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Sequential Decoding of Convolutional Codes

Yunghsiang S. Han† and Po-Ning Chen‡

Abstract

This article surveys many variants of sequential decoding in literature. Rather than introducing

them chronologically, this article first presents the Algorithm A, a general sequential search algorithm.

The stack algorithm and the Fano algorithm are then described in details. Next, trellis variants of se-

quential decoding, including the recently proposed maximum-likelihood sequential decoding algorithm,

are discussed. Additionally, decoding complexity and error performance of sequential decoding are

investigated, followed by a discussion on the implementation of sequential decoding from various prac-

tical aspects. Moreover, classes of convolutional codes that are particularly appropriate for sequential

decoding are outlined.
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I. Introduction

The convolutional coding technique is designed to reduce the probability of erroneous

transmission over noisy communication channels. The most popular decoding algorithm

for convolutional codes is perhaps the Viterbi algorithm. Although widely adopted in

practice, the Viterbi algorithm suffers from a high decoding complexity for convolutional

codes with long constraint lengths. While the attainable decoding failure probability of

convolutional codes generally decays exponentially with the code constraint length, the

high complexity of the Viterbi decoder for codes with a long constraint length to some

extent limits the achievable system performance. Nowadays, the Viterbi algorithm is

usually applied to codes with a constraint length no greater than nine.
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In contrast to the limitation of the Viterbi algorithm, sequential decoding is renowned

for its computational complexity being independent of the code constraint length [1].

Although simply suboptimal in its performance, sequential decoding can achieve a de-

sired bit error probability when a sufficiently large constraint length is taken for the

convolutional code. Unlike the Viterbi algorithm that locates the best codeword by ex-

hausting all possibilities, sequential decoding concentrates only on a certain number of

likely codewords. As the sequential selection of these likely codewords is affected by the

channel noise, the decoding complexity of a sequential decoder becomes dependent to

the noise level [1]. These specific characteristics make the sequential decoding useful in

particular applications.

Sequential decoding was first introduced by Wozencraft for the decoding of convolu-

tional codes [2, 3]. Thereafter, Fano developed the sequential decoding algorithm with a

milestone improvement in decoding efficiency [4]. Fano’s work subsequently inspired fur-

ther research on sequential decoding. Later, Zigangirov [5], and independently, Jelinek

[6] proposed the stack algorithm.

In this article, the sequential decoding will not be introduced chronologically. Rather,

the Algorithm A [7] — the general sequential search algorithm — will be introduced first

because it is conceptually more straightforward. The rest of the article is organized as

follows. Sections II and III provide necessary background for convolutional codes and

typical channel models for performance evaluation. Section IV introduces the Algorithm

A, and then defines the general features of sequential decoding. Section V explores the

Fano metric and its generalization for use to guide the search of sequential decoding.

Section VI presents the stack algorithm and its variants. Section VII elucidates the

well-known Fano algorithm. Section VIII is devoted to the trellis variants of sequential

decoding, especially on the recently proposed maximum-likelihood sequential decoding

algorithm (MLSDA). Section IX examines the decoding performance. Section X discusses

various practical implementation issues regarding sequential decoding, such as buffer

overflow. For completeness, a section on the code construction is included at the end of

the article. Section XII concludes the article.
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u = (11101)

v1 = (1010011)

v2 = (1101001)

v = (11 01 10 01 00 10 11)

Fig. 1. Encoder for the binary (2, 1, 2) convolutional code with generators g1 = 7 (octal) and g2 = 5

(octal), where gi is the generator polynomial characterizing the ith output.

For clarity, only binary convolutional codes are considered throughout the discussions

of sequential decoding. Extension to nonbinary convolutional codes can be carried out

similarly.

II. Convolutional code and its graphical representation

Denote a binary convolutional code by a three-tuple (n, k,m), which corresponds to

an encoder for which n output bits are generated whenever k input bits are received,

and for which the current n outputs are linear combinations of the present k input bits

and the previous m× k input bits. Because m designates the number of previous k-bit

input blocks that must be memorized in the encoder, m is called the memory order of

the convolutional code. A binary convolutional encoder is conveniently structured as a

mechanism of shift registers and modulo-2 adders, where the output bits are modular-

2 additions of selective shift register contents and present input bits. Then n in the

three-tuple notation is exactly the number of output sequences in the encoder, k is the

number of input sequences (and hence, the encoder consists of k shift registers), and m

is the maximum length of the k shift registers (i.e., if the number of stages of the jth

shift register is Kj, then m = max1≤j≤kKj). Figures 1 and 2 exemplify the encoders of

binary (2, 1, 2) and (3, 2, 2) convolutional codes, respectively.

During the encoding process, the contents of shift registers in the encoder are initially



4

-s s s

--s s s

c

¢
¢
¢¢

¡¢
c

⊕-

¡
¡
¡µ

Z
ZZ~ cu2 = (11)

u1 = (10)

u = (11 01)

v1 = (1000)
v2 = (1100)

v3 = (0001)

v = (110 010 000 001)

Fig. 2. Encoder for the binary (3, 2, 2) systematic convolutional code with generators g
(1)
1 = 4 (octal),

g
(2)
1 = 0 (octal), g

(1)
2 = 0 (octal), g

(2)
2 = 4 (octal), g

(1)
3 = 2 (octal) and g

(2)
3 = 3 (octal), where g

(j)
i

is the generator polynomial characterizing the ith output according to the jth input. The dashed

box is redundant and can actually be removed from this encoder; its presence here is only to help

demonstrating the derivation of generator polynomials. Thus as far as the number of stages of the

jth shift register is concerned, K1 = 1 and K2 = 2.

set to zero. The k input bits from the k input sequences are then fed into the encoder in

parallel, generating n output bits according to the shift-register framework. To reset the

shift register contents at the end of input sequences so that the encoder can be ready for

use for another set of input sequences,m zeros are usually padded at the end of each input

sequence. Consequently, each of the k input sequences of length L bits is padded with

m zeros, and these k input sequences jointly induce n(L+m) output bits. As illustrated

in Fig. 1, the encoder of the (2, 1, 2) convolutional code extracts two output sequences,

v1 = (v1,0, v1,1, v1,2, . . . , v1,6) = (1010011) and v2 = (v2,0, v2,1, v2,2, . . . , v2,6) = (1101001),

due to the single input sequence u = (u0, u1, u2, u3, u4) = (11101), where u0 is fed in the

encoder first. The encoder then interleaves v1 and v2 to yield

v = (v1,0, v2,0, v1,1, v2,1, . . . , v1,6, v2,6) = (11 01 10 01 00 10 11)

of which the length is 2(5 + 2) = 14. Also, the encoder of the (3, 2, 2) convolutional

code in Fig. 2 generates the output sequences of v1 = (v1,0, v1,1, v1,2, v1,3) = (1000),
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v2 = (v2,0, v2,1, v2,2, v2,3) = (1100) and v3 = (v3,0, v3,1, v3,2, v3,3) = (0001) due to the two

input sequences u1 = (u1,0, u1,1) = (10) and u2 = (u2,0, u2,1) = (11), which in turn

generate the interleaved output sequence

v = (v1,0, v2,0, v3,0, v1,1, v2,1, v3,1, v1,2, v2,2, v3,2, v1,3, v2,3, v3,3) = (110 010 000 001)

of length 3(2 + 2) = 12. Terminologically, the interleaved output v is called the convo-

lutional codeword corresponding to the combined input sequence u.

An important subclass of convolutional codes is the systematic codes, in which k out

of n output sequences retain the values of the k input sequences. In other words, these

outputs are directly connected to the k inputs in the encoder.

A convolutional code encoder can also be viewed as a linear system, in which the

relation between its inputs and outputs is characterized by generator polynomials. For

example, g1(x) = 1+x+x
2 and g2(x) = 1+x

2 can be used to identify v1 and v2 induced

by u in Fig. 1, where appearance of xi indicates that a physical connection is applied

to the (i + 1)th dot position, counted from the left. Specifically, putting u and vi in

polynomial form as u(x) = u0+u1x+u2x
2+· · · and vi(x) = vi,0+vi,1x+vi,2x

2+· · · yields
that vi(x) = u(x)gi(x) for i = 1, 2, where addition of coefficients is based on modulo-2

operation. With reference to the encoder depicted in Fig. 2, the relation between the

input sequences and the output sequences can be formulated through matrix operation

as
[

v1(x) v2(x) v3(x)
]

=
[

u1(x) u2(x)
]





g
(1)
1 (x) g

(1)
2 (x) g

(1)
3 (x)

g
(2)
1 (x) g

(2)
2 (x) g

(2)
3 (x)



 ,

where uj(x) = uj,0+uj,1x+uj,2x
2+· · · and vi(x) = vi,0+vi,1x+vi,2x

2+· · · define the jth
input sequence and the ith output sequence, respectively, and the generator polynomial

g
(j)
i (x) characterizes the relation between the jth input and the ith output sequences.

For simplicity, generator polynomials are sometimes abbreviated by their coefficients in

octal number format, led by the least significant one. Continuing the example in Fig. 1

gives g1 = 111 (binary) = 7 (octal) and g2 = 101 (binary) = 5 (octal). A similar

abbreviation can be used for each g
(j)
i in Fig. 2.
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An (n, k,m) convolutional code can be transformed to an equivalent linear block code

with effective code rate1 Reffective = kL/[n(L +m)], where L is the length of the infor-

mation input sequences. By taking L to infinity, the effective code rate converges to

R = k/n, which is referred to as the code rate of the (n, k,m) convolutional code.

The constraint length of an (n, k,m) convolutional code has two different definitions in

the literature: nA = m+1 [8] and nA = n(m+1) [1]. In this article, the former definition

is adopted, because it is more extensively used in military and industrial publications.

Let v(a,b) = (va, va+1, . . . , vb) denote a portion of codeword v, and abbreviate v(0,b) by

v(b). The Hamming distance between the first rn bits of codewords v and z is given by:

dH
(

v(rn−1), z(rn−1)
)

=
rn−1
∑

i=0

vi ⊕ zi,

where “⊕” denotes modulo-2 addition. The Hamming weight of the first rn bits of
codeword v thus equals dH(v(rn−1),0(rn−1)), where 0 represents the all-zero codeword.

The column distance function (CDF) dc(r) of a binary (n, k,m) convolutional code is

defined as the minimum Hamming distance between the first rn bits of any two codewords

whose first n bits are distinct, i.e.,

dc(r) = min
{

dH(v(rn−1), z(rn−1)) : v(n−1) 6= z(n−1) for v, z ∈ C
}

,

where C is the set of all codewords. Function dc(r) is clearly nondecreasing in r. Two
cases of CDFs are of specific interest: r = m + 1 and r = ∞. In the latter case,
the input sequences are considered infinite in length.2 Terminologically, dc(m + 1) and

dc(∞) (or dfree in general) are called the minimum distance and the free distance of the

convolutional code, respectively.

