Chapter 2: Basic Concepts of Probability Theory ${ }^{1}$

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University

Taiwan
E-mail: yshan@mail.ntpu.edu.tw

[^0]
Specifying random experiments

1. State an experiment procedure.
2. Define a set of one or more measurements or observations.

Example:

1. Toss a coin three times and
2. note the number of heads.

Sample Space

S : Set of all possible outcomes.
Example: Select a ball from an urn that contains balls numbered 1 to 50 . Note the number of balls. $S=\{1,2, \ldots, 50\}$.

- Discrete sample space: S is countable, e.g., it contains integers.
- Continuous sample space: S is not countable, e.g., it contains real number.
- Pick a number at random between zero and one. $S=[0,1]$.
- Cartesian product: Toss a coin three times. $S_{3}=S \times S \times S$.

Events

Events: Outcome satisfies certain conditions.
Example:

- Determine the value of a voltage waveform at time t.
- $S=\{v:-\infty<v<\infty\}=(-\infty, \infty)$.
- Event E : voltage outcome ψ is negative.
- $E=\{\psi:-\infty<\psi<0\}$.

Axioms of Probability

Let S be the sample space. Assign to each event A a number $P[A]$, probability of A, that satisfies the axioms.
Axiom I: $0 \leq P[A]$.
Axiom II: $P[S]=1$.
Axiom III: If $A \cap B=\emptyset$, then
$P[A \cup B]=P[A]+P[B]$. Axiom III': If
A_{1}, A_{2}, \ldots, is a sequence of events such that
$A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$, then

$$
P\left[\bigcup_{k=1}^{\infty} A_{k}\right]=\sum_{k=1}^{\infty} P\left[A_{k}\right] .
$$

Corollary $1 P\left[A^{c}\right]=1-P[A]$
Corollary $2 P[A] \leq 1$
Corollary $3 P[\emptyset]=0$
Corollary 4 If $A_{1}, A_{2}, \ldots, A_{n}$ are pairwise mutually exclusive, then

$$
P\left[\bigcup_{k=1}^{n} A_{k}\right]=\sum_{k=1}^{n} P\left[A_{k}\right] \quad \text { for } n \geq 2
$$

Corollary 5
$P[A \cup B]=P[A]+P[B]-P[A \cap B]$.

$$
\rightarrow \quad P[A \cup B] \leq P[A]+P[B] .
$$

Corollary 6

$$
\begin{aligned}
P\left[\bigcup_{k=1}^{n} A_{k}\right]= & \sum_{j=1}^{n} P\left[A_{j}\right]-\sum_{j<k} P\left[A_{j} \cap A_{k}\right]+ \\
& \ldots(-1)^{n+1} P\left[A_{1} \cap \ldots \cap A_{n}\right] .
\end{aligned}
$$

Corollary 7 If $A \subset B$, then $P[A] \leq P[B]$.

Discrete Sample Space

$S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
Event $B=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}\right\}$

$$
\begin{aligned}
P[B] & =P\left[\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}\right\}\right] \\
& =P\left[\left\{a_{1}^{\prime}\right\}\right]+P\left[\left\{a_{2}^{\prime}\right\}\right]+\ldots+P\left[\left\{a_{m}^{\prime}\right\}\right]
\end{aligned}
$$

Equally likely outcomes

- $S=\left\{a_{1}, \ldots, a_{n}\right\}$
- $P\left[\left\{a_{1}\right\}\right]=P\left[\left\{a_{2}\right\}\right]=\cdots=P\left[\left\{a_{n}\right\}\right]=1 / n$
- $B=\left\{a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right\}$
- $P[B]=P\left[\left\{a_{1}^{\prime}\right\}\right]+\ldots+P\left[\left\{a_{k}^{\prime}\right\}\right]=k / n$

Example: An urn contains 10 numbered balls. $S=\{0,1, \ldots, 9\}$.
Assume $P[\{0\}]=P[\{1\}]=\ldots=P[\{9\}]=1 / 10$. Find the probability of the following events:
$A=$ "number of ball selected is odd"
$B=$ "number of ball selected is multiple of $3 "$
$C=$ "number of ball selected is less than $5 "$
$A \cup B$
$A \cup B \cup C$
Sol: $A=\{1,3,5,7,9\}, B=\{3,6,9\}, C=\{0,1,2,3,4\}$
$\rightarrow P[A]=5 / 10, P[B]=3 / 10, P[C]=5 / 10$

$$
\begin{aligned}
P[A \cup B] & =P[\{1,3,5,6,7,9\}]=6 / 10 \\
& =P[A]+P[B]-P[A \cap B]=5 / 10+3 / 10-2 / 10=6 / 10
\end{aligned}
$$

