_{1}+Y_{2} X_{2}+\cdots+Y_{v} X_{v} \\
S_{2}= & Y_{1} X_{1}^{2}+Y_{2} X_{2}^{2}+\cdots+Y_{v} X_{v}^{2} \\
S_{3}= & Y_{1} X_{1}^{3}+Y_{2} X_{2}^{3}+\cdots+Y_{v} X_{v}^{3} \\
& \vdots \\
S_{2 t}= & Y_{1} X_{1}^{2 t}+Y_{2} X_{2}^{2 t}+\cdots+Y_{v} X_{v}^{2 t} .
\end{array}
$$

Key Equation

- Recall that the error-locator polynomial is

$$
\Lambda(x)=\left(1-x X_{1}\right)\left(1-x X_{2}\right) \cdots\left(1-x X_{v}\right)=\Lambda_{0}+\sum_{i=1}^{v} \Lambda_{i} x^{i}
$$

where $\Lambda_{0}=1$.

- Define the infinite degree syndrome polynomial (though we only know the first $2 t$ coefficients) as

$$
\begin{aligned}
S(x) & =\sum_{j=0}^{\infty} S_{j+1} x^{j} \\
& =\sum_{j=0}^{\infty} x^{j}\left(\sum_{k=1}^{v} Y_{k} X_{k}^{j+1}\right)
\end{aligned}
$$

$$
=\sum_{k=1}^{v} \frac{Y_{k} X_{k}}{1-x X_{k}}
$$

- Define the error-evaluator polynomial as

$$
\begin{aligned}
\Omega(x) & \triangleq \Lambda(x) S(x) \\
& =\sum_{k=1}^{v} Y_{k} X_{k} \prod_{\substack{j=1 \\
j \neq k}}^{v}\left(1-x X_{j}\right) .
\end{aligned}
$$

- The degree of the error-evaluator polynomial is less than v.
- Actually we only know the first $2 t$ terms of $S(x)$ such that we have

$$
\begin{equation*}
\Lambda(x) S(x) \equiv \Omega(x) \bmod x^{2 t} \tag{2}
\end{equation*}
$$

- Since the degree of $\Omega(x)$ is at most $v-1$ the terms of $\Lambda(x) S(x)$ from x^{v} through $x^{2 t-1}$ are all zeros.
- Then

$$
\begin{equation*}
\sum_{k=0}^{v} \Lambda_{k} S_{j-k}=0, \text { for } v+1 \leq j \leq 2 t \tag{3}
\end{equation*}
$$

- The above system of equations is the same as the key equation given previously if we only consider those equations up to $j=2 v$ (remember that $v \leq t$).
- Thus, (2) is also known as key equation.
- Solving key equation to determine the coefficients of the
error-locator polynomial is a hard problem and it will be mentioned later.

Chien Search

- The next important decoding step is to find the actual error locations $X_{1}=\alpha^{i_{1}}, X_{2}=\alpha^{i_{2}}, \ldots, X_{v}=\alpha^{i_{v}}$.
- Note that $\Lambda(x)$ has roots

$$
X_{1}^{-1}=\alpha^{-i_{1}}, X_{2}^{-1}=\alpha^{-i_{2}}, \ldots, X_{v}^{-1}=\alpha^{-i_{v}} .
$$

- Observe that an error occurs in position i if and only if $\Lambda\left(\alpha^{-i}\right)=0$ or

$$
\sum_{k=0}^{v} \Lambda_{k} \alpha^{-i k}=0
$$

- Then

$$
\Lambda\left(\alpha^{-(i-1)}\right)=\sum_{k=0}^{v} \Lambda_{k} \alpha^{-i k+k}=\sum_{k=0}^{v}\left(\Lambda_{k} \alpha^{-i k}\right) \alpha^{k} .
$$

- This suggests that the potential error locations are tested in succession starting with time index $n-1$.

Summing all terms of $\Lambda\left(\alpha^{-i}\right)$ at index i tests to see if $\Lambda\left(\alpha^{-i}\right)=$ 0.

Then to test at index $i-1$ only requires multiplying the k th term of $\Lambda\left(\alpha^{-i}\right)$ by α^{k} for all k and summing all terms again. This procedure is repeated until index 0 is reached.
The initial value for k th term is $\Lambda_{k} \alpha^{-n k}$.
This procedure is known as Chien Search.

Forney's Formula

- For nonbinary BCH or RS codes one still needs to determine the error magnitude for each error location.
- These values, $Y_{1}, Y_{2}, \ldots, Y_{v}$, can be obtained by utilizing the error-evaluator polynomial. This step is known as Forney's formula.
- By substituting $X_{k}^{-1}=\alpha^{-i_{k}}$ into the error-evaluator polynomial we have

$$
\Omega\left(X_{k}^{-1}\right)=Y_{k} X_{k} \prod_{\substack{j=1 \\ j \neq k}}^{v}\left(1-X_{k}^{-1} X_{j}\right) .
$$

- By taking the formal derivative of $\Lambda(x)$ and also
evaluating it at $x=X_{k}^{-1}$ we have

$$
\begin{aligned}
\Lambda^{\prime}\left(X_{k}^{-1}\right) & =-X_{k} \prod_{\substack{j=1 \\
j \neq k}}^{v}\left(1-X_{k}^{-1} X_{j}\right) \\
& =\frac{-1}{Y_{k}} \Omega\left(X_{k}^{-1}\right) .
\end{aligned}
$$

- Thus the error magnitude Y_{k} is given by

$$
\begin{equation*}
Y_{k}=-\frac{\Omega\left(X_{k}^{-1}\right)}{\Lambda^{\prime}\left(X_{k}^{-1}\right)}=-\frac{\Omega\left(\alpha^{-i_{k}}\right)}{\Lambda^{\prime}\left(\alpha^{-i_{k}}\right)} . \tag{4}
\end{equation*}
$$

- Clearly, the above formula can be determined by a search procedure similar to Chien Search.
- Usually, $\Omega(x)$ can be obtained by solving the key

equation.

The Euclidean Algorithm [1]

- Euclidean algorithm is a recursive technology to find the greatest common divisor (GCD) of two numbers or two polynomials.
- The Euclidean algorithm is as follows. Let $a(x)$ and $b(x)$ represent the two polynomials, which $\operatorname{deg}[a(x)] \geq \operatorname{deg}[b(x)]$. Divide $a(x)$ by $b(x)$. If the remainder, $r(x)$, is zero, then GCD $d(x)=b(x)$. If the remainder is not zero, then replace $a(x)$ with $b(x)$, replace $b(x)$ with $r(x)$, and repeat.
- Considering a simple example, where $a(x)=x^{5}+1$ and $b(x)=x^{3}+1$. Then

$$
\begin{aligned}
x^{5}+1 & =x^{2}\left(x^{3}+1\right)+\left(x^{2}+1\right) \\
x^{3}+1 & =x\left(x^{2}+1\right)+(x+1) \\
x^{2}+1 & =(x+1)(x+1)+0
\end{aligned}
$$