The operational meanings of the minimum distance, the free distance and the CDF of

a convolutional code are as follows. When a sufficiently large codeword length is taken,

and an optimal (i.e., maximum-likelihood) decoder is employed, the error-correcting ca-

pability of a convolutional code [9] is generally characterized by dfree. In case a decoder

1The effective code rate is defined as the average number of input bits carried by an output bit [1].
2Usually, dc(r) for an (n, k,m) convolutional code reaches its largest value dc(∞) when r is a little beyond 5×m;

this property facilitates the determination of dc(∞).
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figures the transmitted bits only based on the first n(m + 1) received bits (as in, for

example, the majority-logic decoding [10]), dc(m+1) can be used instead to characterize

the code error-correcting capability. As for the sequential decoding algorithm that re-

quires a rapid initial growth of column distance functions (to be discussed in Section IX),

the decoding computational complexity, defined as the number of metric computations

performed, is determined by the CDF of the code being applied.

Next, two graphical representations of convolutional codewords are introduced. They

are derived from the graphs of code tree and trellis, respectively. A code tree of a binary

(n, k,m) convolutional code presents every codeword as a path on a tree. For input

sequences of length L bits, the code tree consists of (L + m + 1) levels. The single

leftmost node at level 0 is called the origin node. At the first L levels, there are exactly

2k branches leaving each node. For those nodes located at levels L through (L+m), only

one branch remains. The 2kL rightmost nodes at level (L +m) are called the terminal

nodes. As expected, a path from the single origin node to a terminal node represents a

codeword; therefore, it is named the code path corresponding to the codeword. Figure 3

illustrates the code tree for the encoder in Fig. 1 with a single input sequence of length

5.

In contrast to a code tree, a code trellis as termed by Forney [11] is a structure obtained

from a code tree by merging those nodes in the same state. The state associated with

a node is determined by the associated shift-register contents. For a binary (n, k,m)

convolutional code, the number of states at levelsm through L is 2K , whereK =
∑k

j=1Kj

and Kj is the length of the jth shift register in the encoder; hence, there are 2
K nodes

on these levels. Due to node merging, only one terminal node remains in a trellis.

Analogous to a code tree, a path from the single origin node to the single terminal node

in a trellis also mirrors a codeword. Figure 4 exemplifies the trellis of the convolutional

code presented in Fig. 1.

III. Typical channel models for coding systems

When the n(L+m) convolutional code bits encoded from kL input bits are modulated

into respective waveforms (or signals) for transmission over a medium that introduces
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Fig. 3. Code tree for the binary (2, 1, 2) convolutional code in Fig. 1 with a single input sequence of

length 5. Each branch is labeled by its respective “input bit/output code bits”. The code path

indicated by the thick line is labeled in sequence by code bits 11, 01, 10, 01, 00, 10 and 11, and its

corresponding codeword is v = (11 01 10 01 00 10 11).
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Fig. 4. Trellis for the binary (2, 1, 2) convolutional code in Fig. 1 with a single input sequence of length

5. States S0, S1, S2 and S3 correspond to the states of shift register contents that are 00, 01, 10

and 11 (from right to left in Fig. 1), respectively. The code path indicated by the thick line is

labeled in sequence by code bits 11, 01, 10, 01, 00, 10 and 11, and its corresponding codeword is

v = (11 01 10 01 00 10 11).

attenuation, distortion, interference, noise, etc., the received waveforms become “uncer-

tain” in their shapes. A “guess” of the original information sequences therefore has to

be made at the receiver end. The “guess” mechanism can be conceptually divided into

two parts: demodulator and decoder.

The demodulator transforms the received waveforms into discrete signals for use by the

decoder to determine the original information sequences. If the discrete demodulated

signal is of two values (i.e., binary), then the demodulator is termed a hard-decision

demodulator. If the demodulator passes analog (i.e., discrete-in-time but continuous-

in-value) or quantized outputs to the decoder, then it is classified as a soft-decision

demodulator.

The decoder, on the other hand, estimates the original information sequences based

on the n(L + m) demodulator outputs, or equivalently a received vector of n(L + m)

dimensions, according to some criterion. One of the frequently applied criteria is the
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maximum-likelihood decoding (MLD) rule under which the probability of codeword esti-

mate error is minimized subject to an equiprobable prior on the transmitted codewords.

Terminologically, if a soft-decision demodulator is employed, then the subsequent de-

coder is classified as a soft-decision decoder. In a situation in which the decoder receives

inputs from a hard-decision demodulator, the decoder is called a hard-decision decoder

instead.

Perhaps, because of their analytical feasibility, two types of statistics concerning de-

modulator outputs are of general interest. They are respectively induced from the bi-

nary symmetric channel (BSC) and the additive white Gaussian noise (AWGN) channel.

The former is a typical channel model for the performance evaluation of hard-decision

decoders, while the latter is widely used in examining the error rate of soft-decision

decoders. They are introduced after the concept of a channel is elucidated.

For a coding system, a channel is a signal passage that mixes all the intermediate

effects onto the signal, including modulation, upconversion, medium, downconversion,

demodulation and others. The demodulator incorporates these aggregated channel ef-

fects into a widely adopted additive channel model as r = s + n, in which r is the

demodulator output, s is the transmitted signal that is a function of encoder outputs,

and n represents the aggregated signal distortion, simply termed noise. Its extension to

multiple independent channel usages is given by

rj = sj + nj for 0 ≤ j ≤ N − 1,

which is often referred to as the time-discrete channel, since the time index j ranges

over a discrete integer set. For simplicity, independence with common marginal distribu-

tion among noise samples n0, n1, . . . , nN−1 is often assumed, which is specifically termed

memoryless. In situation where the power spectrum (i.e., the Fourier transform of the

noise autocorrelation function) of the noise samples is a constant, which can be inter-

preted as the noise contributing equal power at all frequencies and thereby imitating the

composition of a white light, the noise is dubbed white.

Hence, for a time-discrete coding system, the AWGN channel specifically indicates a

memoryless noise sequence with a Gaussian distributed marginal, in which case the de-
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modulator outputs r0, r1, . . . , rN−1 are independent and Gaussian distributed with equal

variances and means s0, s1, . . . , sN−1, respectively. The noise variance exactly equals the

constant spectrum value N0/2 of the white noise, where N0 is the single-sided noise power

per hertz or N0/2 is the doubled-sided noise power per hertz. The means s0, s1, . . . , sN−1

are apparently decided by the choice of mappings from the encoder outputs to the chan-

nel inputs. For example, assuming an antipodal mapping gives sj(cj) = (−1)cj

√
E, where

cj ∈ {0, 1} is the jth code bit. Under an implicit premise of equal possibilities for cj = 0
and cj = 1, the second moment of sj is given by:

E[s2j ] =
1

2

(√
E
)2

+
1

2

(

−
√
E
)2

= E,

which is commonly taken to be the average signal energy required for its transmission.

A conventional measure of the noisiness of AWGN channels is the signal-to-noise ratio

(SNR). For the time-discrete system considered, it is defined as the average signal energy

E (the second moment of the transmitted signal) divided by N0 (the single-sided noise

power per hertz). Notably, the SNR ratio is invariable with respect to scaling of the

demodulator output; hence, this noisiness index is consistent with the observation that

the optimal error rate of guessing cj based on the knowledge of (λ · rj) through equation

λ · rj = λ · (−1)cj

√
E + λ · nj

is indeed independent of the scaling factor λ whenever λ > 0. Accordingly, the perfor-

mance of the soft-decision decoding algorithms under AWGN channels is typically given

by plotting its error rate against the SNR.3

The channel model can be further simplified to that for which the noise sample n

and the transmitted signal s (usually the code bit itself in this case) are both elements

of {0, 1}, and their modulo-2 addition yields the hard-decision demodulation output r.
Then a binary-input binary-output channel between convolutional encoder and decoder

3The SNR per information bit, denoted as Eb/N0, is often used instead of E/N0 in picturing the code performance

in order to account for the code redundancy for different code rates. Their relation can be characterized as

Eb/N0 = (E/N0)/Reffective = (E/N0) × n(L + m)/(kL) because the overall energy of kL uncoded input bits

equals that of n(L+m) code bits in principle.
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is observed. The channel statistics can be defined using the two crossover probabilities:

Pr(r = 1|s = 0) and Pr(r = 0|s = 1). If the two crossover probabilities are equal, then
the binary channel is symmetric, and is therefore called the binary symmetric channel.4

The correspondence between the transmitted signal sj and the code bit cj is often

isomorphic. If this is the case, Pr(rj|cj) and Pr(rj|sj) can be used interchangeably to
represent the channel statistics of receiving rj given that cj or sj = sj(cj) is transmitted.

For convenience, Pr(rj|vj) will be used at the decoder end to denote the same probability
as Pr(rj|cj), where cj = vj, throughout the article.

IV. General description of sequential decoding algorithm

Following the background introduction to the time-discrete coding system, the opti-

mal criterion that motivates the decoding approaches can now be examined. As a conse-

quence of minimizing the codeword estimate error subject to an equiprobable codeword

prior, the MLD rule, upon receipt of a received vector r = (r0, r1, . . . , rN−1), outputs the

codeword c∗ = (c∗0, c
∗
1, . . . , c

∗
N−1) satisfying

Pr(r|c∗) ≥ Pr(r|c) for all c = (c0, c1, . . . , cN−1) ∈ C,

where C is the set of all possible codewords, and N = n(L +m). When the channel is

memoryless, the MLD rule can be reduced to:

N−1
∏

j=0

Pr(rj|c∗j) ≥
N−1
∏

j=0

Pr(rj|cj) for all c ∈ C,

which in turn is equivalent to:

N−1
∑

j=0

log2 Pr(rj|c∗j) ≥
N−1
∑

j=0

log2 Pr(rj|cj) for all c ∈ C. (1)

A natural implication of (1) is that by simply letting
∑n`−1

j=n(`−1) log2 Pr(rj|cj) be the
metric associated with a branch labeled by (cn(`−1), . . . , cn`−1), the MLD rule becomes

4The BSC can be treated as a quantized simplification of the AWGN channel. Hence, the crossover probability

p can be derived from rj = (−1)cj
√
E + nj as p = (1/2)erfc(

√

E/N0), where erfc(x) = (2/
√
π)

∫∞

x
exp{−x2}dx

is the complementary error function. This convention is adopted here in presenting the performance figures for

BSCs.
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a search of the code path with maximum metric, where the metric of a path is defined

as the sum of the individual metrics of the branches of which the path consists. Any

suitable graph search algorithm can then be used to perform the search process.

Of the graph search algorithms in artificial intelligence, the Algorithm A is one that

performs priority-first (or metric-first) searching over a graph [7, 12]. In applying the

algorithm to the decoding of convolutional codes, the graph G undertaken becomes either

a code tree or a trellis. For a graph over which the Algorithm A searches, a link between

the origin node and any node, either directly connected or indirectly connected through

some intermediate nodes, is called a path. Suppose that a real-valued function f(·), often
referred to as the evaluation function, is defined for every path in the graph G. Then

the Algorithm A can be described as follows.