Continuous Sample Space

Example: measure a voltage or current in a circuit.
Example: Pick a number x at random between zero and one. Suppose that outcomes of $S=[0,1]$ are equally likely.
$P[[0,1 / 2]]=1 / 2 \quad P[[1 / 2,1]]=1 / 2$
$P[[a, b]]=(b-a) \quad$ for $0 \leq a \leq b \leq 1$
$P[\{1 / 2\}]=0$

Example: Life time of a computer memory ship.
"The proportion of chips whose life time exceeds t decreases exponentially at a rate α."
$S=(0, \infty)$.

$$
P[t, \infty]=e^{-\alpha t} \quad t>0
$$

Axiom I is satisfied since $e^{-\alpha t} \geq 0$ for $t>0$. Axiom II is satisfies since $P[S]=P[(0, \infty)]=1$. Since

$$
P[(r, \infty)]=P[(r, s]]+P[(s, \infty)]
$$

We have

$$
P[(r, s]]=P[(r, \infty)]-P[(s, \infty)]=e^{-\alpha r}-e^{-\alpha s}
$$

Exercise: Pick two numbers x and y at random between zero and one. $A=\{x>0.5\}$, $B=\{y>0.5\}, C=\{x>y\}$. Find $P[A], P[B]$, and $P[C]$.

Conditional Probability

$P[A \mid B]$: probability of event A given that event B has occurred.

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]} \quad \text { for } P[B]>0
$$

Sample space has been reduced from S to B.

Example: Two black balls and three white balls are in an urn. Two balls are selected at random without replacement. Find the probability that both balls are black.

[^1]$P[B 1 \cap B 2]=P[B 2 \mid B 1] P[B 1]=(2 / 5)(1 / 4)=$ 1/10.

Example: Communication Systems

Find $P\left[A_{i} \cap B_{j}\right]$ for all $i, j=0,1$.

$$
\begin{aligned}
& P\left[A_{0} \cap B_{0}\right]=(1-p)(1-e), P\left[A_{0} \cap B_{1}\right]=(1-p) e, \\
& P\left[A_{1} \cap B_{0}\right]=p e, \text { and } P\left[A_{1} \cap B_{1}\right]=p(1-e) .
\end{aligned}
$$

Let $B_{1}, B_{2}, \ldots, B_{n}$ be mutually exclusive events and $S=B_{1} \cup B_{2} \cup \cdots \cup B_{n}$

Any event A can be partitioned.

$$
A=A \cap S
$$

$$
\begin{aligned}
= & A \cap\left(B_{1} \cup B_{2} \cup \cdots \cup B_{n}\right) \\
= & \left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \cup \cdots \cup\left(A \cap B_{n}\right) \\
P[A]= & P\left[A \cap B_{1}\right]+P\left[A \cap B_{2}\right]+\cdots+P\left[A \cap B_{n}\right] \\
= & P\left[A \mid B_{1}\right] P\left[B_{1}\right]+P\left[A \mid B_{2}\right] P\left[B_{2}\right]+ \\
& \cdots+P\left[A \mid B_{n}\right] P\left[B_{n}\right]
\end{aligned}
$$

Bayes' Rule

Let $B_{1}, B_{2}, \ldots, B_{n}$ be a partition of S. Suppose A occurs; what is the probability of event B_{j} ?

$$
P\left[B_{j} \mid A\right]=\frac{P\left[A \cap B_{j}\right]}{P[A]}=\frac{P\left[A \mid B_{j}\right] P\left[B_{j}\right]}{\sum_{k=1}^{n} P\left[A \mid B_{k}\right] P\left[B_{k}\right]}
$$

$P\left[B_{j}\right]$: a priori probability
$P\left[B_{j} \mid A\right]$: a posterior probability

Example:

Input into binary channel

Ai

Output from
binary channel
Bi
$P[0]=1-p$
$P[1]=p$

Assume $p=1 / 2$.
Then

$$
\begin{aligned}
P\left[B_{1}\right] & =P\left[B_{1} \mid A_{0}\right] P\left[A_{0}\right]+P\left[B_{1} \mid A_{1}\right] P\left[A_{1}\right] \\
& =e(1 / 2)+(1-e)(1 / 2)=1 / 2
\end{aligned}
$$

$$
\begin{aligned}
& P\left[A_{0} \mid B_{1}\right]=\frac{P\left[B_{1} \mid A_{0}\right] P\left[A_{0}\right]}{P\left[B_{1}\right]}=\frac{e / 2}{1 / 2}=e \\
& P\left[A_{1} \mid B_{1}\right]=\frac{P\left[B_{1} \mid A_{1}\right] P\left[A_{1}\right]}{P\left[B_{1}\right]}=\frac{(1-e) / 2}{1 / 2}=1-e
\end{aligned}
$$

When $e<1 / 2, P\left[A_{0} \mid B_{1}\right]<P\left[A_{1} \mid B_{1}\right]$.