- Since $d(x)$ divides $x^{5}+1$ and $x^{3}+1$ it must also divide $x^{2}+1$. Since it divides $x^{3}+1$ and $x^{2}+1$ it must also divide $x+1$. Consequently, $x+1=d(x)$.
- The useful aspect of this process is that, at each iteration, a set of polynomials $f_{i}(x), g_{i}(x)$, and $r_{i}(x)$ are generated such that

$$
\begin{equation*}
f_{i}(x) a(x)+g_{i}(x) b(x)=r_{i}(x) \tag{5}
\end{equation*}
$$

- A way to obtain $f_{i}(x)$ and $g_{i}(x)$ is as follows.
- Define $q_{i}(x)$ to be the quotient polynomial that is produced by dividing $r_{i-2}(x)$ by $r_{i-1}(x)$. Then, for $i \geq 1$,

$$
\begin{aligned}
r_{i}(x) & =r_{i-2}-q_{i}(x) r_{i-1}(x) \\
f_{i}(x) & =f_{i-2}-q_{i}(x) f_{i-1}(x) \\
g_{i}(x) & =g_{i-2}-q_{i}(x) g_{i-1}(x)
\end{aligned}
$$

where the initial values are

$$
\begin{align*}
f_{-1}(x) & =g_{0}(x)=1 \\
f_{0}(x) & =g_{-1}(x)=0 \\
r_{-1}(x) & =a(x) \tag{6}\\
r_{0}(x) & =b(x)
\end{align*}
$$

- There are two useful properties of the algorithm:

1. $\operatorname{deg}\left[r_{i}(x)\right]<\operatorname{deg}\left[r_{i-1}(x)\right]$;
2. $\operatorname{deg}\left[g_{i}(x)\right]+\operatorname{deg}\left[r_{i-1}(x)\right]=\operatorname{deg}[a(x)]$.

The Sugiyama Algorithm for Solving Key Equation [1]

- The Sugiyama algorithm utilizes Euclidean algorithm to solve the key equation. Hence, the Sugiyama algorithm is also called Euclidean algorithm.
- (5) can be written as

$$
g_{i}(x) b(x) \equiv r_{i}(x) \bmod a(x)
$$

- Comparing (2) with the above equation, they are equivalent when

$$
\begin{aligned}
& a(x)=x^{2 t}, b(x)=S(x) \\
& g_{i}(x)=\Lambda_{i}(x), r_{i}(x)=\Omega_{i}(x)
\end{aligned}
$$

- The Euclidean algorithm produces a sequence of solutions to the key equation.
- When $v \leq t$ one needs to know which solutions produced is the desired solution. It can be determined as follows.
- By the property of Euclidean algorithm, we have

$$
\operatorname{deg}\left[g_{i}(x)\right]+\operatorname{deg}\left[r_{i-1}(x)\right]=2 t
$$

and

$$
\operatorname{deg}\left[g_{i}(x)\right]+\operatorname{deg}\left[r_{i}(x)\right]<2 t
$$

If $v \leq t$, then $\operatorname{deg}[\Omega(x)]<\operatorname{deg}[\Lambda(x)] \leq t$. There exists only one polynomial $\Lambda(x)$ with degree no greater than t which satisfies the key equation.
If $\operatorname{deg}\left[r_{i-1}\right] \geq t$ and thus $d e g\left[g_{i}(x)\right] \leq t$ and $\operatorname{deg}\left[r_{i}(x)\right]<t$, then $\operatorname{deg}\left[g_{i+1}(x)\right]>t$.
This means that the results at the i th step provide the only solution to the key equation that is of interest.

Summary of the Sugiyama Decoding algorithm

1. Apply Euclidean algorithm to $a(x)=x^{2 t}$ and $b(x)=$ $S(x)$.
2. Use the initial conditions of (6).
3. Stop when $\operatorname{deg}\left[r_{n}(x)\right]<t$.
4. Set $\Lambda(x)=g_{n}(x)$ and $\Omega(x)=r_{n}(x)$.

- Note that the algorithm will give an error-locator polynomial no matter whether $v \leq t$ or not. Thus, a circuit to check for valid error-locator polynomial must be performed during Chien search.
- One can check whether the number of roots found by

Chien search is the same as the degree of the error-locator polynomial or not. If they are agreed, the valid error-locator polynomial is assumed. Otherwise, too-many-error alert is reported.

Example

Consider the triple-error-correcting BCH code where generator polynomial has $\alpha, \alpha^{2}, \ldots, \alpha^{6}$ as roots and α is a primitive element of $G F\left(2^{4}\right)$ with $\alpha^{4}=\alpha+1$. Let the received vector $y(x)=x^{7}+x^{2}$. We now want to find the error locations of the received vector.

First we need to calculate the syndrome coefficients. By (1), we have

$$
S(x)=x^{4}+\alpha^{3} x^{3}+\alpha^{9} x+\alpha^{12} .
$$

Next we perform Sugiyama algorithm as follows:

i	$\Lambda_{i}(x)\left(g_{i}(x)\right)$	$\Omega_{i}(x)\left(r_{i}(x)\right)$	$q_{i}(x)$
-1	0	x^{6}	-
0	1	$S(x)$	-
1	$x^{2}+\alpha^{3} x+\alpha^{6}$	$\alpha^{11} x+\alpha^{3}$	$x^{2}+\alpha^{3} x+\alpha^{6}$

Thus, $\Lambda(x)=x^{2}+\alpha^{3} x+\alpha^{6}$. By performing Chien search we can find the roots of $\Lambda(x)$ are α^{-7} and α^{-2} and consequently, $e(x)=x^{7}+x^{2}$.

The Berlekamp-Massey Algorithm for Solving Key Equation [3]

- For simplicity, we only consider binary BCH codes.
- The Berlekamp-Massey (BM) algorithm builds the error-locator polynomial by requiring that its coefficients satisfy a set of equations called the Newton identities rather than (3). The Newton identities are:

$$
\begin{aligned}
& S_{1}+\Lambda_{1}=0 \\
& S_{2}+\Lambda_{1} S_{1}+2 \Lambda_{2}=0 \\
& S_{3}+\Lambda_{1} S_{2}+\Lambda_{2} S_{1}+3 \Lambda_{3}=0, \\
& \quad \vdots \\
& \quad S_{v}+\Lambda_{1} S_{v-1}+\cdots+\Lambda_{v-1} S_{1}+v \Lambda_{v}=0,
\end{aligned}
$$

```
and for \(j>v\) :
```

$$
S_{j}+\Lambda_{1} S_{j-1}+\cdots+\Lambda_{v-1} S_{j-v+1}+\Lambda_{v} S_{j-v}=0 .
$$

- It turns out that we only need to look at the first, third, fifth,...of these equations. For notation ease, we number these Newton identities as (noting that $i \Lambda_{i}=\Lambda_{i}$ when i is odd):

1) $S_{1}+\Lambda_{1}=0$,
2) $S_{3}+\Lambda_{1} S_{2}+\Lambda_{2} S_{1}+\Lambda_{3}=0$,
3) $S_{5}+\Lambda_{1} S_{4}+\Lambda_{2} S_{3}+\Lambda_{3} S_{2}+\Lambda_{4} S_{1}+\Lambda_{5}=0$,
\vdots
μ)

$$
S_{2 \mu-1}+\Lambda_{1} S_{2 u-2}+\Lambda_{2} S_{2 \mu-3}+\cdots+\Lambda_{2 \mu-2} S_{1}+\Lambda_{2 \mu-1}=0
$$

