Chapter 3: Random Variables ${ }^{1}$

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University
Taiwan
E-mail: yshan@mail.ntpu.edu.tw

[^0]
3.1 The Notion of a Random Variable

- A random variable X is a function that assigns a real number, $X(\zeta)$, to each outcome ζ in the sample space.

Graduate Institute of Communication Engineering, National Taipei University

Example:

- Toss a coin three times.

$S=\{H H H, H H T, H T H, T H H, H T T$, THT, TTH, TTT $\}$.

- Let X be the number of heads.

ζ	HHH	HHT	HTH	THH	HTT	THT	TTH	TTT
$X(\zeta)$	3	2	2	2	1	1	1	0

- X is a random variable with $S_{X}=\{0,1,2,3\}$.
- S : Sample space of a random experiment
- X : Random variable $X: S \rightarrow S_{X}$
- S_{X} is a new sample space
- Let $B \subseteq S_{X}$ and $A=\{\zeta: X(\zeta) \in B\}$. Then

$$
P[B]=P[A]=P[\{\zeta: X(\zeta) \in B\}]
$$

- A and B are equivalent events.

3.2 Cumulative Distribution Function

- Cumulative distribution function (cdf)

$$
F_{X}(x)=P[X \leq x] \text { for }-\infty<x<\infty
$$

- In underlying sample space
$F_{X}(x)=P[\{\zeta: X(\zeta) \leq x\}]$
- $F_{X}(x)$ is a function of the variable x.

Properties of cdf

1. $0 \leq F_{X}(x) \leq 1$.
2. $\lim _{x \rightarrow \infty} F_{X}(x)=1$.
3. $\lim _{x \rightarrow-\infty} F_{X}(x)=0$.
4. If $a<b$, then $F_{X}(a) \leq F_{X}(b)$.
5. $F_{X}(x)$ is continuous from the right, i.e., for $h>0$

$$
F_{X}(b)=\lim _{h \rightarrow 0} F_{X}(b+h)=F_{X}\left(b^{+}\right)
$$

6. $P[a<X \leq b]=F_{X}(b)-F_{X}(a)$, since $\{X \leq a\} \cup\{a<X \leq b\}=\{X \leq b\}$.

- X : the number of heads in three tosses of a fair coin
- Let δ be a small positive number. Then

$$
\begin{gathered}
F_{X}(1-\delta)=P[X \leq 1-\delta]=P\{0 \text { heads }\}=1 / 8 \\
F_{X}(1)=P[X \leq 1]=P[0 \text { or } 1 \text { heads }]=1 / 8+3 / 8=1 / 2 \\
F_{X}(1+\delta)=P[X \leq 1+\delta]=P[0 \text { or } 1 \text { heads }]=1 / 2
\end{gathered}
$$

- Write in unit step function

$$
\begin{gathered}
u(x)= \begin{cases}0, & x<0 \\
1, & x \geq 0\end{cases} \\
F_{X}(x)=\frac{1}{8} u(x)+\frac{3}{8} u(x-1)+\frac{3}{8} u(x-2)+\frac{1}{8} u(x-3) .
\end{gathered}
$$

Example: The transmission time X of messages in a communication system obeys the exponential probability law with parameter λ, i.e.,

$$
P[X>x]=e^{-\lambda x} \quad x>0
$$

Find the cdf of X and $P[T<X \leq 2 T]$, where $T=1 / \lambda$.

$$
\begin{gathered}
F_{X}(x)=P[X \leq x]=1-P[X>x]= \begin{cases}0, & x<0 \\
1-e^{-\lambda x}, & x \geq 0\end{cases} \\
P[T<X \leq 2 T]=1-e^{-2}-\left(1-e^{-1}\right)=e^{-1}-e^{-2}
\end{gathered}
$$

(b)

Types of random variables

- Discrete random variable, $S_{X}=x_{0}, x_{1}, \ldots$

$$
F_{X}(x)=\sum_{k} p_{X}\left(x_{k}\right) u\left(x-x_{k}\right)
$$

where $x_{k} \in S_{X}$ and $p_{X}\left(x_{k}\right)=P\left[X=x_{k}\right]$ is the probability mass function (pmf) of X.