〈Algorithm A〉
Step 1. Compute the associated f -function value of the single-node path that contains

only the origin node. Insert the single-node path with its associated f -function

value into the stack.

Step 2. Generate all immediate successor paths of the top path in the stack, and

compute their f -function values. Delete the top path from the stack.

Step 3. If the graph G is a trellis, check whether these successor paths end at a node

that belongs to a path that is already in the stack. Restated, check whether

these successor paths merge with a path that is already in the stack. If it does,

and the f -function value of the successor path exceeds the f -function value of

the sub-path that traverses the same nodes as the merged path in the stack but

ends at the merged node, redirect the merged path by replacing its sub-path

with the successor path, and update the f -function value associated with the

newly redirected path.5 Remove those successor paths that merge with some

paths in the stack.

(Note that if the graph G is a code tree, there is a unique path connecting the

5The redirect procedure is sometimes time-consuming, especially when the f -function value of a path is computed

based on the branches the path traverses. Section VIII will introduce two approaches to reduce the burden of

path redirection.
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origin node to each node on the graph; hence, it is unnecessary to examine the

path merging.)

Step 4. Insert the remaining successor paths into the stack, and reorder the stack in

descending f -function values.

Step 5. If the top path in the stack ends at a terminal node in the graph G, the

algorithm stops; otherwise go to Step 2.

In principle, the evaluation function f(·) that guides the search of the Algorithm A is
the sum of two parts, g(·) and h(·); both range over all possible paths in the graph. The
first part, g(·), is simply a function of all the branches traversed by the path, while the
second part, h(·), called the heuristic function, help to predict a future route from the

end node of the current path to a terminal node. Conventionally, the heuristic function

h(·) equals zero for all paths that end at a terminal node. Additionally, g(·) is usually
taken to be zero for the single-node path that contains only the origin node.

A question that follows is how to define g(·) and h(·) so that the Algorithm A performs
the MLD rule. Here, this question is examined by considering a more general problem of

how to define g(·) and h(·) so that the Algorithm A locates the code path with maximum
metric over a code tree or a trellis. Suppose that a metric c(ni, nj) is associated with

the branch between nodes ni and nj. Define the metric of a path as the sum of the

metrics of those branches contained by the path. The g-function value for a path can

then be assigned as the sum of all the branch metrics experienced by the path. Let the

h-function value of the same path be an estimate of the maximum cumulative metric

from the end node of the path to a terminal node. Under such a system setting, if the

heuristic function satisfies certain optimality criterion, such as it always upper-bounds

the maximum cumulative metric from the end node of the path of interest to any terminal

node, the Algorithm A guarantees the finding of the maximum-metric code path.6

Following the discussion in the previous paragraph and the observation from Eq. (1),

6Criteria that guarantees optimal decoding by the Algorithm A are extensively discussed in [13, 14].
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a straightforward definition for function g(·) is

g(v(`n−1)) =
`n−1
∑

j=0

log2 Pr(rj|vj), (2)

where v(`n−1) is the label sequence of the concerned path, and the branch metric between

the end nodes of path v(`(n−1)−1) and path v(`n−1) is given by
∑`n−1

j=`(n−1) log2 Pr(rj|vj).
Various heuristic functions with respect to the above defined g-function can then be

developed. For example, if the branch metric defined above is non-positive, which ap-

parently holds when the received demodulator output rj is discrete for 0 ≤ j ≤ N − 1, a
heuristic function that equals zero for all paths sufficiently upper-bounds the maximum

cumulative metric from the end node of the concerned path to a terminal node, and

thereby guarantees the finding of the code path with maximum metric. Another exam-

ple is the well-known Fano path metric [4] which, by its formula, can be equivalently

interpreted as the sum of the g-function defined in (2) and a specific h-function. The

details regarding the Fano metric will be given in the next section.

Notably, the branch metric used to define (2) depends not only on the labels of

the concerned branch (i.e., v`(n−1), . . . , v`n−1), but also on the respective demodula-

tor outputs (i.e., r`(n−1), . . . , r`n−1). Some researchers also view the received vector

r = (r0, r1, . . . , rN−1) as labels for another (possibly non-binary) code tree or trellis;

hence, the term “received branch” that reflects a branch labeled by the respective por-

tion of the received vector r was introduced. With such a naming convention, this

section concludes by quoting the essential attributes of sequential decoding defined in

[15]. According to the authors, the very first attribute of sequential decoding is that “the

branches are examined sequentially, so that at any node of the tree the decoder’s choice

among a set of previously unexplored branches does not depend on received branches

deeper in the tree.” The second attribute is that “the decoder performs at least one

computation for each node of every examined path.” The authors then remark at the

end that “Algorithms which do not have these two properties are not considered to be

sequential decoding algorithms.” Thus, an easy way to visualize the defined features of

sequential decoding is that the received scalars r0, r1, . . . , rN−1 are received sequentially
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in time in order of the sub-indices during the decoding process. The next path to be ex-

amined therefore cannot be in any sense related to the received scalars whose sub-indices

are beyond the deepest level of the paths that are momentarily in the stack, because

random usage, rather than sequential usage, of the received scalars (such as the usage of

rj, followed by the usage of rj+2 instead of rj+1) implicitly indicates that all the received

scalars should be ready in a buffer before the decoding process begins.

Based on the two attributes, the sequential decoding is nothing but the Algorithm A

with an evaluation function f(·) equal to the sum of the branch metrics of those branches
contained by the examined path (that is, the path metric), where the branch metric is a

function of the branch labels and the respective portion of the received vector. Variants

of sequential decoding therefore mostly reside on different path metrics adopted. The

subsequent sections will show that taking a general view of the Algorithm A, rather

than a restricted view of sequential decoding, promotes the understanding of various

later generalizations of sequential decoding.

The next section will introduce the most well-known path metric for sequential decod-

ing, which is named after its discover, R. M. Fano.

V. Fano metric and its generalization

Since its discovery in 1963 [4], the Fano metric has become a typical path metric in

sequential decoding. Originally, the Fano metric was discovered through mass simula-

tions, and was first used by Fano in his sequential decoding algorithm on a code tree [4].

For any path v(`n−1) that ends at level ` on a code tree, the Fano metric is defined as:

M
(

v(`n−1)|r(`n−1)
)

=
`n−1
∑

j=0

M(vj|rj),

where r = (r0, r1, . . . , rN−1) is the received vector, and

M(vj|rj) = log2[Pr(rj|vj)/Pr(rj)]−R
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is the bit metric, and the calculation of Pr(rj) follows the convention that the code bits—

0 and 1—are transmitted with equal probability, i.e.,

Pr(rj) =
∑

vj∈{0,1}

Pr(vj) Pr(rj|vj) =
1

2
Pr(rj|vj = 0) +

1

2
Pr(rj|vj = 1),

and R = k/n is the code rate. For example, a hard-decision decoder with Pr{rj = 0|vj =
1} = Pr{rj = 1|vj = 0} = p for 0 ≤ j ≤ N − 1 (i.e., a memoryless BSC channel with
crossover probability p), where 0 < p < 1/2, will interpret the Fano metric for path

v(`n−1) as:

M(v(`n−1)|r(`n−1)) =
`n−1
∑

j=0

log2 Pr(rj|vj) + `n(1−R), (3)

where

log2 Pr(rj|vj) =







log2(1− p), for rj = vj;

log2(p), for rj 6= vj.

In terms of the Hamming distance, (3) can be re-written as

M
(

v(`n−1)|r(`n−1)
)

= −α · dH(r(`n−1),v(`n−1)) + β · `, (4)

where α = − log2[p/(1−p)] > 0, and β = n[1−R+log2(1−p)]. An immediate observation
from (4) is that a larger Hamming distance between the path labels and the respective

portion of the received vector corresponds to a smaller path metric. This property

guarantees that if no error exists in the received vector (i.e., the bits demodulated are

exactly the bits transmitted), and β > 0 (or equivalently, R < 1 + log2(1 − p)),7 then

the path metric increases along the correct code path, and the path metric along any

incorrect path is smaller than that of the equally long correct path. Such a property is

essential for a metric to work properly with sequential decoding.

Later, Massey [17] proved that at any decoding stage, extending the path with the

largest Fano metric in the stack minimizes the probability that the extending path does

7 The code rate bound below which the Fano-metric-based sequential decoding performs well is the channel

capacity, which is 1 + p log2(p) + (1 − p) log2(1 − p) in this case. The alternative larger bound 1 + log2(1 − p),

derived from β > 0, can only justify the subsequent argument, and by no means ensure a good performance for

sequential decoding under 1 + p log2(p) + (1− p) log2(1− p) < R < 1 + log2(1− p). Channel capacity is beyond

the scope of this article. Interested readers can refer to [16].
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not belong to the optimal code path, and the usage of the Fano metric for sequential

decoding is thus analytically justified. However, making such a locally optimal decision

at every decoding stage does not always guarantee the ultimate finding of the globally

optimal code path in the sense of the MLD rule in (1). Hence, the error performance

of sequential decoding with the Fano metric is in general a little inferior to that of the

MLD-rule-based decoding algorithm.

A striking feature of the Fano metric is its dependence on the code rate R. Introducing

the code rate into the Fano metric somehow reduces the complexity of the sequential

decoding algorithm. Observe from (3) that the first term,
∑`n−1

j=0 log2 Pr(rj|vj), is the
part that reflects the maximum-likelihood decision in (1), and the second term, `n(1−R),
is introduced as a bias to favor a longer path or specifically a path with larger `, since

a longer path is closer to the leaves of a code tree and thus is more likely to be part of

the optimal code path. When the code rate increases, the number of incorrect paths for

a given output length increases.8 Hence, the confidence on the currently examined path

being part of the correct code path should be weaker. Therefore, the claim that longer

paths are part of the optimal code path is weaker at higher code rates. The Fano metric

indeed mirrors the above intuitive observation by using a linear bias with respect to the

code rate.

The effect of taking other bias values has been examined in [18] and [19]. The authors

defined a new bit metric for sequential decoding as:

MB(rj|vj) = log2
Pr(rj|vj)
Pr(rj)

−B, (5)

and found that a tradeoff between computational complexity and error performance of

sequential decoding can be observed by varying the bias B.

Researchers recently began to investigate the effect of a joint bias on Pr(rj) and R,

providing new generalization of sequential decoding. The authors of [20] observed that

universally adding a constant to the Fano metric of all paths does not change the sorting

result at each stage of the sequential decoding algorithm (cf. Step 4 of the Algorithm

8Imagine that the number of branches that leave each node is 2k, and increasing the code rate can be conceptually

interpreted as increasing k subject to a fixed n for a (n, k,m) convolutional code.
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A). They then chose the additive constant
∑N−1

j=0 log2 Pr(rj), and found that

M
(

v(`n−1)|r(`n−1)
)

+
N−1
∑

j=0

log2 Pr(rj) =
`n−1
∑

j=0

[log2 Pr(rj|vj)−R] +
N−1
∑

j=`n

log2 Pr(rj), (6)

for which the two terms on the right-hand-side of (6) can be immediately re-interpreted

as the g-function and the h-function from the perspective of the Algorithm A.9 As the

g-function is now defined based on the branch metric
∑`n−1

j=`(n−1)[log2 Pr(rj|vj)− R], the

Algorithm A, according to the discussion in the previous section, becomes a search to

find the code path v∗ that satisfies

N−1
∑

j=0

[

log2 Pr(rj|v∗j )−R
]

≥
N−1
∑

j=0

[log2 Pr(rj|vj)−R] for all code path v.