- Define a sequence of polynomials $\Lambda^{(\mu)}(x)$ of degree d_{μ} indexed by μ as follows:

$$
\Lambda^{(\mu)}(x)=1+\Lambda_{1}^{(\mu)} x+\Lambda_{2}^{(\mu)} x^{2}+\cdots+\Lambda_{d_{\mu}}^{(\mu)} x^{d \mu} .
$$

- The polynomial $\Lambda^{(\mu)}(x)$ is calculated to be the minimum degree polynomial whose coefficients satisfy all of the first μ numbered equations of (7).
- For each polynomial, its discrepancy Δ_{μ}, which measures how far $\Lambda^{(\mu)}(x)$ is from satisfying the $\mu+1$ st identity, is defined as

$$
\begin{equation*}
\Delta_{\mu}=S_{2 \mu+1}+\Lambda_{1} S_{2 u}+\Lambda_{2} S_{2 \mu-1}+\cdots+\Lambda_{2 \mu} S_{1}+\Lambda_{2 \mu+1} . \tag{8}
\end{equation*}
$$

- One starts with two initial polynomials, $\Lambda^{(-1 / 2)}(x)=1$ and $\Lambda^{(0)}(x)=1$, and then generate $\Lambda^{(\mu)}$ iteratively in a manner that depends on the discrepancy.
- The discrepancy $\Delta_{-1 / 2}=1$ by convention and the remaining discrepancies are calculated.
- The Berlekamp-Massey algorithm is as follows:

1. $\Lambda^{(-1 / 2)}(x)=1, \Lambda^{(0)}(x)=1$, and $\Delta_{-1 / 2}=1$.
2. Start from $\mu=1$ and repeat the next two steps until $\mu=t$.
3. Calculate Δ_{μ} according to (8). If $\Delta_{\mu}=0$, then

$$
\Lambda^{(\mu+1)}(x)=\Lambda^{(\mu)}(x)
$$

4. If $\Delta_{\mu} \neq 0$, find a value $-(1 / 2) \leq \rho<\mu$ such that $\Delta_{\rho} \neq 0$ and $2 \rho-d_{\rho}$ is as large as possible. Then

$$
\Lambda^{(\mu+1)}(x)=\Lambda^{(\mu)}(x)+\Delta_{\mu} \Delta_{\rho}^{-1} x^{2(\mu-\rho)} \Lambda^{(\rho)}(x)
$$

- The error-locator polynomial is $\Lambda(x)=\Lambda^{(t)}(x)$.
- If this polynomial had degree greater than t, more than t errors have been made, and uncorrectable alert should be declared.

Example

Consider the same BCH code and received vector as in the previous example. Then

$$
S(x)=x^{4}+\alpha^{3} x^{3}+\alpha^{9} x+\alpha^{12} .
$$

Next we perform Berlekamp-Massey algorithm as follows:

μ	$\Lambda^{(\mu)}(x)$	Δ_{μ}	d_{μ}	$2 \mu-d_{\mu}$	
$-1 / 2$	1	1	0	-1	
0	1	α^{12}	0	0	
1	$1+\alpha^{12} x$	α^{6}	1	1	(take $\rho=-1 / 2$)
2	$1+\alpha^{12} x+\alpha^{9} x^{2}$	0	2	2	(take $\rho=0$)
3	$1+\alpha^{12} x+\alpha^{9} x^{2}$	-	-	-	

$1+\alpha^{12} x+\alpha^{9} x^{2}$ has the same roots as $\alpha^{6}+\alpha^{3} x+x^{2}$ which was found by the Sugiyama algorithm.

LFSR Interpretation of Berlekamp-Massey Algorithm[4]

- Newton's Identity:

$$
S_{j}=-\sum_{i=1}^{v} \Lambda_{i} S_{j-i}, \quad j=v+1, v+2, \ldots, 2 t
$$

- The formula describes the output of a linear feedback shift register (LFSR) with coefficients $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{v}$.
- The problem to find the error locator polynomial is then equivalent to find the smallest number of coefficients of an LFSR such that it can produce $S_{1}, S_{2}, \ldots, S_{2 t}$, i.e., to find a shortest such LFSR.
- In the Berlekamp-Massey algorithm, one builds the LFSR that produces the entire sequence of syndromes by
successively modifying an existing LFSR. This procedure starts with an LFSR that could produce S_{1} and end at an LFSR that produces the entire sequence of syndromes.
- Let L_{k} denote the length of the LFSR produced at stage k of the algorithm.
- Let

$$
\Lambda^{[k]}(x)=1+\Lambda_{1}^{[k]} x+\cdots+\Lambda_{L_{k}}^{[k]} x^{L_{k}}
$$

be the connection polynomial at stage k, indicating the connections for the LFSR capable of producing the output sequence $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$. That is

$$
S_{j}=-\sum_{i=1}^{L_{k}} \Lambda_{i}^{[k]} S_{j-i}, \quad j=L_{k}+1, L_{k}+2, \ldots, k
$$

- Assume that we have a connection polynomial $\Lambda^{[k-1]}(x)$ of length L_{k-1} that produces $\left\{S_{1}, S_{2}, \ldots, S_{k-1}\right\}$ for some $k-1<2 t$.
- Then $\hat{S}_{k}=-\sum_{i=1}^{L_{k-1}} \Lambda_{i}^{[k-1]} S_{k-i}$.
- If \hat{S}_{k} is equal to S_{k}, then there is no need to update the LFSR, so $\Lambda^{[k]}(x)=\Lambda^{[k-1]}(x)$ and $L_{k}=L_{k-1}$.
- Otherwise, there is some nonzero discrepancy associated with $\Lambda^{[k-1]}(x)$,

$$
d_{k}=S_{k}-\hat{S}_{k}=S_{k}+\sum_{i=1}^{L_{k-1}} \Lambda_{i}^{[k-1]} S_{k-i}=\sum_{i=0}^{L_{k-1}} \Lambda_{i}^{[k-1]} S_{k-i} .
$$

In this case, we update the connection polynomial using
the formula

$$
\begin{equation*}
\Lambda^{[k]}(x)=\Lambda^{[k-1]}(x)+A x^{\ell} \Lambda^{[m-1]}(x) \tag{9}
\end{equation*}
$$

where A is some element in the finite field, ℓ is an integer, and $\Lambda^{[m-1]}(x)$ is one of the prior connection polynomials produced by our processes associated with nonzero discrepancy d_{m}.

- The new discrepancy is then

$$
d_{k}^{\prime}=\sum_{i=0}^{L_{k}} \Lambda_{i}^{[k]} S_{k-i}=\sum_{i=0}^{L_{k-1}} \Lambda_{i}^{[k-1]} S_{k-i}+A \sum_{i=0}^{L_{m-1}} \Lambda_{i}^{[m-1]} S_{k-i-\ell}
$$

- We can find an A and an ℓ to make the new discrepancy zero as follows. Let

$$
\ell=k-m
$$

Then the second summation gives

$$
A \sum_{i=0}^{L_{m-1}} \Lambda_{i}^{[m-1]} S_{m-i}=A d_{m}
$$

If we choose

$$
A=-d_{m}^{-1} d_{k},
$$

then

$$
d_{k}^{\prime}=d_{k}-d_{m}^{-1} d_{k} d_{m}=0
$$

- We still need to prove that such selection indeed makes a shortest LSFR.