- Continuous random variable

$$
F_{X}(x)=\int_{-\infty}^{x} f(t) d t
$$

- Random variable of mixed type

$$
F_{X}(x)=p F_{1}(x)+(1-p) F_{2}(x)
$$

3.3 Probability Density Function

- Probability density function (pdf) of X, if it exists, is

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

$P[x<X \leqslant x+d x] \cong f_{X}(x) d x$

Properties of pdf

1. $f_{X}(x) \geq 0$ due to nondecreasing property of cdf.
2. $P[a \leq X \leq b]=\int_{a}^{b} f_{X}(x) d x$.
3. $F_{X}(x)=\int_{-\infty}^{x} f_{X}(t) d t$.
4. $\int_{-\infty}^{\infty} f_{X}(t) d t=1$.

The pdf of the uniform random variable

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\
0, & \text { otherwise }\end{cases} \\
& F_{X}(x)= \begin{cases}0, & x<a \\
\frac{x-a}{b-a}, & a \leq x \leq b \\
1, & x>b\end{cases}
\end{aligned}
$$

(a)

(b)

Graduate Institute of Communication Engineering, National Taipei University

Pdf for discontinuous cdf

- Unit step function

$$
u(x)= \begin{cases}0 & x<0 \\ 1 & x \geq 0\end{cases}
$$

- Delta function $\delta(t)$

$$
u(x)=\int_{-\infty}^{x} \delta(t) d t
$$

- Cdf for a discrete random variable

$$
F_{X}(x)=\sum_{k} p_{X}\left(x_{k}\right) u\left(x-x_{k}\right)=\int_{-\infty}^{x} f_{X}(t) d t
$$

Conditional cdf's and pdf's

- Conditional cdf of X given A

$$
F_{X}(x \mid A)=\frac{P[\{X \leq x\} \cap A]}{P[A]} \quad \text { if } P[A]>0
$$

- Conditional pdf of X given A

$$
f_{X}(x \mid A)=\frac{d}{d x} F_{X}(x \mid A)
$$

3.4 Some Important Random Variables

- Bernoulli random variable: Let A be an event. The indicator function for A is

$$
I_{A}(\zeta)=\left\{\begin{array}{ll}
0 & \zeta \notin A \\
1 & \zeta \in A
\end{array} .\right.
$$

I_{A} is the Bernoulli random variable. Ex: toss a coin.

- Binomial random variable: Let X be the number of times a event A occurs in n independent trials. Let I_{j} be the indicator function for event A in the j th trial. Then

$$
X=I_{1}+I_{2}+\cdots+I_{n}
$$

and

$$
P[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k},
$$

where $p=P\left[I_{j}=1\right]$.

- Geometric random variable: Count the number M of independent Bernoulli trials until the first success of event A.

$$
P[M=k]=(1-p)^{k-1} p \quad k=1,2, \ldots,
$$

where $p=P[A]$.

- Another version of the geometric random variable is

$$
P[k]=(1-p)^{k} p \quad k=0,1,2, \ldots
$$

- Exponential random variable

$$
\begin{gathered}
f_{X}(x)= \begin{cases}0 & x<0 \\
\lambda e^{-\lambda x} & x \geq 0\end{cases} \\
F_{X}(x)= \begin{cases}0 & x<0 \\
1-e^{-\lambda x} & x \geq 0\end{cases}
\end{gathered}
$$

λ : rate at which events occur.

(b)

- The Poisson random variable:

The pmf is

$$
P[N=k]=\frac{\alpha^{k}}{k!} e^{-\alpha} \quad k=0,1,2,, \ldots
$$

where α is the average number of event occurrences in a specified time interval or region in space.