The above criterion is equivalent to the MLD rule in (1). Consequently, the Fano path

metric indeed implicitly uses
∑N−1

j=`n log2 Pr(rj) as a heuristic estimate of the upcoming

metric from the end node of the current path to a terminal node. A question that

naturally follows regards the trustworthiness of this estimate. The question can be

directly answered by studying the effect of varying weights on the g-function (i.e., the

cumulative metric sum that is already known) and h-function (i.e., the estimate) using:

fω
(

v(`n−1)

)

= ω
`n−1
∑

j=0

[log2 Pr(rj|vj)−R] + (1− ω)
N−1
∑

j=`n

log2 Pr(rj), (7)

where 0 ≤ ω ≤ 1. Subtracting a universal constant (1 − ω)
∑N−1

j=0 Pr(rj) from (7) gives

the generalized Fano metric for sequential decoding as:

Mω

(

v(`n−1)|r(`n−1)
)

=
`n−1
∑

j=0

(

log2
Pr(rj|vj)ω
Pr(rj)1−ω

− ωR

)

. (8)

When ω = 1/2, the generalized Fano metric reduces to the Fano metric with a mul-

tiplicative constant, 1/2. As ω is slightly below 1/2, which can be interpreted from

9Notably, defining a path metric as
∑`n−1

j=0 [log2 Pr(rj |vj) − R] +
∑N−1

j=`n log2 Pr(rj) does not yield a sequential

decoding algorithm according to the definition of sequential decoding in [15], for such a path metric depends on

information of “the received branches” beyond level `, i.e., r`n, . . . , rN−1. However, a similarly defined evaluation

function surely gives an Algorithm A.
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(7) as the sequential search is guided more by the estimate on the upcoming metrics

than by the known cumulative metric sum, the number of metric computations reduces

but the decoding failure probability grows. When ω is closer to one, the decoding fail-

ure probability of sequential decoding tends to be lower; however, the computational

complexity increases. In the extreme case, taking ω = 1 makes the generalized Fano

metric completely mirror the MLD metric in (1), and the sequential decoding becomes

a maximum-likelihood (hence, optimal in decoding failure probability) decoding algo-

rithm. The work in [20] thereby concluded that an (implicit) heuristic estimate can be

elaborately defined to reduce fairly the complexity of sequential decoding with a slight

degradation in error performance. Notably, for discrete symmetric channels, the gen-

eralized Fano metric is equivalent to the metric defined in Eq. (5) [21]. However, the

generalized Fano metric and the metric of (5) are by no means equal for other types of

channels such as the AWGN channel.

VI. Stack algorithm and its variants

The stack algorithm or the ZJ algorithm was discovered by Zigangirov [5] and later

independently by Jelinek [6] to search a code tree for the optimal codeword. It is exactly

the Algorithm A with g-function equal to the Fano metric and zero h-function. Because

a stack is involved in searching for the optimal codeword, the algorithm is called the

stack algorithm. An example is provided blow to clarify the flow of the stack algorithm.

Example 1 For a BSC with crossover probability p = 0.045, the Fano bit metric for a

convolutional code with code rate R = 1/2 can be obtained from (3) as

M(vj|rj) =







log2(1− p) + (1−R) = 0.434, for rj = vj;

log2(p) + (1−R) = −3.974, for rj 6= vj.

Consequently, only two Fano bit metric values are possible, 0.434 and −3.974. These two
Fano bit metric values can be “scaled” to equivalent “integers” to facilitate the simulation

and implementation of the system. Taking the multiplicative scaling factor of 2.30415
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yields

Mscaled(vj|rj) =







0.434× 2.30415 ≈ 1, for rj = vj;

−3.974× 2.30415 ≈ −9, for rj 6= vj.

Now, the convolutional code in Fig. 1 is decoded over its code tree (cf. Fig. 3) using the

stack algorithm with the scaled Fano metric. Assume that the received vector is r=(11

01 00 01 10 10 11). Figure 5 presents the contents of the stack after each path metric

reordering. Each path in the stack is marked by its corresponding input bit labels rather

than by the code bit labels. Notably, while both types of labels can uniquely determine a

path, the input bit labels are more frequently recorded in the stack in practical implemen-

tation since the input bit labels are the desired estimates of the transmitted information

sequences. Code bit labels are used more often in metric computation and in character-

izing the code, because the code characteristic, such as error correcting capability, can

only be determined from the code bit labels (codewords).10 The path metric associated

with each path is also stored. The algorithm is terminated at the ninth loop, yielding an

ultimate decoding result of u = (11101).

Maintaining the stack is a significant implementation issue of the stack algorithm. In a

straightforward implementation of the stack algorithm, the paths are stored in the stack

in order of descending f -function values; hence, a sorting mechanism is required. With-

out a proper design, the sorting of the paths within the stack may be time-consuming,

limiting the speed of the stack algorithm.

Another implementation issue of the stack algorithm is that the stack size in practice is

often insufficient to accommodate the potentially large number of paths examined during

the search process. The stack can therefore overflow. A common way of compensating

for a stack overflow is to simply discard the path with the smallest f -function value [1],

since it is least likely to be the optimal code path. However, when the discarded path

happens to be an early predecessor of the optimal code path, performance is degraded.

10For a code tree, a path can be also uniquely determined by its end node in addition to the two types of path

labels, so putting the “end node” rather than the path labels of a path in the stack suffices to fulfill the need

for the tree-based stack algorithm. Nevertheless, such an approach, while easing the stack maintenance load,

introduces an extra conversion load from the path end node to its respective input bit labels (as the latter is

the desired estimates of the transmitted information sequence).
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loop 1 loop 2 loop 3 loop 4 loop 5

1 (1 + 1 = 2) 11 (2 + 1 + 1 = 4) 111 (4− 9 + 1 = −4) 1110 (−4 + 1 + 1 = −2) 110 (−4)

0 (−9− 9 = −18) 10 (2− 9− 9 = −16) 110 (4 + 1− 9 = −4) 110 (−4) 11100 (−2 + 1− 9 = −10)

0 (−18) 10 (−16) 10 (−16) 11101 (−2− 9 + 1 = −10)

0 (−18) 0 (−18) 10 (−16)

1111 (−4− 9− 9 = −22) 0 (−18)

1111 (−22)

loop 6 loop 7 loop 8 loop 9

11100 (−10) 11101 (−10) 111010 (−10 + 1 + 1 = −8) 1110100 (−8 + 1 + 1 = −6)

11101 (−10) 1100 (−12) 1100 (−12) 1100 (−12)

1100 (−4− 9 + 1 = −12) 1101 (−12) 1101 (−12) 1101 (−12)

1101 (−4 + 1− 9 = −12) 10 (−16) 10 (−16) 10 (−16)

10 (−16) 111000 (−10− 9 + 1 = −18) 111000 (−18) 111000 (−18)

0 (−18) 0 (−18) 0 (−18) 0 (−18)

1111 (−22) 1111 (−22) 1111 (−22) 1111 (−22)

Fig. 5. Stack contents after each path metric reordering in Example 1. Here, different from that used in

the Fano metric computation, the input bit labels rather than the code bit labels are used for each

recorded path. The associated Fano metric follows each path label sequence (inside parentheses).

Jelinek proposed the so-called stack-bucket technique to reduce the sorting burden of

the stack algorithm [6]. In his proposal, the range of possible path metric values is

divided into a number of intervals with pre-specified, fixed spacing. For each interval,

a separate storage space, a bucket, is allocated. The buckets are then placed in order

of descending interval endpoint values. During decoding, the next path to be extended

is always the top path of the first non-empty bucket, and every newly generated path

is directly placed on top of the bucket in which interval the respective path metric

lies. Some data structure can be used to reduce the maintenance burden and storage

demand of stack buckets, since some buckets corresponding to a certain metric range may

occasionally (or even always) be empty during decoding. The sorting burden is therefore

removed by introducing the stack-buckets. The time taken to locate the next path no

longer depends on the size of the stack, rather on the number of buckets, considerably

reducing the time required by decoding. Consequently, the stack-bucket technique was

used extensively in the software implementation of the stack algorithm for applications
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in which the decoding time is precisely restricted [22, 23, 1]

The drawback of the stack-bucket technique is that the path with the best path metric

may not be selected, resulting in degradation in performance. A so-called metric-first

stack-bucket implementation overcomes the drawback by sorting the top bucket when it

is being accessed. However, Anderson and Mohan [24] indicated that the access time of

the metric-first stack-buckets will increase at least to the order of S1/3, where S is the

total number of the paths ever generated.

Another software implementation technique for establishing a sorted stack was dis-

cussed in [25]. Mohan and Anderson [25] suggested the adoption of a balanced binary

tree data structure, such as an AVL tree [26], to implement the stack, offering the ben-

efit that the access time of the stack becomes of order log2(S), where S represents the

momentary stack size. Briefly, a balanced binary tree is a sorted structure with node

insertion and deletion schemes such that its depth is maintained equal to the logarithm

of the total number of nodes in the tree, whenever possible. As a result, inserting or

deleting a path (which is now a node in the data structure of a balanced binary tree)

in a stack of size S requires at most log2(S) comparisons (that is, the number of times

the memory is accessed). The balanced binary tree technique is indeed superior to the

metric-first stack-bucket implementation, when the stack grows beyond certain size. De-

tailed comparisons of time and space consumption of various implementation techniques

of sequential decoding, including the Fano algorithm to be introduced in the next section,

can be found in [24].

In 1994, a novel systolic priority queue, called the Parallel Entry Systolic Priority

Queue (PESPQ), was proposed to replace the stack-buckets [27]. Although it does not

arrange the paths in the queue in strict order, the systolic priority queue technique can

identify the path with the largest path metric within a constant time. This constant time

was shown to be comparable to the time required to compute the metric of a new path.

Experiments revealed that the PESPQ stack algorithm is several times faster than its

stack-bucket counterpart. Most importantly, the invention of the PESPQ technique has

given a seemingly promising future to hardware implementation of the stack algorithm.
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As stated at the end of Section IV, one of the two essential features of sequential

decoding is that the next visited path cannot be selected based on the information

deeper in the tree [15]. The above feature is subsequently interpreted as the information

that is deeper in the tree is supposed to be received in some future time, and hence,

is perhaps not available at the current decoding stage. This conservative interpretation

apparently arises from the aspect of an on-line decoder. A more general re-interpretation,

simply following the wording, is that any codeword search algorithm that decides the

next visited path in sequence without using the information deeper in its own search tree

is considered to be a sequential decoding algorithm. This new interpretation precisely

suits the bi-directional sequential decoding algorithm proposed by Forney [11], in which

each of the two decoders still performs the defined sequential search in its own search tree.