Characterization of LFSR Length

- Suppose that an LFSR with connection polynomial $\Lambda^{[k-1]}(x)$ of length L_{k-1} produces the sequence $\left\{S_{1}, S_{2}, \ldots, S_{k-1}\right\}$, but not $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$. Then any connection polynomial that produces the latter sequence must have a length L_{k} satisfying $L_{k} \geq k-L_{k-1}$.
- This can be proved as follows. We assume that $L_{k-1}<k-1$; otherwise, it is trivial. We then prove it by contradiction with assuming that $L_{k} \leq k-1-L_{k-1}$. We can observe that

$$
-\sum_{i=1}^{L_{k-1}} \Lambda_{i}^{[k-1]} S_{j-i} \begin{cases}=S_{j} & j=L_{k-1}+1, L_{k-1}+2, \ldots, k-1 \\ \neq S_{k} & j=k\end{cases}
$$

and

$$
-\sum_{i=1}^{L_{k}} \Lambda_{i}^{[k]} S_{j-i}=S_{j} \quad j=L_{k}+1, L_{k}+2, \ldots, k
$$

In particular, we have

$$
S_{k}=-\sum_{i=1}^{L_{k}} \Lambda_{i}^{[k]} S_{k-i}
$$

Since $k-L_{k} \geq L_{k-1}+1$, all values of S_{j} involved in the above summation can be substituted by
$-\sum_{i=1}^{L_{k-1}} \Lambda_{i}^{[k-1]} S_{j-i}$. Hence,

$$
S_{k}=-\sum_{i=1}^{L_{k}} \Lambda_{i}^{[k]} S_{k-i}=\sum_{i=1}^{L_{k}} \Lambda_{i}^{[k]} \sum_{j=1}^{L_{k-1}} \Lambda_{j}^{[k-1]} S_{k-i-j}
$$

Interchanging the order of summation we have

$$
S_{k}=\sum_{j=1}^{L_{k-1}} \Lambda_{j}^{[k-1]} \sum_{i=1}^{L_{k}} \Lambda_{i}^{[k]} S_{k-i-j}
$$

However, we have

$$
S_{k} \neq-\sum_{i=1}^{L_{k-1}} \Lambda_{i}^{[k-1]} S_{k-i}
$$

By the assumption, $L_{k}+1 \leq k-L_{k-1}$,

$$
S_{k} \neq \sum_{j=1}^{L_{k-1}} \Lambda_{j}^{[k-1]} \sum_{i=1}^{L_{k}} \Lambda_{i}^{[k]} S_{k-i-j}
$$

which contradicts to what we just derived.

- Since the shortest LFSR that produces the sequence
$\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ must also produce the first part of that sequence, we must have $L_{k} \geq L_{k-1}$. Thus, we have

$$
L_{k} \geq \max \left(L_{k-1}, k-L_{k-1}\right) .
$$

- In the update procedure, if $\Lambda^{[k]}(x) \neq \Lambda^{[k-1]}(x)$, then a new LFSR can be found whose length satisfies $L_{k}=\max \left(L_{k-1}, k-L_{k-1}\right)$.
- It can be proved by induction on k. When $k=1$ we take $L_{0}=0$ and $\Lambda^{[0]}(x)=1$. We find that $d_{1}=S_{1}$. If $S_{1}=0$, then no update is necessary. If $S_{1} \neq 0$, then we take $\Lambda^{[m]}(x)=\Lambda^{[0]}(x)=1$, so that $\ell=1-0=1$. Also take $d_{m}=1$. The updated polynomial is

$$
\Lambda^{[1]}(x)=1+S_{1} x,
$$

which has degree $L_{1}=\max \left(L_{0}, 1-L_{0}\right)=1$.
Now let $\Lambda^{[m-1]}(x), m<k-1$, denote the last connection polynomial before $\Lambda^{[k-1]}(x)$ with $L_{m-1}<L_{k-1}$ that can produce the sequence $\left\{S_{1}, S_{2}, \ldots, S_{m-1}\right\}$ but not the sequence $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$. Then $L_{m}=L_{k-1}$. By the inductive hypothesis,

$$
L_{m}=m-L_{m-1}=L_{k-1}, \text { or }-m+L_{m-1}=-L_{k-1}
$$

Since $\ell=k-m$, we have

$$
L_{k}=\max \left(L_{k-1}, k-m+L_{m-1}\right)=\max \left(L_{k-1}, k-L_{k-1}\right)
$$

- In the update step if $2 L_{k-1} \geq k$, the connection polynomial is updated, but there is no change in length.

Welch-Berlekamp Key Equation

- Welch-Berlekamp (WB) key equation was invented in 1983.
- It is no need to calculate syndromes.
- It uses coefficients of a remainder polynomial to represent errors (syndromes).
- There are several methods to solve WB key equation such as Welch-Berlekamp algorithm, Lagrange-Euclidean algorithm, and Modular approach.

Notations

- The generator polynomial for an (n, k) RS code can be written as

$$
g(x)=\prod_{i=1}^{2 t}\left(x-\alpha^{i}\right)
$$

- Let $L_{c}=\{0,1, \ldots, 2 t-1\}$ be the index set of the check locations. Let $L_{\alpha^{c}}=\left\{\alpha^{k}, 0 \leq k \leq 2 t-1\right\}$.
- Let $L_{m}=\{2 t, 2 t+1, \ldots, n-1\}$ be the index set of the message locations. Let $L_{\alpha^{m}}=\left\{\alpha^{k}, 2 t \leq k \leq n-1\right\}$.
- Define remainder polynomial as

$$
r(x)=y(x) \bmod g(x)
$$

and

$$
r(x)=\sum_{i=0}^{2 t-1} r_{i} x^{i}
$$

- Let $E(x)$ be the error pattern. It can be proved that

$$
r(x) \equiv E(x) \bmod g(x)
$$

and

$$
r\left(\alpha^{k}\right)=E\left(\alpha^{k}\right) \text { for } k \in\{1,2, \ldots, 2 t\}
$$

Errors in Message Location

- Assume that $e \in L_{m}$ with error value Y.
- $r\left(\alpha^{k}\right)=E\left(\alpha^{k}\right)=Y\left(\alpha^{k}\right)^{e}=Y X^{k}, k \in\{1,2, \ldots, 2 t\}$, where $X=\alpha^{e}$ is the error locator.
- Define $u(x)=r(x)-X r\left(\alpha^{-1} x\right)$ which has degree less than $2 t$.
- $u\left(\alpha^{k}\right)=r\left(\alpha^{k}\right)-X r\left(\alpha^{-1} \alpha^{k}\right)=Y X^{k}-X Y X^{k-1}=0$ for $k \in\{2,3, \ldots, 2 t\}$.
- $u(x)$ has roots at $\alpha^{2}, \alpha^{3}, \ldots, \alpha^{2 t}$, so that $u(x)$ is divisible by

$$
p(x)=\prod_{k=2}^{2 t}\left(x-\alpha^{k}\right)=\sum_{i=0}^{2 t-1} p_{i} x^{i} .
$$