- The pmf of the Poison random variable sums to one, since

$$
\sum_{k=0}^{\infty} \frac{\alpha^{k}}{k!} e^{-\alpha}=e^{-\alpha} \sum_{k=0}^{\infty} \frac{\alpha^{k}}{k!}=e^{-\alpha} e^{\alpha}=1 .
$$

(b)

- Gaussian (Normal) random variable: The pdf is

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-m)^{2} / 2 \sigma^{2}} \quad-\infty<x<\infty
$$

where m and σ are real numbers.
The cdf is

$$
P[X \leq x]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} e^{-\left(x^{\prime}-m\right)^{2} / 2 \sigma^{2}} d x^{\prime}
$$

Change variable $t=\left(x^{\prime}-m\right) / \sigma$ and we have

$$
F_{X}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{(x-m) / \sigma} e^{-t^{2} / 2} d t=\Phi\left(\frac{x-m}{\sigma}\right)
$$

where

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
$$

Q-function is defined by

$$
Q(x)=1-\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2} / 2} d t
$$

Q-function is the probability of "tail" of the pdf.

$$
Q(0)=1 / 2 \quad \text { and } \quad Q(-x)=1-Q(x)
$$

$Q(x)$ can be obtained by look-up tables.

Example: A communication system accepts a positive voltage V as input and output a voltage $Y=\alpha V+N$, where $\alpha=10^{-2}$ and N is a Gaussian random variable with parameters $m=0$ and $\sigma=2$. Find the value of V that gives $P[Y<0]=10^{-6}$.

Sol:

$$
\begin{aligned}
P[Y<0] & =P[\alpha V+N<0]=P[N<-\alpha V] \\
& =\Phi\left(\frac{-\alpha V}{\sigma}\right)=Q\left(\frac{\alpha V}{\sigma}\right)=10^{-6}
\end{aligned}
$$

From the Q-function table, we have $\alpha V / \sigma=4.753$. Thus, $V=(4.753) \sigma / \alpha=950.6$.

3.5 Functions of a Random Variable

- Let X be a random variable. Define another random variable $Y=g(X)$. Example: Let the function $h(x)=(x)^{+}$be defined as

$$
(x)^{+}= \begin{cases}0 & x<0 \\ x & x \geq 0\end{cases}
$$

- Let $B=\{x: g(x) \in C\}$. The probability of event C is

$$
P[Y \in C]=P[g(X) \in C]=P[X \in B] .
$$

- Three types of equivalent events are useful in determining the cdf and pdf:

1. Discontinuity case: $\left\{g(X)=y_{k}\right\}$;
2. cdf: $\{g(X) \leq y\}$;
3. pdf: $\{y<g(X) \leq y+h\}$.

Example: Let X be a sample voltage of a speech waveform, and suppose that X has a uniform distribution in the interval $[-4 d, 4 d]$. Let $Y=q(X)$, where the quantizer input-output characteristic is shown below. Find the pmf for Y.

Sol: The event $\{Y=q\}$ for q in S_{Y} is equivalent to the event $\left\{X \in I_{q}\right\}$, where I_{q} is an interval of points mapped into the

Example: Let the random variable Y be defined by

$$
Y=a X+b
$$

where a is a nonzero constant. Suppose that X has $\operatorname{cdf} F_{X}(x)$, find $F_{Y}(y)$.
Sol: $\{Y \leq y\}$ and $A=\{a X+b \leq y\}$ are equivalent event. If $a>0$ then $A=\{X \leq(y-b) / a\}$, and thus

$$
F_{Y}(y)=P\left[X \leq \frac{y-b}{a}\right]=F_{X}\left(\frac{y-b}{a}\right) \quad a>0
$$

If $a<0$, then $A=\{X \geq(y-b) / a\}$ and

$$
F_{Y}(y)=P\left[X \geq \frac{y-b}{a}\right]=1-F_{X}\left(\frac{y-b}{a}\right) .
$$

Example: Let X be a Gaussian random variable with mean m and standard deviation σ :

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-m)^{2} / 2 \sigma^{2}} \quad-\infty<x<\infty
$$

Let $Y=a X+b$. Find the pdf of Y.
Sol: From previous example, we have

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}|a| \sigma} e^{-(y-b-a m)^{2} / 2(a \sigma)^{2}}
$$

Y also has a Gaussian distribution with mean $a m+b$ and standard deviation $|a| \sigma$.