Independency of Events

- Define events A and B to be independent if $P[A \cap B]=P[A] P[B]$
$\rightarrow \quad P[A \mid B]=\frac{P[A \cap B]}{P[B]}=\frac{P[A] P[B]}{P[B]}=P[A]$.
Similarly, $P[B \mid A]=P[B]$.
- If $A \cap B=\emptyset$ and $P[A] \neq 0$ and $P[B] \neq 0$, then A, B cannot be independent.

The events $A_{1}, A_{2}, \ldots, A_{n}$ are said to be independent if, for $k=2, \ldots, n$,

$$
\begin{aligned}
& P\left[A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right]=P\left[A_{i_{1}}\right] P\left[A_{i_{2}}\right] \cdots P\left[A_{i_{k}}\right] \\
& 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n .
\end{aligned}
$$

Sequential Experiments

- Subexperiments: $E_{1}, E_{2}, \ldots, E_{n}$.
- Outcome: $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.
- Sample space $S=S_{1} \times S_{2} \times \cdots \times S_{n}$.
- Let $A_{1}, A_{2}, \ldots, A_{n}$ be events such that A_{k} concerns only the outcome of the k th subexperiment.
- Assume that subexperiments are independent. It is reasonable to assume that

$$
P\left[A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right]=P\left[A_{1}\right] P\left[A_{2}\right] \cdots P\left[A_{n}\right]
$$

Binomial Probability Law

Bernoulli Trial: Given event A.
"SUCESS" if A occurs;
"FAILURE" otherwise.
Example: A coin is tossed three times. Assume the tosses are independent with $P[H]=p$.

$$
\begin{aligned}
P[\{H H H\}] & =P[\{H\}] P[\{H\}] P[\{H\}]=p^{3} \\
P[\{H H T\}] & =P[\{H\}] P[\{H\}] P[\{T\}]=p^{2}(1-p) \\
P[\{H T H\}] & =P[\{H\}] P[\{T\}] P[\{H\}]=p^{2}(1-p) \\
P[\{T H H\}] & =P[\{T\}] P[\{H\}] P[\{H\}]=p^{2}(1-p) \\
P[\{T T H\}] & =P[\{T\}] P[\{T\}] P[\{H\}]=p(1-p)^{2} \\
P[\{T H T\}] & =P[\{T\}] P[\{H\}] P[\{T\}]=p(1-p)^{2} \\
P[\{H T T\}] & =P[\{H\}] P[\{T\}] P[\{T\}]=p(1-p)^{2}
\end{aligned}
$$

$$
P[\{T T T\}]=P[\{T\}] P[\{T\}] P[\{T\}]=(1-p)^{3}
$$

k : the number of heads in three trials

$$
\begin{aligned}
P[k=0] & =P[\{T T T\}]=(1-p)^{3} \\
P[k=1] & =P[\{T T H\}]+P[\{T H T\}]+P[\{H T T\} \\
& =3 p(1-p)^{2} \\
P[k=2] & =P[\{H H T\}]+P[\{H T H\}] \\
& +P[\{T H H\}]=3 p^{2}(1-p) \\
P[k=3] & =P[\{H H H\}]=p^{3}
\end{aligned}
$$

Theorem 1 Let k be the number of successes in
n independent Bernoulli trials, then the probabilities of k are given by the binomial probability law:

$$
p_{n}(k)=\binom{n}{k} p^{k}(1-p)^{n-k},
$$

where p is the probability of success in a
Bernoulli trial and

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

Geometric Probability Law

- Repeat Bernoulli trials until the first success occurs.
- $p(m)$: probability of m trials are required to success.
- A_{i} : success in the i th trial.
- Geometric probability law

$$
\begin{aligned}
p(m) & =P\left[A_{1}^{c} \cap A_{2}^{c} \cap \cdots \cap A_{m-1}^{c} \cap A_{m}\right] \\
& =(1-p)^{m-1} p \quad m=1,2, \cdots
\end{aligned}
$$

- Verify

$$
\sum_{m=1}^{\infty} p(m)=1 .
$$

- Let $q=1-p$. Then

$$
\begin{aligned}
P[m>K] & =p \sum_{m=K+1}^{\infty} q^{m-1}=p q^{K} \sum_{j=0}^{\infty} q^{j} \\
& =p q^{K} \frac{1}{1-q}=q^{K}
\end{aligned}
$$

[^0]: ${ }^{1}$ Modified from the lecture notes by Prof. Mao-Ching Chiu

[^1]: Graduate Institute of Communication Engineering, National Taipei University