Specifically, Forney suggested that the sequential decoding could also start its decoding

from the end of the received vector, and proposed a bidirectional stack algorithm in

which two decoders simultaneously search the optimal code path from both ends of the

code tree. The bidirectional decoding algorithm stops whenever either decoder reaches

the end of its search tree. This idea has been much improved by Kallel and Li by

stopping the algorithm whenever two stack algorithms with two separate stacks meet at

a common node in their respective search trees [28]. Forney also claimed that the same

idea can be applied to the Fano algorithm introduced in the next section.

VII. Fano algorithm

The Fano algorithm is a sequential decoding algorithm that does not require a stack

[4]. The Fano algorithm can only operate over a code tree because it cannot examine

path merging.

At each decoding stage, the Fano algorithm retains the information regarding three

paths: the current path, its immediate predecessor path, and one of its successor paths.

Based on this information, the Fano algorithm can move from the current path to either

its immediate predecessor path or the selected successor path; hence, no stack is required

for queuing all examined paths.

The movement of the Fano algorithm is guided by a dynamic threshold T that is an
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integer multiple of a fixed step size ∆. Only the path whose path metric is no less

than T can be next visited. According to the algorithm, the process of codeword search

continues to move forward along a code path, as long as the Fano metric along the code

path remains non-decreasing. Once all the successor path metrics are smaller than T , the

algorithm moves backward to the predecessor path if the predecessor path metric beats T ;

thereafter, threshold examination will be subsequently performed on another successor

path of this revisited predecessor. In case the predecessor path metric is also less than T ,

the threshold T is one-step lowered so that the algorithm is not trapped on the current

path. For the Fano algorithm, if a path is revisited, the presently examined dynamic

threshold is always lower than the momentary dynamic threshold at the previous visit,

guaranteeing that looping in the algorithm does not occur, and that the algorithm can

ultimately reach a terminal node of the code tree, and stop.

Figure 6 displays a flowchart of the Fano algorithm, in which vp, vc and vs represent

the path label sequences of the predecessor path, the current path and the successor path,

respectively. Their Fano path metrics are denoted by Mp, Mc and Ms, respectively. The

algorithm begins with the path that contains only the origin node. The label sequence

of its predecessor path is initially set to “dummy”, and the path metric of such a dummy

path is assumed to be negative infinity. The initialization value of the dynamic threshold

is zero.

The algorithm then proceeds to find, among the 2k candidates, the successor path vs

with the largest path metric Ms. Thereafter, it examines whether Ms ≥ T . If so, the

algorithm moves forward to the successor path, and updates the necessary information.

Then, whether the new current path is a code path is determined, and a positive result

immediately terminates the algorithm. A delicate part of the Fano algorithm is “thresh-

old tightening.” Whenever a path is first visited, the dynamic threshold T must be

“tightened” such that it is adjusted to the largest possible value below the current path

metric, i.e., T ≤ Mc < T +∆. Notably, the algorithm can determine whether a path is

first visited by simply examining min{Mp,Mc} < T +∆. If min{Mp,Mc} < T +∆ holds

due to the validity of Mc < T +∆, the threshold is automatically tightened; hence, only
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either (1) path metric less than Ms
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the labels of vc
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-

Fig. 6. Flowchart of the Fano algorithm.
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the condition Mp < T +∆ is required in the tightening test. The above procedures are

repeated until a code path is finally reached.

Along the other route of the flowchart, following a negative answer to the examination

of Ms ≥ T (which implicitly implies that the path metrics of all the successor paths

of the current path are less than T ), the algorithm must lower the threshold if Mp is

also less than T ; otherwise, a deadlock on the current path arises. Using the lowered

threshold, the algorithm repeats the finding of the best successor path whose path metric

exceeds the new threshold, and proceeds the follow-up steps.

The rightmost loop of the flowchart considers the case for Ms < T and Mp ≥ T .

In this case, the algorithm can only move backward, since the predecessor path is the

only one whose path metric is no smaller than the dynamic threshold. The information

regarding the current path and the successor path should be subsequently updated. Yet,

the predecessor path, as well as its associated path metric, should be recalculated from

the current vp, because information about the predecessor’s predecessor is not recorded.

Afterwards, the Fano algorithm checks for the existence of a new successor path vt

that is not the current successor path which the algorithm has just moved from, and

whose associated path metric exceeds the current Ms. Restated, this step finds the

best successor path other than those that have already been examined. If such a new

successor path does not exist, then the algorithm seeks either to reduce the dynamic

threshold or to move backward again, depending on whether Mp ≥ T . In case such a

new successor path vt with metric Mt is located, the algorithm re-focuses on the new

successor path by updating vs = vt and Ms =Mt, and repeats the entire process.

A specific example is provided below to help in understanding of the Fano algorithm.

Example 2 Assume the same convolutional code and received vector as in Example 1.

Let the step size ∆ be four. Figure 7 presents the traces of the Fano algorithm during its

decoding.

In this figure, each path is again represented by its input bit labels. S and D denote

the paths that contains only the origin node and the dummy path, respectively. Accord-

ing to the Fano algorithm, the possible actions taken include, MFTT = “move forward
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and tighten the threshold”, MF = “move forward only”, MBS = “move backward and

successfully find the second best successor”, MBF = “move backward but fail to find the

second best successor”, and LT = “lower threshold by one step”. The algorithm stops

after 36 iterations, and decodes the received vector to the same code path as that obtained

in Example 1. This example clearly shows that the Fano algorithm revisits several paths

more than once, such as path 11 (eight visits) and path 111 (five visits), and returns to

path S three times.

As described in the previous example, the Fano algorithm may move backward to

the path that contains only the origin node, and discover all its successors with path

metrics less than T . In this case, the only action the algorithm can take is to keep

decreasing the dynamic threshold until the algorithm can move forward again because

the path metric of the predecessor path of the single-node path is set to −∞. The
impact of varying ∆ should also be clarified. As stated in [1], the load of branch metric

computations executed during the finding of a qualified successor path becomes heavy

when ∆ is too small; however, when ∆ is too large, the dynamic threshold T might

be lowered too much in a single adjustment, forcing an increase in both the decoding

error and the computational effort. Experiments suggest [1] that a better performance

can be obtained by taking ∆ within 2 and 8 for the unscaled Fano metric (∆ should be

analogously scaled if a scaled Fano metric is used).

The Fano algorithm, perhaps surprisingly, while quite different in its design from the

stack algorithm, exhibits broadly the same searching behavior as the stack algorithm.

In fact, with a slight modification to the update procedure of the dynamic threshold

(for example, setting ∆ = 0, and substituting the “tightening test” and subsequent

“tightening procedure” by “Mc 6= T?” and “T = Mc”, respectively), both algorithms

have been proven to visit almost the same set of paths during the decoding process

[29]. Their only dissimilarity is that unlike the stack algorithm which visits each path

only once, the Fano algorithm may revisit a path several times, and thus has a higher

computational complexity. From the simulations over the binary symmetric channel as

illustrated in Fig. 8, the stack algorithm with stack-bucket modification is apparently
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Iteration vp vc vs Mp Mc Ms T Action

0 D S 1 −∞ 0 2 0 MFTT

1 S 1 11 0 2 4 0 MFTT

2 1 11 111 2 4 −4 4 LT

3 1 11 111 2 4 −4 0 MBS

4 S 1 10 0 2 −16 0 MBS

5 D S 0 −∞ 0 −18 0 LT

6 D S 1 −∞ 0 2 −4 MF

7 S 1 11 0 2 4 −4 MF

8 1 11 111 2 4 −4 −4 MF

9 11 111 1110 4 −4 −2 −4 MFTT

10 111 1110 11100 −4 −2 −10 −4 MBS

11 11 111 1111 4 −4 −22 −4 MBS

12 1 11 110 2 4 −4 −4 MF

13 11 110 1100 4 −4 −12 −4 MBF

14 1 11 110 2 4 −4 −4 MBS

15 S 1 10 0 2 −16 −4 MBS

16 D S 0 −∞ 0 −18 −4 LT

17 D S 1 −∞ 0 2 −8 MF

18 S 1 11 0 2 4 −8 MF

19 1 11 111 2 4 −4 −8 MF

20 11 111 1110 4 −4 −2 −8 MF

21 111 1110 11100 −4 −2 −10 −8 MBS

22 11 111 1111 4 −4 −22 −8 MBS

23 1 11 110 2 4 −4 −8 MF

24 11 110 1100 4 −4 −12 −8 MBF

25 1 11 110 2 4 −4 −8 MBS

26 S 1 10 0 2 −16 −8 MBS

27 D S 0 −∞ 0 −18 −8 LT

28 D S 1 −∞ 0 2 −12 MF

29 S 1 11 0 2 4 −12 MF

30 1 11 111 2 4 −4 −12 MF

31 11 111 1110 4 −4 −2 −12 MF

32 111 1110 11100 −4 −2 −10 −12 MF

33 1110 11100 111000 −2 −10 −18 −12 MBS

34 111 1110 11101 −4 −2 −10 −12 MF

35 1110 11101 111010 −2 −10 −8 −12 MFTT

36 11101 111010 1110100 −10 −8 −6 −8 Stop

Fig. 7. Decoding traces of the Fano algorithm for Example 2.
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faster than the Fano algorithm at crossover probability p = 0.057, when their software

implementations are concerned. The stack algorithm’s superiority in computing time

gradually disappears as p becomes smaller (or as the channel becomes less noisy) [22].

In practice, the time taken to decode an input sequence often has an upper limit. If

the decoding process is not completed before the time limit, the undecoded part of the

input sequence must be aborted or erased; hence, the probability of input erasure is

another system requirement for sequential decoding. Figure 9 confirms that the stack

algorithm with stack-bucket modification remains faster than the Fano algorithm except

when either admitting a high erasure probability (for example, erasure probability > 0.5

for p = 0.045, and erasure probability > 0.9 for p = 0.057) or experiencing a less noisier

channel (for example, p = 0.033) [22].

An evident drawback of the stack algorithm in comparison with the Fano algorithm is

its demand for an extra stack space. However, with recent advances in computer technol-

ogy, a large memory requirement is no longer a restriction for software implementation.

Hardware implementation is now considered. In hardware implementation, stack main-

tenance normally requires accessing external memory a certain number of times, which

usually bottlenecks the system performance. Furthermore, the hardware is renowned for

its efficient adaptation to a big number of computations. These hardware implementa-

tion features apparently favor the no-stack Fano algorithm, even when the number of its

computations required is larger than the stack algorithm. In fact, a hard-decision version

of the Fano algorithm has been hardware-implemented, and can operate at a data rate

of 5 Mbits/second [30]. The prototype employs a systematic convolutional code to com-

pensate for the input erasures so that whenever the pre-specified decoding time expires,

the remaining undecoded binary demodulator outputs that directly correspond to the

input sequences are immediately outputted. Other features of this prototype include the

following:

• The Fano metric is fixedly scaled to either (1,−11) or (1,−9), rather than adaptable
to the channel noise level for convenient hardware implementation.