- Thus, $u(x)=a p(x)$, where $a \in G F\left(q^{m}\right)$.
- Equating coefficients between $u(x)$ and $p(x)$ we have

$$
r_{i}\left(1-X \alpha^{-i}\right)=a p_{i}, i=0,1, \ldots, 2 t-1
$$

That is,

$$
r_{i}\left(\alpha^{i}-X\right)=a \alpha^{i} p_{i}, i=0,1, \ldots, 2 t-1
$$

- Define the error locator polynomial as
$W_{m}(x)=x-X=x-\alpha^{e}$.
- Since $r(\alpha)=E(\alpha)=Y X$,

$$
Y=X^{-1} r(\alpha)=X^{-1} \sum_{i=0}^{2 t-1} r_{i} \alpha^{i}
$$

$$
=X^{-1} \sum_{i=0}^{2 t-1} \frac{a \alpha^{i} p_{i}}{W_{m}\left(\alpha^{i}\right)} \alpha^{i}=a X^{-1} \sum_{i=0}^{2 t-1} \frac{\alpha^{2 i} p_{i}}{\left(\alpha^{i}-X\right)}
$$

- Define $f(x)=X^{-1} \sum_{i=0}^{2 t-1} \frac{\alpha^{2 i} p_{i}}{\left(\alpha^{i}-x\right)}$ for $x \in L_{\alpha^{m}} . f(x)$ can be pre-computed for all values of $x \in L_{\alpha^{m}}$.
- $Y=a f(X)$ and

$$
r_{i}=\frac{Y \alpha^{i} p_{i}}{f(X) W_{m}\left(\alpha^{i}\right)}
$$

- Assume that there are $v \geq 1$ errors, with error locators X_{i} and corresponding error values Y_{i} for $i=1,2, \ldots, v$.
- By linearity we have

$$
r_{k}=p_{k} \alpha^{k} \sum_{i=1}^{v} \frac{Y_{i}}{f\left(X_{i}\right)\left(\alpha^{k}-X_{i}\right)}, k=0,1, \ldots, 2 t-1 .
$$

- Define

$$
F(x)=\sum_{i=1}^{v} \frac{Y_{i}}{f\left(X_{i}\right)\left(x-X_{i}\right)}
$$

having poles at the error locations.

- Let

$$
F(x)=\sum_{i=1}^{v} \frac{Y_{i}}{f\left(X_{i}\right)\left(x-X_{i}\right)}=\frac{N_{m}(x)}{W_{m}(x)},
$$

where $W_{m}(x)=\prod_{i=1}^{v}\left(x-X_{i}\right)$ is the error locator polynomial for the errors among the message locations. Note that the error locator polynomial defined here is different from previously defined by Peterson.

- It is clear that $\operatorname{deg}\left(N_{m}(x)\right)<\operatorname{deg}\left(W_{m}(x)\right)$.
- We have

$$
N_{m}\left(\alpha^{k}\right)=\frac{r_{k}}{p_{k} \alpha^{k}} W_{m}\left(\alpha^{k}\right), k \in L_{c}=0,1, \ldots, 2 t-1
$$

- $N_{m}(x)$ and $W_{m}(x)$ have the degree constraints $\operatorname{deg}\left(N_{m}(x)\right)<\operatorname{deg}\left(W_{m}(x)\right)$ and $\operatorname{deg}\left(W_{m}(x)\right) \leq t$.

Errors in Check Locations

- For a single error occuring in a check location $e \in L_{c}$, $r(x)=E(x)$.
- $u(x)=r(x)-X r\left(\alpha^{-1} x\right)=0$.
- We have

$$
r_{k}= \begin{cases}Y & k=e \\ 0 & \text { otherwise }\end{cases}
$$

WB Key Equation

- Let $E_{m}=\left\{i_{1}, i_{2}, \ldots, i_{v_{l}}\right\} \subset L_{m}$ denote the error locations among the message locations.
- Let $E_{c}=\left\{i_{v_{l}+1}, i_{v_{l}+2}, \ldots, i_{v}\right\} \subset L_{c}$ denote the error locations among the check locations.
- The (error location, error value) pairs are (X_{i}, Y_{i}), $i=1,2, \ldots, v$.
- By linearity,

$$
\begin{aligned}
r_{k} & =p_{k} \alpha^{k} \sum_{i=1}^{v_{l}} \frac{Y_{i}}{f\left(X_{i}\right)\left(\alpha^{k}-X-i\right)} \\
& + \begin{cases}Y_{j} & \text { if error locator } X_{j} \text { is in check location } k \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

- We have

$$
N_{m}\left(\alpha^{k}\right)=\frac{r_{k}}{p_{k} \alpha^{k}} W_{m}\left(\alpha^{k}\right), k \in L_{c} \backslash E_{c}
$$

- Let $W_{c}(x)=\prod_{i \in E_{c}}\left(x-\alpha^{i}\right)$ be the error locator polynomial for errors in check locations.
- Let $N(x)=N_{m}(x) W_{c}(x)$ and $W(x)=W_{m}(x) W c(x)$.
- Since $N\left(\alpha^{k}\right)=W\left(\alpha^{k}\right)=0$ for $k \in E_{c}$, we have

$$
\begin{equation*}
N\left(\alpha^{k}\right)=\frac{r_{k}}{p_{k} \alpha^{k}} W\left(\alpha^{k}\right), k \in L_{c}=\{0,1, \ldots, 2 t-1\} \tag{10}
\end{equation*}
$$

- (10) is the Welch-Berlekamp (WB) key equation subject to the conditions

$$
\operatorname{deg}(N(x))<\operatorname{deg}(W(x)) \text { and } \operatorname{deg}(W(x)) \leq t
$$

- We write (10) as

$$
\begin{equation*}
N\left(x_{i}\right)=W\left(x_{i}\right) y_{i}, i=1,2, \ldots, 2 t \tag{11}
\end{equation*}
$$

for "points" $\left(x_{i}, y_{i}\right)=\left(\alpha^{i-1}, r_{i-1} /\left(p_{i-1} \alpha^{i-1}\right)\right)$, $i=1,2, \ldots, 2 t$.

Finding the Error Values

- Denote the error values corresponding to an error locator X_{i} as $Y\left[X_{i}\right]$.
- By definition,

$$
\sum_{i=1}^{v_{l}} \frac{Y\left[X_{i}\right]}{f\left(X_{i}\right)\left(x-X_{i}\right)}=\frac{N_{m}(x) W_{c}(x)}{W_{m}(x) W_{c}(x)}=\frac{N(x)}{\prod_{i \in E_{c m}}\left(x-X_{i}\right)}
$$

where $E_{c m}=E_{c} \cup E_{m}$.

