Introduction to Reed-Solomon Codes[1]

Yunghsiang S. Han

Graduate Institute of Communication Engineering,
National Taipei University
Taiwan
E-mail: yshan@mail.ntpu.edu.tw

Reed-Solomon Codes Construction (1)

- The first construction of Reed-solomon (RS) codes is simply to evaluate the information polynomials at all the non-zero elements of finite field $G F\left(q^{m}\right)$.
- Let α be a primitive element in $G F\left(q^{m}\right)$ and let $n=q^{m}-1$.
- Let $u(x)=u_{0}+u_{1} x+\cdots+u_{k-1} x^{k-1}$ be the information polynomial, where $u_{i} \in G F\left(q^{m}\right)$ for all $0 \leq i \leq k-1$.
- The encoding is defined by the mapping $\rho: u(x) \longrightarrow \boldsymbol{v}$ by

$$
\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)=\left(u(1), u(\alpha), u\left(\alpha^{2}\right), \ldots, u\left(\alpha^{n-1}\right)\right) .
$$

- The RS code of length n and dimensional k over $G F\left(q^{m}\right)$ is the image under all polynomials in $G F\left(q^{m}\right)[x]$ of
degree less than or equal to $k-1$.
- The minimum distance of an $(n, k) \mathrm{RS}$ code is $d_{\text {min }}=n-k+1$. It can be proved by follows.
- Since $u(x)$ has at most $k-1$ roots, there are at most $k-1$ zero positions in each nonzero codeword. Hence, $d_{\text {min }} \geq n-k+1$. By the Singleton bound, $d_{\min } \leq n-k+1$. So $d_{\min }=n-k+1$.

Reed-Solomon Codes Construction (2)

- The RS codes can be constructed by finding their generator polynomials.
- In $G F\left(q^{m}\right)$, the minimum polynomial for any element α^{i} is simply $\left(x-\alpha^{i}\right)$.
- Let $g(x)=\left(x-\alpha^{b}\right)\left(x-\alpha^{b+1}\right) \cdots\left(x-\alpha^{b+2 t-1}\right)$ be the generator polynomial for the RS code. Since the degree of $g(x)$ is exactly equal to $2 t$, by the BCH bound, $n=q^{m}-1, n-k=2 t$, and $d_{\text {min }} \geq n-k+1$.
- Again, by the Singleton bound, $d_{\text {min }}=n-k+1$.
- Considering $G F(8)$ with the primitive polynomial
$x^{3}+x+1$. Let α be a root of $x^{3}+x+1$. Then $g(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{3}\right)\left(x-\alpha^{4}\right)=x^{4}+\alpha^{3} x^{3}+x^{2}+\alpha x+\alpha^{3}$ will generate a $(7,3) \mathrm{RS}$ code with $d_{\min }=2 \times 2+1=5$. The number of codewords of this code is $8^{3}=512$.

Encoding Reed-Solomon Codes

- RS codes can be encoded just as any other cyclic code.
- The systematic encoding process is

$$
v(x)=u(x) x^{n-k}-\left[u(x) x^{n-k} \bmod g(x)\right]
$$

- Typically, the code is over $G F\left(2^{m}\right)$ for some m. The information symbols u_{i} can be formed by grabbing m bits of data, then interpreting these as the vector representation of the $G F\left(2^{m}\right)$ elements.

Weight Distributions for RS Codes

- A code is called maximum distance separable (MDS) code when its $d_{\min }$ is equal to $n-k+1$. A family of well-known MDS nonbinary codes is Reed-Solomon codes.
- The dual code of any (n, k) MDS code \boldsymbol{C} is also an $(n, n-k)$ MDS code with $d_{\text {min }}=k+1$.
- It can be proved as follows: We need to prove that the ($n, n-k$) dual code \boldsymbol{C}^{\perp}, which is generated by the parity-check matrix \boldsymbol{H} of \boldsymbol{C}, has $d_{\text {min }}=k+1$. Let $\boldsymbol{c} \in \boldsymbol{C}^{\perp}$ have weight $w, 0<w \leq k$. Since $w \leq k$, there are at least $n-k$ coordinates of \boldsymbol{c} are zero. Let \boldsymbol{H}_{s} be an $(n-k) \times(n-k)$ submatrix formed by any collection of $n-k$ columns of \boldsymbol{H} in the above coordinates. Since the
row rank of \boldsymbol{H}_{s} is less than $n-k$ and consequently the column rank is also less than $n-k$. Therefore, we have found $n-k$ columns of \boldsymbol{H} are linear dependent which contradicts to the facts that $d_{\min }$ of \boldsymbol{C} is $n-k+1$ and then any combination of $n-k$ columns of \boldsymbol{H} is linear independent.
- Any combination of k symbols of codewords in an MDS code may be used as information symbols in a systematic representation.
- It can be proved as follows: Let \boldsymbol{G} be the $n \times k$ generator matrix of an MDS code \boldsymbol{C}. Then \boldsymbol{G} is the parity check matrix for \boldsymbol{C}^{\perp}. Since \boldsymbol{C}^{\perp} has minimum distance $k+1$, any combination of k columns of \boldsymbol{G} must be linearly independent . Thus any $k \times k$ submatrix of \boldsymbol{G} must be
nonsingular. So, by row reduction on \boldsymbol{G}, any $k \times k$ submatrix can be reduced to the $k \times k$ identity matrix.
- The number of codewords in a q-ary (n, k) MDS code \boldsymbol{C} of weight $d_{\text {min }}=n-k+1$ is

$$
A_{n-k+1}=(q-1)\binom{n}{n-k+1}
$$

- It can be proved as follows: Select an arbitrary set of k coordinates as information positions for an information \boldsymbol{u} of weight 1. The systemic encoding for these coordinates thus has $k-1$ zeros in it. Since the minimum distance of the code is $n-k+1$, all the $n-k$ parity check symbols must be nonzero. Since there are $\binom{n}{k-1}=\binom{n}{n-k+1}$
different ways of selecting the $k-1$ zero coordinates and $q-1$ ways of selecting the nonzero information symbols,

$$
A_{n-k+1}=(q-1)\binom{n}{n-k+1}
$$

- The number of codewords of weight j in a q-qry (n, k) MDS code is

$$
A_{j}=\binom{n}{j}(q-1) \sum_{i=0}^{j-d_{m i n}}(-1)^{i}\binom{j-1}{i} q^{j-d_{\min }-i}
$$

References

[1] T.K. Moon, Error Correction Coding: Mathematical Methods and Algorithms, Hoboken, NJ: John Wiley \& Sons, Inc., 2005.