• The length (or depth) of the backward movement of the Fano algorithm is limited
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Fig. 8. Comparisons of computational complexities of the Fano algorithm and the stack algorithm (with

stack-bucket modification) based on the (2, 1, 35) convolutional code with generator polynomials

g1 = 53533676737 and g2 = 733533676737 and a single input sequence of length 256. Simulations

are performed over the binary symmetric channel with crossover probability p. Pr{T ≥ t} is the

empirical complement cumulative distribution function for the software computation time T . In

simulations, (log2[2(1 − p)] − 1/2, log2(2p) − 1/2), which is derived from the Fano metric formula,

is scaled to (2,−18), (2,−16) and (4,−35) for p = 0.033, p = 0.045 and p = 0.057, respectively. In

subfigures (a), (b) and (c), the parameters for the Fano algorithm are ∆ = 16, ∆ = 16 and ∆ = 32,

and the bucket spacings taken for the stack algorithm are 4, 4 and 8, respectively. [Reproduced from

Fig. 1–3 in [22].]
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Fig. 9. Comparisons of erasure probabilities of the Fano algorithm and the stack algorithm with stack-

bucket modification. All simulation parameters are taken to be the same as those in Fig. 8. [Repro-

duced from Fig. 5–7 in [22].]
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by a technique called backsearch limiting, in which the decoder is not allowed to move

backward more than some maximum number J levels back from its furthest penetration

into the tree. Whenever the backward limit is reached, the decoder is forced forward by

lowering the threshold until it falls below the metric of the best successor path.

• When the hardware decoder maintains the received bits that correspond to the back-

search J branches for use of forward and backward moves, a separate input buffer must,

at the same time, actively receive the upcoming received bits. Once an input buffer over-

flow is encountered, the decoder must be resynchronized by directly jumping to the most

recently received branches in the input buffer, and those information bits corresponding

to J levels back are forcefully decoded. The forcefully decoded outputs are exactly the

undecoded binary demodulator outputs that directly correspond to the respective input

sequences. Again, this design explains why the prototype must use a systematic code.

Figure 10 shows the resultant bit error performances for this hardware decoder for

BSCs [30]. An anticipated observation from Fig. 10 is that a larger input buffer, which

can be interpreted as a larger decoding time limit, gives a better performance.

A soft-decision version of the hardware Fano algorithm was used for space and mil-

itary applications in the late 1960s [31, 32]. The decoder built by the Jet Propulsion

Laboratory [32] operated at a data rate of 1 Mbits/sec, and successfully decoded the

telemetry data from the Pioneer Nine spacecraft. Another soft-decision variable-rate

hardware implementation of the Fano algorithm was reported in [33], wherein decoding

was accelerated to 1.2 Mbits/second.

A modified Fano algorithm, named creeper algorithm, was recently proposed [34]. This

algorithm is indeed a compromise between the stack algorithm and the Fano algorithm.

Instead of placing all visited paths in the stack, it selectively stores a fixed number of

the paths that are more likely to be part of the optimal code path. As anticipated, the

next path to be visited is no longer restricted to the immediate predecessor path and the

successor paths but extended to these selected likely paths. The number of the likely

paths is usually set less than 2k times the code tree depth. The simulations given in [34]

indicated that in computational complexity, the creeper algorithm considerably improves
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Fig. 10. Bit-error-rate of the hardware Fano algorithm based on systematic (2, 1, 46) convolutional code

with generator polynomials g1 = 4000000000000000 and g2 = 7154737013174652. The legend

indicates that the input buffer size tested ranges from 210 = 1024 to 216 = 65, 536 branches.

Experiments are conducted with one Mbits/second data rate over the binary symmetric channel

with crossover probability p = (1/2)erfc(
√

Eb/N0), where erfc(x) = (2/
√
π)

∫ ∞

x
exp{−x2}dx is the

complementary error function. The step size, the backsearch limit, and the Fano metric are set to

∆ = 6, J = 240, and (1,−11), respectively. [Reproduced from Fig. 18 in [30].]

the Fano algorithm, and can be made only slightly inferior to the stack algorithm.

VIII. Trellis-based sequential decoding algorithm

Sequential decoding was mostly operated over a code tree in early publications, al-

though some early published work already hinted at the possibility of conducting sequen-

tial decoding over a trellis [35, 36]. The first feasible algorithm that sequentially searches

a trellis for the optimal codeword is the generalized stack algorithm [23]. The generalized

stack algorithm simultaneously extends the top M paths in the stack. It then examines,

according to the trellis structure, whether any of the extended paths merge with a path

that is already in the stack. If so, the algorithm deletes the newly generated path after

ensuring that its path metric is smaller than the cumulative path metric of the merged

path up to the merged node. No redirection on the merged path is performed, even if
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the path metric of the newly generated path exceeds the path metric of the sub-path

that traverses along the merged path, and ends at the merged node. Thus, the newly

generated path and the merged path may coexist in the stack. The generalized stack

algorithm, although it generally yields a larger average computational complexity than

the stack algorithm, has lower variability in computational complexity and a smaller

probability of decoding error [23].

The main obstacle in implementing the generalized stack algorithm by hardware is

the maintenance of the stack for the simultaneously extended M paths. One feasible

solution is to employ M independent stacks, each of which is separately maintained

by a processor [37]. In such a multiprocessor architecture, only one path extraction

and two path insertions are sufficient for each stack in a decoding cycle of a (2, 1,m)

convolutional code [37]. Simulations have shown that this multiprocessor counterpart not

only retained the low variability in computational complexity as the original generalized

stack algorithm, but also had a smaller average decoding time.

When the trellis-based generalized stack algorithm simultaneously extends 2K most

likely paths in the stack (that is, M = 2K), where K =
∑k

j=1Kj and Kj is the

length of the jth shift register in the convolutional code encoder, the algorithm be-

comes the maximum-likelihood Viterbi decoding algorithm. The optimal codeword is

thereby sought by exhausting all possibilities, and no computational complexity gain

can be obtained at a lower noise level. Han, et al. [38] recently proposed a true noise-

level-adaptable trellis-based maximum-likelihood sequential decoder, called maximum-

likelihood soft-decision decoding algorithm (MLSDA). The MLSDA adopts a new metric,

other than the Fano metric, to guide its sequential search over a trellis for the optimal

code path, which is now the code path with the minimum path metric. Derived from a

variation of the Wagner rule [39], the new path metric associated with a path v(`n−1) is

given by

MML

(

v(`n−1)|r(`n−1)
)

=
`n−1
∑

j=0

MML(vj|rj), (9)

where MML(vj|rj) = (yj ⊕ vj) × |φj| is the jth bit metric, r is the received vector,



36

φj = ln[Pr(rj|0)/Pr(rj|1)] is the jth log-likelihood ratio, and

yj =







1, if φj < 0;

0, otherwise

is the hard-decision output due to φj. For AWGN channels, the ML bit metric can be

simplified to MML(vj|rj) = (yj ⊕ vj)× |rj|, where

yj =







1, if rj < 0;

0, otherwise.

As described previously, the generalized stack algorithm, while examining the path

merging according to a trellis structure, does not redirect the merged paths. The

MLSDA, however, genuinely redirects and merges any two paths that share a common

node, resulting in a stack without coexistence of crossed paths. A remarkable feature of

the new ML path metric is that when a newly extended path merges with an existing

path of longer length, the ML path metric of the newly extended path is always greater

than or equal to the cumulative ML metric of the existing path up to the merged node.

Therefore, a newly generated path that is shorter than its merged path can be immedi-

ately deleted, reducing the redirection overhead of the MLSDA only to the case in which

the newly generated path and the merged existing path are equally long.11 That is, they

merged at their end node. In such case, the redirection is merely a deletion of the path

with larger path metric.

Figures 11–12 show the performances of the MLSDA for (2, 1, 6) and (2, 1, 16) convo-

lutional codes transmitted over the AWGN channel. Specifically, Fig. 11 compares the

bit error rate (BER) of the MLSDA with those obtained by the Viterbi and the stack

algorithms. Both the MLSDA and the Viterbi algorithm yield the same BER since they

are both maximum-likelihood decoders. Figure 11 also shows that the MLSDA provides

around 1.5 dB advantage over the stack algorithm at BER=10−5, when both algorithms

11Notably, for the new ML path metric, the path that survives is always the one with smaller path metric,

contrary to the sequential decoding algorithm in terms of the Fano metric, in which the path with larger Fano

metric survives.
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employ the same input sequence of length 40. Even when the length of the input se-

quence of the stack algorithm is extended to 200, the MLSDA with input sequence of

length 40 still offers an advantage of about 0.5 dB at BER= 10−6. Figure 12 collects the

empirical results concerning the MLSDA with an input sequence of length 40 for (2, 1, 6)

code, and the stack algorithm with input sequences of lengths 100 and 200 for (2, 1, 16)

code. The three curves indicate that the MLSDA with an input sequence of smaller

length 40 for (2, 1, 6) code provides an advantage of 1.0 dB over the stack algorithm with

much longer input sequences and larger constraint length at BER=10−6.

The above simulations lead to the conclusion that the stack algorithm normally re-

quires a sufficiently long input sequence to converge to a low BER, which necessarily

results in a long decoding delay and high demand for stack space. By adopting a new

sequential decoding metric, the MLSDA can achieve the same performance using a much

shorter input sequence; hence, the decoding delay and the demand for stack space can be

significantly reduced. Furthermore, unlike the Fano metric, the new ML metric adopted

in the MLSDA does not depend on the knowledge of the channel, such as SNR, for

codes transmitted over the AWGN channel. Consequently, the MLSDA and the Viterbi

algorithm share a common nature that their performance is insensitive to the accuracy

of the channel SNR estimate for AWGN channels.

IX. Performance characteristics of sequential decoding

An important feature of sequential decoding is that the decoding time varies with

the received vector, because the number of paths examined during the decoding process

differs for different received vectors. The received vector in turn varies according to

the noise statistics. The decoding complexity can therefore be legitimately viewed as a

random variable whose probability distribution is defined by the statistics of the received

vector.

The statistics of sequential decoding complexity have been extensively investigated

using the random coding technique [40, 41, 15, 42, 43, 36, 44]. Instead of analyzing

the complexity distribution with respect to a specific deterministic code, the average

complexity distribution for a random code was analyzed. In practical applications, the
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Fig. 11. Bit error rates (BER) of the MLSDA, the Viterbi algorithm (VA), and the stack algorithm for

binary (2, 1, 6) convolutional code with generators g1 = 634 (octal), g2 = 564 (octal), and input

sequences of lengths 40 and 200. [Source: Fig. 1 in [38]]

convolutional codes are always deterministic in their generator polynomials. Neverthe-

less, taking the aspect of a random convolutional code, in which the coefficients of the

generator polynomials are random, facilitates the analysis of sequential decoding com-

plexity. The resultant average decoding complexity (where the decoding complexity is

directly averaged over all possible generator polynomials) can nonetheless serve as a

quantitative guide to the decoding complexity of a practical deterministic code.