Example: Let random variable Y be defined by

$$
Y=X^{2}
$$

where X is a continuous random variable. Find the cdf and pdf of Y. Sol: The event $\{Y \leq y\}$ occurs when $\left\{X^{2} \leq y\right\}$ or equivalently $\{-\sqrt{y} \leq X \leq \sqrt{y}\}$ for y nonnegative. The event is null when y is negative. Then

$$
F_{Y}(y)= \begin{cases}0 & y<0 \\ F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) & y \geq 0\end{cases}
$$

and

$$
\begin{aligned}
f_{Y}(y) & =\frac{f_{X}(\sqrt{y})}{2 \sqrt{y}}-\frac{f_{X}(-\sqrt{y})}{-2 \sqrt{y}} \quad y>0 \\
& =\frac{f_{X}(\sqrt{y})}{2 \sqrt{y}}+\frac{f_{X}(-\sqrt{y})}{2 \sqrt{y}} .
\end{aligned}
$$

- Consider $Y=g(X)$ as shown below

- Consider the event $C_{y}=\{y<Y<y+d y\}$. Let B_{x} be its equivalence in the x-axis.
- As shown in the figure, $g(x)=y$ has three solutions and

$$
B_{x}=\left\{x_{1}<X<x_{1}+d x_{1}\right\} \cup\left\{x_{2}<X<x_{2}+d x_{2}\right\}
$$

$$
\cup\left\{x_{3}<X<x_{3}+d x_{3}\right\}
$$

Thus,
$P\left[C_{y}\right]=f_{Y}(y)|d y|=P\left[B_{x}\right]=f_{X}\left(x_{1}\right)\left|d x_{1}\right|+f_{X}\left(x_{2}\right)\left|d x_{2}\right|+f_{X}\left(x_{3}\right)|d x|$
In general, we have

$$
f_{Y}(y)=\left.\sum_{k} \frac{f_{X}(x)}{|d y / d x|}\right|_{x=x_{k}}=\left.\sum_{k} f_{X}(x)\left|\frac{d x}{d y}\right|\right|_{x=x_{k}} .
$$

Example : Let $Y=X^{2}$. For $Y \geq 0$, the equation $y=x^{2}$ has two solutions, $x_{0}=\sqrt{y}$ and $x_{1}=-\sqrt{y}$. Since $d y / d x=2 x$, we have

$$
f_{Y}(y)=\frac{f_{X}(\sqrt{y})}{2 \sqrt{y}}+\frac{f_{X}(-\sqrt{y})}{2 \sqrt{y}} .
$$

Example: Let $Y=\cos (X)$, where X is uniformly distributed in the interval $(0,2 \pi]$. Find the pdf of Y.

Sol: Two solutions in the interval, $x_{0}=\cos ^{-1}(y)$ and $x_{1}=2 \pi-x_{0}$.

$$
\left.\frac{d y}{d x}\right|_{x_{0}}=-\sin \left(x_{0}\right)=-\sin \left(\cos ^{-1}(y)\right)=-\sqrt{1-y^{2}}
$$

Since $f_{X}(x)=1 /(2 \pi)$,

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{2 \pi \sqrt{1-y^{2}}}+\frac{1}{2 \pi \sqrt{1-y^{2}}} \\
& =\frac{1}{\pi \sqrt{1-y^{2}}} \quad \text { for }-1<y<1
\end{aligned}
$$

The cdf of Y is

$$
F_{Y}(y)= \begin{cases}0 & y<-1 \\ \frac{1}{2}+\frac{\sin ^{-1} y}{\pi} & -1 \leq y \leq 1 \\ 1 & y>1\end{cases}
$$

3.6 Expected Value of Random Variables

The Expected Value of X

- The expected value or mean of a random variable X is defined by

$$
E[X]=\int_{-\infty}^{\infty} t f_{X}(t) d t
$$

- If X is a discrete random variable, then

$$
E[X]=\sum_{k} x_{k} p_{X}\left(x_{k}\right)
$$

- Note that $E[X]$ may not converge.
- The mean for a uniform random variable between a and b is given by

$$
E[X]=\int_{a}^{b} \frac{t}{b-a} d t=\frac{a+b}{2}
$$

$E[X]$ is the midpoint of the interval $[a, b]$.

- If the pdf of X is symmetric about a point m, then $E[X]=m$. That is, when

$$
f_{X}(m-x)=f_{X}(m+x),
$$

we have

$$
0=\int_{-\infty}^{+\infty}(m-t) f_{X}(t) d t=m-\int_{-\infty}^{+\infty} t f_{X}(t) d t
$$

- The pdf of a Gaussian random variable is symmetric at $x=m$. Therefore, $E[X]=m$.