- Suppose we want determine $Y\left[X_{k}\right]$ at message location. Multiplying both sides of the above equation by $W(x)=\prod_{i \in E_{c m}}\left(x-X_{i}\right)$ and evaluate at $x=X_{k}$, we have

$$
\frac{Y\left[X_{k}\right] \prod_{\substack{i \neq k \\ i \in E_{c m}}}\left(X_{k}-X_{i}\right)}{f\left(X_{k}\right)}=N\left(X_{k}\right) .
$$

- Taking the formal derivative, we obtain

$$
W^{\prime}(x)=\sum_{j \in E_{c m}} \prod_{i \neq j}\left(x-X_{i}\right)
$$

and

$$
W^{\prime}\left(X_{k}\right)=\prod_{\substack{i \neq k \\ i \in E_{c m}}}\left(X_{k}-X_{i}\right)
$$

- Thus,

$$
Y\left[X_{k}\right]=f\left(X_{k}\right) \frac{N\left(X_{k}\right)}{W^{\prime}\left(X_{k}\right)}
$$

- When the error is in a check location, $X_{j}=\alpha^{k}$ for $k \in E_{c}$, we have

$$
r_{k}=Y\left[X_{j}\right]+p_{k} \alpha^{k} \sum_{i=1}^{v_{l}} \frac{Y\left[X_{i}\right]}{f\left(X_{i}\right)\left(\alpha^{k}-X_{i}\right)}=Y\left[X_{j}\right]+p_{k} X_{j} \frac{N\left(X_{j}\right)}{W\left(X_{j}\right)}
$$

Thus,

$$
Y\left[X_{j}\right]=r_{k}-p_{k} X_{j} \frac{N\left(X_{j}\right)}{W\left(X_{j}\right)} .
$$

- Both $N\left(X_{j}\right)=N_{m}\left(X_{j}\right) W_{c}\left(X_{j}\right)$ and $W\left(X_{j}\right)=W_{m}\left(X_{j}\right) W_{c}\left(X_{j}\right)$ (Since $\left.W_{c}\left(X_{j}\right)=0\right)$ are 0 so a "L'Hopitial's rule" must be used. Since

$$
\begin{aligned}
& N^{\prime}\left(X_{j}\right)=N_{m}\left(X_{j}\right) W_{c}^{\prime}\left(X_{j}\right)+N_{m}^{\prime}\left(X_{j}\right) W_{c}\left(X_{j}\right)=N_{m}\left(X_{j}\right) W_{c}^{\prime}\left(X_{j}\right) \\
& \text { and }
\end{aligned}
$$

$$
W^{\prime}\left(X_{j}\right)=W_{m}\left(X_{j}\right) W_{c}^{\prime}\left(X_{j}\right)+W_{m}^{\prime}\left(X_{j}\right) W_{c}\left(X_{j}\right)=W_{m}\left(X_{j}\right) W_{c}^{\prime}\left(X_{j}\right),
$$

so

$$
\frac{N^{\prime}\left(X_{j}\right)}{W^{\prime}\left(X_{j}\right)}=\frac{N_{m}\left(X_{j}\right)}{W_{m}\left(X_{j}\right)} \neq 0 .
$$

- Then

$$
Y\left[X_{j}\right]=r_{k}-p_{k} X_{j} \frac{N^{\prime}\left(X_{j}\right)}{W^{\prime}\left(X_{j}\right)} .
$$

Rational Interpolation Problem

- Given a set of points $\left(x_{i}, y_{i}\right), i=1,2, \ldots, m$ over some field \mathbb{F}, find polynomials $N(x)$ and $W(x)$ with $\operatorname{deg}(N(x))<\operatorname{deg}(W(x))$ satisfying

$$
\begin{equation*}
N\left(x_{i}\right)=W\left(x_{i}\right) y_{i}, i=1,2, \ldots, m \tag{12}
\end{equation*}
$$

- A solution to the rational interpolation problem provides a pair $[N(x), W(x)]$ satisfying (12).

Welch-Berlekamp Algorithm

- We are interested in a solution satisfying $\operatorname{deg}(N(x))<\operatorname{deg}(W(x))$ and $\operatorname{deg}(W(x)) \leq m / 2$.
- The rank of a solution $[N(x), W(x)]$ is defined as
$\operatorname{rank}[N(x), W(x)]=\max \{2 \operatorname{deg}(W(x)), 1+2 \operatorname{deg}(N(x))\}$.
- WB algorithm constructs a solution to the rational interpolation problem of rank $\leq m$ and show that it is unique.
- Since the solution is unique, by the definition of the rank, the degee of $N(x)$ is less than the degree of $W(x)$.
- Let $P(x)$ be an interpolation polynomial such that $P\left(x_{i}\right)=y_{i}, i=1,2, \ldots, m$.
- The equation $N\left(x_{i}\right)=W\left(x_{i}\right) y_{i}$ is equivalent to

$$
N(x)=W(x) P(x)\left(\bmod \left(x-x_{i}\right)\right)
$$

- By Chinese remainder theorem we have

$$
\begin{equation*}
N(x)=W(x) P(x)(\bmod \Pi(x)) \tag{13}
\end{equation*}
$$

where $\Pi(x)=\prod_{i=1}^{m}\left(x-x_{i}\right)$.

- Suppose $[N(x), W(x)]$ is a solution to (12) and that $N(x)$ and $W(x)$ shares a common factor $f(x)$, such that $N(x)=n(x) f(x)$ and $W(x)=w(x) f(x)$. If $[n(x), w(x)]$ is also a solution to (12), the solution $[N(x), W(x)]$ is said to be reducible. Otherwise, it is irreducible.
- There exists at least one irreducible solution to (13) with rank $\leq m$.
- Proof: Let $S=\{[N(x), W(x)] \mid \operatorname{rank}(N(x), W(x)) \leq m\}$ be the set of polynomial meeting the rank specification. For $[N(x), W(x)] \in S$ and $[M(x), V(x)] \in S$ and f a scalar value, define

$$
\begin{aligned}
{[N(x), W(x)]+[M(x), V(x)] } & =[N(x)+M(x), W(x)+V(x)] \\
f[N(x), W(x)] & =[f N(x), f W(x)] .
\end{aligned}
$$

Then S is a module over $\mathbb{F}[x]$.

- A basis for the $N(x)$ component is

$$
\left\{1, x, \ldots, x^{\lfloor(m-1) / 2\rfloor}\right\}(1+\lfloor(m-1) / 2\rfloor \text { dimensions }) .
$$

- A basis for the $W(x)$ component is

$$
\left\{1, x, \ldots, x^{\lfloor m / 2\rfloor}\right\}(1+\lfloor m / 2\rfloor \text { dimensions })
$$

- So the dimension of the Cartesian product is

$$
1+\lfloor(m-1) / 2\rfloor+1+\lfloor m / 2\rfloor=m+1
$$

- Let

$$
N(x)-W(x) P(x)=Q(x) \Pi(x)+R(x)
$$

- Define the mapping

$$
\begin{equation*}
E: S \longrightarrow\{h \in \mathbb{F}[x] \mid \operatorname{deg}(h(x))<m\} \tag{14}
\end{equation*}
$$

by $E([N(x), W(x)])=R(x)$.

- The dimension of the range of E is m.
- E is a linear mapping from a space of dimension $m+1$ to a space of dimension m, so the dimension of its kernel is >0. \square
- We say that $[N(x), W(x)]$ satisfy the interpolation (k) problem if

$$
N\left(x_{i}\right)=W\left(x_{i}\right) y_{i}, i=1,2, \ldots k
$$

- We also express the interpolation (k) problem as

$$
N(x)=W(x) P_{k}(x)\left(\bmod \Pi_{k}(x)\right),
$$

where $\Pi_{k}(x)=\prod_{i=1}^{k}\left(x-x_{i}\right)$ and $P_{k}(x)$ is a polynomial that interpolations the first k points, $P_{k}\left(x_{i}\right)=y_{i}, i=1,2, \ldots, k$.