In analyzing the average decoding complexity, a correct code path that corresponds

to the transmitted codeword over the code tree or trellis always exists, even if the con-

volutional encoder is now random. Extra computation time is introduced, whenever

the search process of the decoder deviates from the correct code path due to a noise-

distorted received vector. The incorrect paths that deviate from the correct code path

can be classified according to the first node at which the incorrect and the correct code

paths depart from each other. Denote by Sj the subtree that contains all incorrect paths

that branch from the jth node on the correct path, where 0 ≤ j ≤ L − 1 and L is the
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Fig. 12. Bit error rates (BER) of the MLSDA and Viterbi algorithm for binary (2, 1, 6) convolutional

code with generators g1 = 634 (octal), g2 = 564 (octal) and an input sequence of length 40. Also,

BERs of the stack algorithm for binary (2, 1, 16) convolutional code with generators g1 = 1632044,

g2 = 1145734 and input sequences of lengths 100 and 200. [Source: Fig. 2 in [38]]

length of the code input sequences. Then, an upper probability bound12 on the average

computational complexity Cj defined as the number of branch metric computations due

to the examination of those incorrect paths in Sj can be established as

Pr {Cj ≥ N} ≤ AN−ρ (10)

for some 0 < ρ < ∞ and any 0 ≤ j ≤ L − 1, where A is a constant that varies for
different sequential decoding algorithms. The bound is independent of j because, during

its derivation, L is taken to infinity such that all incorrect subtrees become identical

in principle. The distribution characterized by the right-hand-side of (10) is a Pareto

distribution, and ρ is therefore named the Pareto exponent. Experimental studies indicate

that the constant A usually lies between 1 and 10 [1]. The Pareto exponent ρ is uniquely

12The bound in (10) was first established by Savage for random tree codes for some integer value of ρ [41], where

random tree codes constitute a super set of convolutional codes. Later, Jelinek [43] extended its validity for

random tree codes to real-valued ρ ≥ 1, satisfying (11). The validity of (10) for random convolutional codes was

substantiated by Falconer [42] for 0 < ρ < 1, and by Hashimoto and Arimoto [44] for ρ ≥ 1.
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determined by the code rate R using the formula

R =
E0(ρ)

ρ
(11)

for 0 < R < C, where E0(ρ) is the Gallager function [45, Eq. (5.6.14)] and C is the

channel capacity (cf. footnote 7). For example, the Gallager function and the channel

capacity for the binary symmetric channel with crossover probability p are respectively

given by

E0(ρ) = ρ− (1 + ρ) log2
[

p1/(1+ρ) + (1− p)1/(1+ρ)
]

, (12)

and

C = 1 + p log2(p) + (1− p) log2(1− p).

Equations (11) and (12) together imply that ρ goes to infinity as R ↓ 0, and ρ ap-

proaches zero when R ↑ C. Figure 13 gives the Pareto exponents for code rates

R = 1/4, 1/3, 1/2, 2/3, 3/4.
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Fig. 13. Pareto exponent as a function of Eb/N0 for a BSC with crossover probability p =

(1/2)erfc(
√

Eb/N0), where erfc(x) = (2/
√
π)

∫ ∞

x
exp{−x2}dx is the complementary error function.

A converse argument to (10), due to Jacobs and Berlekamp [15], states that no se-

quential decoding algorithm can achieve a computational distribution better than the



41

Pareto distribution of (10), given that no decoding error results for convolutional codes.

Specifically, they showed that for a Pareto exponent that satisfies (11),

Pr {Cj ≥ N| correct decoding} > [1− o(N )]N−ρ, (13)

where o(·) is the little-o function, satisfying o(x) → 0 as x → ∞. The two bounds in
(10) and (13) coincide only when N is sufficiently large.

Based on multiple branching process technique [46], close-form expressions of the aver-

age computational complexity of sequential decoding were derived in [47, 48, 49]. How-

ever, these close-form expressions were only suited for small N . Inequalities (10) and
(13) also show that the two bounds are independent of the code constraint length. This

observation confirms the claim made in the Introduction that the average computational

effort for sequential decoding is in principle independent of the code constraint length.

Inequalities (10), (13) and the observation that Cj ≥ 1 jointly yield

E[Cj] =

∫ ∞

1

Pr{Cj ≥ N}dN ≤
∫ ∞

1

AN−ρdN ,

and

E[Cj|correct decoding] =
∫ ∞

1

Pr {Cj ≥ N| correct decoding} dN

≥
∫ ∞

1

[1− o(N )]N−ρdN .

Therefore, if the Pareto exponent ρ is greater than unity, E[Cj] is bounded from above.

Conversely, if E[Cj|correct decoding] <∞, then ρ > 1. Since the probability of correct
decoding is very close to unity in most cases of interest, ρ > 1 is widely accepted as a

sufficient and necessary condition for E[Cj] to be bounded. This result gives rise to the

term, computational cutoff rate R0 = E0(1), for sequential decoding.

From (11), ρ > 1 if, and only if, R < R0 = E0(1), meaning that the cutoff rate R0

is the largest code rate under which the average complexity of sequential decoding is

finite. Thus, sequential decoding becomes computationally implausible once the code

rate exceeds the cutoff rate R0. This theoretical conclusion can be similarly observed

from simulations.



42

Can the computational cutoff rate be improved? The question was answered by a

proposal made by Flaconer [42], concerning the use of a hybrid coding scheme. The

proposed communication system consists of an (nout, kout) outer Reed-Solomon encoder,

nout parallel (nin, 1,m) inner convolutional encoders, nout parallel noisy channels, nout

sequential decoders for inner convolutional codes, and an algebraic decoder for the outer

Reed-Solomon code. These five modules work together in the following fashion. The

outer Reed-Solomon encoder encodes kout input symbols into nout output symbols, each

of which is b bits long with the last m bits equal to zero. Then, each of the nout output

symbols is fed into its respective binary (nin, 1,m) convolutional encoder in parallel, and

induces nin× b output code bits. Thereafter, these nout (ninb)-bit streams are simultane-
ously transmitted over nout independent channels, where the nout independent channels

may be created by time-multiplexing over a single channel. Upon receiving nout noise-

distorted received vectors of dimension ninb, the nout sequential decoders reproduce the

nout output symbols through a sequential codeword search. If any sequential codeword

search is not finished before a pre-specified time, its output will be treated as an erasure.

The final step is to use an algebraic Reed-Solomon decoder to regenerate the kout input

symbols based upon the nout output symbols obtained from the nout parallel sequential

decoders.

The effective code rate of this hybrid system is

Reffective =
kout(b−m)

noutninb
.

The largest effective code rate under which the hybrid system is computationally prac-

tical has been proved to improve over E0(1) [42]. Further improvement along the line of

code concatenation can be found in [50, 51].

The basis of the performance analysis for the aforementioned sequential decoding is

random coding, and has nothing to do with any specific properties of the applied code,

except the code rate R. Zigangirov [34] proposed to analyze the statistics of Cj for

deterministic convolutional codes with an infinite memory order (i.e., m =∞) in terms
of recursive equations, and determined that for codes transmitted over BSCs and decoded
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by the tree-based stack algorithm,

E[Cj] ≤
ρ

ρ− 12
−(−nα+β)/(1+ρ)−k (14)

for R < R0 = E0(1), where ρ is the Pareto exponent that satisfies (11), and α and β are

defined in the sentence following Eq. (4). Zigangirov’s result again suggested that E[Cj]

is bounded for R < R0, even when the deterministic convolutional codes are considered.

A similar result was also established for the Fano algorithm in [34].

Another code-specific estimate of sequential decoding complexity was due to Chevillat

and Costello [52, 53]. From simulations, they ingeniously deduced that the compu-

tational complexity of a sequential decoder is indeed related to the column distance

function (CDF) of the applied code. They then established that for a convolutional code

transmitted over a BSC with crossover probability p,

Pr {Cj ≥ N} < ANd exp {−λ1 dc(`) + λ2 `} (15)

for R < 1 + 2p log2(p) + (1− 2p) log2(1− p), where A, λ1 and λ2 are factors determined

by p and code rate R, Nd is the number of length-[n(`+1)] paths with Hamming weight

equal to dc(`), ` is the integer part of log2k N , and dc(r) is the CDF of the applied code.
They concluded that a convolutional code with a rapidly increasing CDF can yield a

markedly smaller sequential decoding complexity. The outstanding issue is thus how to

construct similar convolutional codes for use in sequential decoding. The issue will be

further explored in Section XI.

Next, the upper bounds on the bit error rate of sequential decoding are introduced.

Let PSj
be the probability that a path belonging to the incorrect subtree Sj is decoded as

the ultimate output. Then, [53] showed that for a specific convolutional code transmitted

over a BSC with crossover probability p,

PSj
< BNf exp {−γ dfree} , (16)

where B and γ are factors determined by p and code rate R, Nf is the number of code

paths in Sj with Hamming weight equal to dfree, and dfree is the free distance of the

applied code. The parameter γ is positive for all convolutional codes whose free distance
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exceeds a lower limit determined by p and R. This result indicates that a small error

probability for sequential decoding can be obtained by selecting a convolutional code

with a large free distance and a small number of codewords with Hamming weight dfree.

The free distance of a convolutional code generally grows with its constraint length.

The bit error rate can therefore be made desirably low when a convolutional code with

a sufficiently large constraint length is employed, as the computational complexity of

sequential decoding is independent of the code constraint length. However, when a code

with a large constraint length is used, the length of the input sequences must also be

extended such that the effective code rate kL/[n(L+m)] is closely approximated by code

rate R = k/n. More discussion of the bit error rates of sequential decoding can be found

in [40, 36, 54].

X. Buffer overflow and system considerations

As already demonstrated by the hardware implementation of the Fano algorithm in

Section VII, the input buffer at the decoder end for the temporary storage of the received

vector is finite. The on-line decoder must therefore catch up to the input rate of the

received vector such that the storage space for obsolete components of the received vector

can be freed to store upcoming received components. Whenever an input buffer overflow

is encountered, some of the still-in-use content in the input buffer must be forcefully

written over by the new input, and the decoder must resynchronize to the new contents

of the input buffer; hence, input erasure occurs. The overall codeword error Ps of a

sequential decoder thus becomes:

Ps ' Pe + Perasure,

where Pe is the undetected word error under the infinite input buffer assumption, and

Perasure is the erasure probability. For a code with a long constraint length and a practi-

cally sized input buffer, Pe is markedly smaller than Perasure, so the overall word error is

dominated by the probability of input buffer overflow. In this case, effort is reasonably

focused on reducing Perasure. When the code constraint length is only moderately large,

a tradeoff between Pe and Perasure must be made. For example, reducing the bucket spac-
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ing for the stack-bucket-enabled stack algorithm or lowering the step size for the Fano

algorithm results in a smaller Pe, but increases E[Cj] and hence Perasure. The choice of

path metrics, as indicated in Section V, also yields a similar tradeoff between Pe and

Perasure. Accordingly, a balance between these two error probabilities must be maintained

in practical system design.