Exercise:

Show that if X is a nonnegative random variable, then

$$
\begin{aligned}
& E[X]=\int_{0}^{\infty}\left(1-F_{X}(t)\right) d t \quad \text { if } X \text { continuous and nonnegative } \\
& \text { and } \\
& E[X]=\sum_{k=0}^{\infty} P[X>k] \quad \text { if } X \text { nonnegative, integer-valued. }
\end{aligned}
$$

Expected value of $Y=g(X)$

- Let $Y=g(X)$, where X is a random variable with pdf $f_{X}(x)$.
- Y is also a random variable.
- Mean of Y is

$$
E[Y]=\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x
$$

Variance of X

- Variance of the random variable X is defined by

$$
\operatorname{VAR}[X]=E\left[(X-E[X])^{2}\right] .
$$

- Standard deviation of X

$$
\begin{aligned}
\operatorname{STD}[X]=\operatorname{VAR}[X]^{1 / 2} \quad--\quad & \text { measure of the spread of } \\
& \text { a distribution. }
\end{aligned}
$$

- Simplification

$$
\begin{aligned}
\operatorname{VAR}[X] & =E\left[X^{2}-2 E[X] X+E[X]^{2}\right] \\
& =E\left[X^{2}\right]-2 E[X] E[X]+E[X]^{2} \\
& =E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Example: Find the variance of the random variable X that is uniformly distributed in the interval $[a, b]$.

$$
E[X]=(a+b) / 2,
$$

and

$$
\operatorname{VAR}[X]=\frac{1}{b-a} \int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} d x
$$

Let $y=(x-(a+b) / 2)$. Then

$$
\operatorname{VAR}[X]=\frac{1}{b-a} \int_{-(b-a) / 2}^{(b-a) / 2} y^{2} d y=\frac{(b-a)^{2}}{12} .
$$

Example: Find the variance of a Gaussian random variable.
Multiply the integral of the pdf of X by $\sqrt{2 \pi} \sigma$ to obtain

$$
\int_{-\infty}^{+\infty} e^{-(x-m)^{2} / 2 \sigma^{2}} d x=\sqrt{2 \pi} \sigma
$$

Differentiate both sides with respect to σ to get

$$
\int_{-\infty}^{+\infty}\left(\frac{(x-m)^{2}}{\sigma^{3}}\right) e^{-(x-m)^{2} / 2 \sigma^{2}} d x=\sqrt{2 \pi}
$$

Then

$$
\operatorname{VAR}[X]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{+\infty}(x-m)^{2} e^{-(x-m)^{2} / 2 \sigma^{2}} d x=\sigma^{2}
$$

- Properties

Let c be a constant. Then

$$
\begin{aligned}
& \operatorname{VAR}[c]=0, \\
& \operatorname{VAR}[X+c]=\operatorname{VAR}[X], \\
& \operatorname{VAR}[c X]=c^{2} \operatorname{VAR}[X]
\end{aligned}
$$

- nth moment of the random variable X is given by

$$
E\left[X^{n}\right]=\int_{-\infty}^{+\infty} x^{n} f_{X}(x) d x
$$

3.7 Markov and Chebyshev Inequalities

Markov Inequality

- Suppose X is a nonnegative random variable with mean $E[X]$. Then

$$
P[X \geq a] \leq \frac{E[X]}{a} \quad \text { for } X \text { nonnegative }
$$

Since

$$
\begin{aligned}
E[X] & =\int_{0}^{a} t f_{X}(t) d t+\int_{a}^{\infty} t f_{X}(t) d t \geq \int_{a}^{\infty} t f_{X}(t) d t \\
& \geq \int_{a}^{\infty} a f_{X}(t) d t=a P[X \geq a] .
\end{aligned}
$$

Chebyshev Inequality

- Consider random variable X with $E[X]=m$ and $\operatorname{VAR}[X]=\sigma^{2}$. Then

$$
P[|X-m| \geq a] \leq \frac{\sigma^{2}}{a^{2}}
$$

- Proof: Let $D^{2}=(X-m)^{2}$. Markov inequality for D^{2} gives

$$
P\left[D^{2} \geq a^{2}\right] \leq \frac{E\left[(X-m)^{2}\right]}{a^{2}}=\frac{\sigma^{2}}{a^{2}}
$$

- $\left\{D^{2} \geq a^{2}\right\}$ and $\{|X-m| \geq a\}$ are equivalent events.