- The WB- algorithm finds a sequence of solution $[N(x), W(x)]$ of minimum rank satisfying the interpolation (k) problem, for $k=1,2, \ldots, m$.
- If $[N(x), W(x)]$ is an irreducible solution to the interpolation (k) problem and $[M(x), V(x)]$ is another solution such that $\operatorname{rank}[N(x), W(x)]+\operatorname{rank}[M(x), V(x)] \leq 2 k$, then $[M(x), V(x)]$ can be reduced to $[N(x), W(x)]$.
- Proof: By assumption, there exist two polynomials $Q_{1}(x)$ and $Q_{2}(x)$ such that

$$
\begin{align*}
& N(x)-W(x) P_{k}(x)=Q_{1}(x) \Pi_{k}(x) \\
& M(x)-V(x) P_{k}(x)=Q_{2}(x) \Pi_{k}(x) \tag{15}
\end{align*}
$$

Recall that $N\left(x_{i}\right)=y_{i} W\left(x_{i}\right)$ and $M\left(x_{i}\right)=y_{i} V\left(x_{i}\right)$ for
$i=1, \ldots, k$. Hence

$$
N\left(x_{i}\right) V\left(x_{i}\right)=M\left(x_{i}\right) W\left(x_{i}\right), i=1, \ldots, k
$$

which implies

$$
\begin{equation*}
\Pi_{k}(x) \mid(N(x) V(x)-M(x) W(x)) \tag{16}
\end{equation*}
$$

- From the definition of the rank we have

$$
\begin{aligned}
& \operatorname{deg}(N(x) V(x))=\operatorname{deg}(N(x))+\operatorname{deg}(V(x)) \\
\leq \quad & \frac{\operatorname{rank}[N(x), W(x)]-1}{2}+\frac{\operatorname{rank}[M(x), V(x)]}{2}<k
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{deg}(M(x) W(x))=\operatorname{deg}(M(x))+\operatorname{deg}(W(x)) \\
\leq \quad & \frac{\operatorname{rank}[M(x), V(x)]-1}{2}+\frac{\operatorname{rank}[N(x), W(x)]}{2}<k
\end{aligned}
$$

- Then $\operatorname{deg}(N(x) V(x)-M(x) W(x))<k$. From (16), we have

$$
\begin{equation*}
N(x) V(x)-M(x) W(x)=0 \tag{17}
\end{equation*}
$$

- Let $d(x)=G C D(W(x), V(x))$. Then there exist two polynomials which are relatively prime such that

$$
\begin{equation*}
W(x)=d(x) w(x), V(x)=d(x) v(x) \tag{18}
\end{equation*}
$$

- Substituting (18) into (17), we have

$$
N(x) d(x) v(x)=M(x) d(x) w(x)
$$

and

$$
w(x)|N(x), v(x)| M(x) .
$$

- Let $\frac{N(x)}{w(x)}=\frac{M(x)}{v(x)}=h(x)$, so

$$
\begin{equation*}
N(x)=h(x) w(x) \text { and } M(x)=h(x) v(x) \tag{19}
\end{equation*}
$$

- Substituting (18) and (19) into (15), we have

$$
h(x) w(x)-d(x) w(x) P_{k}(x)=Q_{1}(x) \Pi_{k}(x)
$$

and

$$
h(x) v(x)-d(x) v(x) P_{k}(x)=Q_{2}(x) \Pi_{k}(x) .
$$

- Since $\operatorname{GCD}(w(x), v(x))=1$, there exists two polynomials $s(x), t(x)$ such that $s(x) w(x)+t(x) v(x)=1$.
- Thus, we obtain

$$
h(x)-d(x) P_{k}(x)=\left(s(x) Q_{1}(x)+t(x) Q_{2}(x)\right) \Pi_{k}(x) .
$$

The above equation shows that $[h(x), d(x)]$ is also a solution. From (18) and (19), both $[N(x), W(x)]$ and $[M(x), V(x)]$ can be reduced to $[h(x), d(x)]$. Since $[N(x), W(x)]$ is irreducible, we have $\operatorname{deg}(w(x))=0$.

- If $[N(x), W(x)]$ and $[M(x), V(x)]$ are two solutions of
interpolation (k) such that

$$
\operatorname{rank}[N(x), W(x)]+\operatorname{rank}[M(x), V(x)]=2 k+1,
$$

then both of them are irreducible solutions, and $N(x) V(x)-M(x) W(x)=f \Pi_{k}(x)$ for some scalar f.

- Proof: Assume that the first conclusion is not correct. Then there exist two irreducible solutions, $[n(x), w(x)]$ and [$m(x), v(x)]$, such that

$$
\begin{aligned}
& N(x)=f(x) n(x), W(x)=f(x) w(x) \\
& M(x)=g(x) m(x), V(x)=g(x) v(x)
\end{aligned}
$$

and $\operatorname{deg}(f(x))+\operatorname{deg}(g(x))>0$. Then

$$
\begin{aligned}
& \operatorname{rank}[n(x), w(x)]+\operatorname{rank}[m(x), v(x)] \\
= & 2 k+1-2(\operatorname{deg}(f(x))+\operatorname{deg}(g(x)))<2 k
\end{aligned}
$$

By the previous result, $[n(x), w(x)]$ and $[m(x), v(x)]$ at most
differ by a constant common factor. Hence, $\operatorname{rank}[n(x), w(x)]+\operatorname{rank}[m(x), v(x)]$ is even. Contradiction.

- Next we prove the second conclusion. It is easy to see that one of $\operatorname{rank}[N(x), W(x)]$ and $\operatorname{rank}[M(x), V(x)]$ is even and the other is odd. There are two cases:

Case 1: $\operatorname{rank}[N(x), W(x)]$ is odd. We have

$$
\begin{aligned}
2 k+1 & =\operatorname{rank}[N(x), W(x)]+\operatorname{rank}[M(x), V(x)] \\
& =(1+2 \operatorname{deg}(N(x))+2 \operatorname{deg}(V(x)) \\
& >2 \operatorname{deg}(W(x))+(1+2 \operatorname{deg}(M(x))) .
\end{aligned}
$$

Thus, $\operatorname{deg}(N(x) V(x))=k$ and $\operatorname{deg}(W(x) M(x))<k$.
Case 2: $\operatorname{rank}[N(x), W(x)]$ is even. We have

$$
\begin{aligned}
2 k+1 & =\operatorname{rank}[N(x), W(x)]+\operatorname{rank}[M(x), V(x)] \\
& =2 \operatorname{deg}(W(x))+(1+2 \operatorname{deg}(M(x)))
\end{aligned}
$$

$$
>(1+2 \operatorname{deg}(N(x)))+2 \operatorname{deg}(V(x)) .
$$

Thus, $\operatorname{deg}(N(x) V(x))<k$ and $\operatorname{deg}(W(x) M(x))=k$.
In either case,

$$
\operatorname{deg}(N(x) V(x)-M(x) W(x))=k
$$

We have proved that $\Pi_{k}(x) \mid N(x) V(x)-M(x) W(x)$ and then, $N(x) V(x)-M(x) W(x)=f \Pi_{k}(x)$.