The probability of buffer overflow can be analyzed as follows. Let B be the size of the

input buffer measured in units of branches; hence, the input buffer can store nB bits

for an (n, k,m) convolutional code. Also let 1/T (bits/second) be the input rate of the

received vector. Suppose that the decoder can perform µ branch metric computations in

n×T seconds. Then if over µB branch computations are performed for paths in the jth
incorrect subtree, the jth received branch in the input buffer must be written over by the

new received branch. To simplify the analysis, assume that the entire buffer is simply

reset when a buffer overflow occurs. In other words, the decoder aborts the present

codeword search, and immediately begins a new search according to the new received

vector. From Eq. (10), the probability of performing more than µB branch computations

for paths in Sj is upper-bounded by A(µB)
−ρ. Hence, the erasure probability [41, 55]

for input sequences of length L is upper-bounded by

Perasure ≤ LA (µB)−ρ. (17)

Taking L = 1000, A = 5, µ = 10, B = 105 and R = 1/2 yields ρ = 1.00457 and

Perasure ≤ 4.694× 10−3.
Three actions can be taken to avoid eliminating the entire received vector when the

input buffer overflow occurs: (1) just inform the outer mechanism that an input erasure

occurs, and let the outer mechanism take care of the decoding of the respective input

sequences, (2) estimate the respective input sequences by a function mapping from the

received vector to the input sequence, and (3) output the tentative decoding results yet

obtained. The previous section already demonstrated an example of the first action using

the hybrid coding system. The second action can be taken whenever an input sequence to

a convolutional encoder can be recovered from its codewords through a function mapping.

Two typical convolutional codes whose input sequence can be directly mapped from the
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codewords are the systematic code and the quick-look-in code (to be introduced in the

next section). A decoder can also choose to output a tentative decoded input sequence

if the third action is taken. A specific example for the third action, named the multiple

stack algorithm, is introduced in the next paragraph.

In 1977, Chevillat and Costello [56] proposed a multiple stack algorithm (MSA), which

eliminated entirely the possibility of erasure in the sense that the decoded output is

always based upon the codeword search. The MSA, as its name implies, acts exactly

like the stack algorithm except that it accommodates multiple stacks. During decoding,

the MSA first behaves as the stack algorithm by using only its main stack of size zmain.

When the main stack reaches its limit, the best t paths in the main stack are transferred

to a smaller second stack with size z ¿ zmain. Then the decoding process proceeds just

like the stack algorithm, but now using the second stack. If a path reaches the end of

the search tree before the second stack is filled, then the path is stored as a tentative

decision, and the second stack is eliminated. The MSA then returns to the main stack

that has t vacancy spaces for new paths because the top t paths have been removed. If

another path reaches the end of the search tree before the main stack is filled up again,

the decoder compares its path metric with that of the current tentative decision, and

outputs the one with larger metric, and stops. Now in case the second stack is filled up

before a code path is located, then a third stack with the same size z is created such that

the top t paths in the second stack are transferred to it. The codeword search process

then proceeds over the third stack until either a tentative decision can be made or a new

stack needs to be created. Additional stacks of size z are formed whenever necessary.

The decoder always compares the newly located code path with the previous tentative

decision, and retains the better one. With some properly selected system parameters

including zmain, z, t, and input buffer size, the MSA guarantees that whenever an input

erasure occurs, a tentative decision is always ready for output [56]. Simulation results

show that even though the stack maintenance of the MSA is more complex than the

stack algorithm, the bit error rate of the former is much lower than that of the latter

(cf. Fig. 14). Further improvements of the MSA can be found in [57, 58].
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Fig. 14. The MSA bit error rates (BER) for (2, 1, 7) and (2, 1, 14) convolutional codes with an input

sequence of length 64. The system parameters for (2, 1, 7) and (2, 1, 14) convolutional codes are

(zmain, z, t) = (1024, 11, 3) and (zmain, z, t) = (2900, 11, 3), respectively. The input erasure is emu-

lated by an upper limit on branch metric computations Clim, which is 1700 and 3300 for (2, 1, 7)

and (2, 1, 14) convolutional codes, respectively. [Reproduced in part from Fig. 3 in [57].]

XI. Code construction for sequential decoding

A rapid column distance growth in CDF has been conjectured to help the early rejec-

tion of incorrect paths for sequential decoding algorithms [59]; this conjecture was later

substantiated by Chevillat and Costello both empirically [52] and analytically [53]. In

an effort to construct a good convolutional code for sequential decoding, Johannesson

proposed [60] that the code distance profile, defined as {dc(1), dc(2), . . . , dc(m+ 1)}, can
be used, instead of the entire code distance function dc(·), as a “criterion” for good code
construction. His suggestion greatly reduced the number of possible code designs that

must be investigated.

A code C is said to have a better distance profile than another code C ′ with the same
code rate and memory order, if there exists ` with 1 ≤ ` ≤ m+1 such that dc(j) = d′c(j)

for 1 ≤ j ≤ ` − 1 and dc(`) > d′c(`), where dc(·) and d′c(·) are the CDFs of codes C and
C ′, respectively. In other words, a code with a better distance profile exhibits a faster
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initial column distance growth in its CDF. A code is said to have an optimal distance

profile, and is called an ODP code, if its distance profile is superior to that of any other

code with the same code rate and memory order.

The searching of ODP codes was extensively studied by Johannesson and Passke

[60, 61, 62, 63]. They found that the ODP condition could be imposed on a half-rate

(R = 1/2) short constraint length code without penalty in the code free distance [60].

That is, the half-rate ODP code with a short constraint length can also be the code with

the largest free distance of all codes with the same code rate and memory order. Tables I

and II list the half-rate ODP codes for systematic codes and nonsystematic codes, re-

spectively. Comprehensive information on ODP codes can be found in [34]. These tables

notably reveal that the free distance of a systematic ODP code is always inferior to that

of a nonsystematic ODP code with the same memory order.

Employing ODP codes, while notably reduces the number of metric computations for

sequential decoding, does not ensure erasure-free performance in practical implemen-

tation. If an erasure-free sequential decoding algorithm such as the MSA cannot be

adopted due to certain practical considerations, the decoder must still force an immedi-

ate decision by just taking a quick look at the received vector, once input erasure occurs.

This seems to suggest that a systematic ODP code is preferred, even if it has a smaller

free distance than its non-systematic ODP counterpart. In such case, the deficiency on

the free distance of the systematic ODP codes can be compensated for by selecting a

larger memory order m. However, when a convolutional code with large m is used, the

length of the input sequences must be proportionally extended, otherwise the effective

code rate cannot be well-approximated by the convolutional code rate, and the perfor-

mance to some extent degrades. This effect motivates the attempt to construct a class of

non-systematic ODP codes with the “quick-look” property and a free distance superior

to that of systematic codes.

Such a class of non-systematic codes has been developed by Massey and Costello,

called the quick-look-in (QLI) convolutional codes [59]. The generator polynomials of

these half-rate QLI convolutional codes differ only in the second coefficient. Specifically,
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TABLE I

List of R = 1/2 systematic codes with optimal distance profile [34].

m g2 dfree

1 6 3

2 7 4

3 64 4

4 66 5

5 73 6

6 674 6

7 714 6

8 671 7

9 7154 8

10 7152 8

11 7153 9

12 67114 9

13 67116 10

14 71447 10

15 671174 10

16 671166 12

17 671166 12

18 6711454 12

19 7144616 12

20 7144761 12

21 71447614 12

22 71446166 14

23 67115143 14

24 714461654 15

25 671145536 15

26 714476053 16

27 7144760524 16

28 7144616566 16

29 7144760535 18

30 67114543064 16

31 67114543066 18
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TABLE II

List of R = 1/2 nonsystematic codes with optimal distance profile [34].

m g1 g2 dfree

1 6 4 3

2 7 5 5

3 74 54 6

4 62 56 7

5 77 45 8

6 634 564 10

7 626 572 10

8 751 557 12

9 7664 5714 12

10 7512 5562 14

11 6643 5175 14

12 63374 47244 15

13 45332 77136 16

14 65231 43677 17

15 727144 424374 18

16 717066 522702 19

17 745705 546153 20

18 6302164 5634554 21

19 5122642 7315626 22

20 7375407 4313045 22

21 67520654 50371444 24

22 64553062 42533736 24

23 55076157 75501351 26

24 744537344 472606614 26

25 665041116 516260772 27
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their generator polynomials satisfy g1(x) = g2(x) + x, where addition of coefficients is

based on modulo-2 operation, allowing the decoder to recover the input sequence u(x)

by summing the two output sequences v1(x) and v2(x) as

x · u(x) = v1(x) + v2(x). (18)

If p is the individual bit error probability in the codeword v, then the bit error prob-

ability due to recovering information sequence u from v through (18) is shown to be

approximately 2p [59]. Table III gives a list of QLI ODP convolutional codes [34].

XII. Conclusions

Although sequential decoding has a longer history than maximum-likelihood decoding

based on the Viterbi algorithm, its practical applications are not as popular, because

the highly repetitive “pipeline” nature of the Viterbi decoder makes it very suitable for

hardware implementation. Furthermore, a sequential decoder usually requires a longer

decoding delay (defined as the time between the receipt of a received branch and the out-

put of its respective decoding decision) than a Viterbi decoder. Generally, the decoding

delay of a sequential decoder for an (n, k,m) convolutional code is around n×B, where
B is the number of received branches that an input buffer can accommodate. Yet, the

decoding delay of a Viterbi decoder can be made a small multiple, often ranging from

5 to 10, of n ×m. On the other hand, references [64] and [65] showed that sequential

decoding is highly sensitive to the channel parameters such as an inaccurate estimate of

channel SNR and an incomplete compensation of phase noise. The Viterbi algorithm,

however, was proven to be robust for imperfect channel identification, again securing the

superiority of the Viterbi decoder in practical applications.

Nevertheless, there are certain situations that the sequential decoding fits well, espe-

cially in decoding convolutional codes having a large constraint length. In addition, the

sequential decoder can send a timely retransmission request by detecting the occurrence

of an input buffer overflow [66]. Very recently, sequential decoding has attracted some

attention in the field of mobile communications [67] in which a demand of low bit error

rate is required. Such applications are beyond the scope of this article, and interested
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TABLE III

List of R = 1/2 QLI codes with optimal distance profile [34].

m g1 dfree

2 7 5

3 74 6

4 76 6

5 75 8

6 714 8

7 742 9

8 743 9

9 7434 10

10 7422 11

11 7435 12

12 74044 11

13 74046 13

14 74047 14

15 740464 14

16 740462 15

17 740463 16

18 7404634 16

19 7404242 15

20 7404155 18

21 74041544 18

22 74042436 19

23 74041567 19

24 740415664 20

25 740424366 20

26 740424175 22

27 7404155634 22

28 7404241726 23

29 7404154035 24

30 74041567514 23

31 74041567512 25
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readers can refer to [1, 68, 69].
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