- Let $[N(x), W(x)]$ and $[M(x), V(x)]$ be two solutions of interpolation (k) such that

$$
\operatorname{rank}[N(x), W(x)]+\operatorname{rank}[M(x), V(x)]=2 k+1
$$

and $N(x) V(x)-M(x) W(x)=f \Pi_{k}(x)$ for some scalar f. Then $[N(x), W(x)]$ and $[M(x), V(x)]$ are complementary.

- If $[N(x), W(x)]$ is an irreducible solution to the interpolation (k) problem and $[M(x), V(x)]$ is one of its
complements. Then for any $a, b \in \mathbb{F}$ with $b \neq 0$, $[b M(x)-a N(x), b V(x)-a W(x)]$ is also one of its complements.
- Proof: It is easy to show that $[b M(x)-a N(x), b V(x)-a W(x)]$ is also a solution. Since $[M(x), V(x)]$ cannot be reduced to $[N(x), W(x)]$, $[b M(x)-a N(x), b V(x)-a W(x)]$ is also cannot be reduced to $[N(x), W(x)]$. Hence,
$\operatorname{rank}[N(x), W(x)]+\operatorname{rank}[b M(x)-a N(x), b V(x)-a W(x)]=2 k+1$, and $[b M(x)-a N(x), b V(x)-a W(x)]$ is a complement of $[N(x), W(x)]$.
- Suppose that $[N(x), W(x)]$ and $[M(x), V(x)]$ are two complementary solutions of interpolation (k) problem. Suppose also that $[N(x), W(x)]$ is the solution of lower rank. Let $b=N\left(x_{k+1}\right)-y_{k+1} W\left(x_{k+1}\right)$ and $a=M\left(x_{k+1}\right)-y_{k+1} V\left(x_{k+1}\right)$.

If $b=0$, then $[N(x), W(x)]$ and
$\left[\left(x-x_{k+1}\right) M(x),\left(x-x_{k+1}\right) V(x)\right]$ are two complementary solutions of the interpolation $(k+1)$ problem and $[N(x), W(x)]$ is the solution with lower rank. If $b \neq 0$, then

$$
\left[\left(x-x_{k+1}\right) N(x),\left(x-x_{k+1}\right) W(x)\right]
$$

and

$$
[b M(x)-a N(x), b V(x)-a W(x)]
$$

are two complementary solutions. The solution with lower rank is the solution to the interpolation $(k+1)$ problem.

- Proof: If $b=0$, it is clear that $[N(x), W(x)]$ is a solution to the interpolation $(k+1)$ problem. Also $M(x) \equiv V(x) P_{k}(x)\left(\bmod \Pi_{k}(x)\right)$ such that we have

$$
\left(x-x_{k+1}\right) M(x) \equiv\left(x-x_{k+1}\right) V(x) P_{k+1}(x)\left(\bmod \Pi_{k+1}(x)\right)
$$

Since
$\operatorname{rank}\left[\left(x-x_{k+1}\right) M(x),\left(x-x_{k+1}\right) V(x)\right]=\operatorname{rank}[M(x), V(x)]+2$ we have

$$
\begin{aligned}
& \operatorname{rank}[N(x), W(x)]+\operatorname{rank}\left[\left(x-x_{k+1}\right) M(x),\left(x-x_{k+1}\right) V(x)\right] \\
= & 2 k+1+2=2(k+1)+1
\end{aligned}
$$

Now consider $b \neq 0$. Since $[N(x), W(x)]$ satisfies

$$
N(x) \equiv W(x) P_{k+1}(x)\left(\bmod \Pi_{k}(x)\right)
$$

it follows that

$$
\left(x-x_{k+1}\right) N(x) \equiv\left(x-x_{k+1}\right) W(x) P_{k+1}(x)\left(\bmod \Pi_{k+1}(x)\right) .
$$

Thus, $\left[\left(x-x_{k+1}\right) N(x),\left(x-x_{k+1}\right) W(x)\right]$ is a solution to the interpolation $(k+1)$ problem.

- From previous result, $[b M(x)-a N(x), b V(x)-a W(x)]$ is a complementary solution of $[N(x), W(x)]$ to interpolation (k) problem. To show that $[b M(x)-a N(x), b V(x)-a W(x)]$ is
also a solution at the point $\left(x_{k+1}, y_{k+1}\right)$, substituting a and b into the following to show that equality holds:

$$
b M\left(x_{k+1}\right)-a N\left(x_{k+1}\right)=\left(b V\left(x_{k+1}\right)-a W\left(x_{k+1}\right)\right) y_{k+1} .
$$

It is clear that

$$
\begin{aligned}
& \operatorname{rank}\left[\left(x-x_{k+1}\right) N(x),\left(x-x_{k+1}\right) W(x)\right] \\
+ & \operatorname{rank}[b M(x)-a N(x), b V(x)-a W(x)]=2(k+1)+1
\end{aligned}
$$

- The initial condition for WB algorithm is

$$
N(x)=V(x)=0, W(x)=M(x)=1
$$

```
Algorithm 1 Welch-Belekamp Algorithm
    \(N^{(0)}(x):=V^{(0)}(x):=0 ; M^{(0)}(x):=W^{(0)}(x):=1 ;\)
    \(D:=0\);
    for \(k=0,1,2, \ldots, 2 t-1\) do
    \(b_{k}:=\alpha^{k} p_{k} N^{(k)}(1)-r_{k} W^{(k)}(1) ;\)
    \(a_{k}:=\alpha^{k} p_{k} M^{(k)}(1)-r_{k} V^{(k)}(1) ;\)
    if \(b_{k}=0\) then \(a_{k}:=1\);
    end if
    if \(b_{k}=0\) OR \(\left(a_{k} \neq 0\right.\) AND \(\left.2 D>k\right)\) then
                \(N^{(k+1)}(x):=a_{k} N^{(k)}(\alpha x)-b_{k} M^{(k)}(\alpha x) ;\)
            \(W^{(k+1)}(x):=a_{k} W^{(k)}(\alpha x)-b_{k} V^{(k)}(\alpha x) ;\)
            \(M^{(k+1)}(x):=(\alpha x-1) M^{(k)}(\alpha x) ;\)
            \(V^{(k+1)}(x):=(\alpha x-1) V^{(k)}(\alpha x) ;\)
    else
        \(M^{(k+1)}(x):=a_{k} N^{(k)}(\alpha x)-b_{k} M^{(k)}(\alpha x) ;\)
        \(V^{(k+1)}(x):=a_{k} W^{(k)}(\alpha x)-b_{k} V^{(k)}(\alpha x) ;\)
        \(N^{(k+1)}(x):=(\alpha x-1) N^{(k)}(\alpha x) ;\)
        \(W^{(k+1)}(x):=(\alpha x-1) W^{(k)}(\alpha x) ;\)
        \(D:=D+1 ;\)
    end if
    end for
```


References

[1] G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital Communications, New York, NY: Plenum Press, 1981.
[2] R. E. Blahut, Theory and Practice of Error Control Codes, Reading, MA: Addison-Wesley Publishing Co., 1983.
[3] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Cmodes, Cabridge University Press, 2003.
[4] T.K. Moon, Error Correction Coding: Mathematical Methods and Algorithms, Hoboken, NJ: John Wiley \&

Sons, Inc., 2005.