3.9 Transfer Methods

The Characteristic Function

- The characteristic function of a random variable X is defined by

$$
\begin{aligned}
\boldsymbol{\Phi}_{X}(\omega) & =E\left[e^{j \omega X}\right] \\
& =\int_{-\infty}^{\infty} f_{X}(x) e^{j \omega x} d x
\end{aligned}
$$

where $j=\sqrt{-1}$ is the imaginary unit number.

- $\Phi_{X}(\omega)$ can be viewed as the expected value of a function of $X, e^{j \omega X}$.
- $\boldsymbol{\Phi}_{X}(\omega)$ is the Fourier transform of the pdf $f_{X}(x)$ with a reversal in the sign of the exponent.
- From the Fourier transform inversion formula we have

$$
f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \boldsymbol{\Phi}_{X}(\omega) e^{-j \omega x} d \omega .
$$

Example: The characteristic function for an exponentially distributed random variable with parameter λ is given by

$$
\begin{aligned}
\mathbf{\Phi}_{X}(\omega) & =\int_{0}^{\infty} \lambda e^{-\lambda x} e^{j \omega x} d x=\int_{0}^{\infty} \lambda e^{-(\lambda-j \omega) x} d x \\
& =\frac{\lambda}{\lambda-j \omega} .
\end{aligned}
$$

- If X is a discrete random variable, we have

$$
\boldsymbol{\Phi}_{X}(\omega)=\sum_{k} p_{X}\left(x_{k}\right) e^{j \omega x_{k}}
$$

- If X is an integer-valued random variable, we have

$$
\boldsymbol{\Phi}_{X}(\omega)=\sum_{k=-\infty}^{\infty} p_{X}(k) e^{j \omega k}
$$

- The above is the Fourier transform of the sequence $p_{X}(k)$.
- It is a periodic function of ω with period 2π.
- By the inversion formula we have

$$
p_{X}(k)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \boldsymbol{\Phi}_{X}(\omega) e^{-j \omega k} d \omega \quad k=0, \pm 1, \pm 2, \ldots
$$

Example: The characteristic function for a geometric random variable is given by

$$
\begin{aligned}
\mathbf{\Phi}_{X}(\omega) & =\sum_{k=0}^{\infty} p q^{k} e^{j \omega k}=p \sum_{k=0}^{\infty}\left(q e^{j \omega}\right)^{k} \\
& =\frac{p}{1-q e^{j \omega}}
\end{aligned}
$$

- The moment theorem states that the moments of X are given by

$$
E\left[X^{n}\right]=\left.\frac{1}{j^{n}} \frac{d^{n}}{d \omega^{n}} \boldsymbol{\Phi}_{X}(\omega)\right|_{\omega=0}
$$

Proof: First we expend $e^{j \omega x}$ in power series in the definition of $\boldsymbol{\Phi}_{X}(\omega)$:

$$
\mathbf{\Phi}_{X}(\omega)=\int_{-\infty}^{\infty} f_{X}(x)\left\{1+j \omega X+\frac{(j \omega X)^{2}}{2!}+\cdots\right\} d x
$$

Assuming that all the moments of X are finite and that the series can be integrated term by term, we have

$$
\begin{aligned}
\boldsymbol{\Phi}_{X}(\omega)= & 1+j \omega E[X]+\frac{(j \omega)^{2} E\left[X^{2}\right]}{2!}+\cdots \\
& +\frac{(j \omega)^{n} E\left[X^{n}\right]}{n!}+\cdots .
\end{aligned}
$$

If we differentiate n times and evaluate at $\omega=0$, we have

$$
\left.\frac{d^{n}}{d \omega^{n}} \boldsymbol{\Phi}_{X}(\omega)\right|_{\omega=0}=j^{n} E\left[X^{n}\right] .
$$

Example: To find the mean of an exponentially distributed random variable, we differentiate $\boldsymbol{\Phi}_{X}(\omega)=\lambda(\lambda-j \omega)^{-1}$ once, and obtain

$$
\boldsymbol{\Phi}_{X}^{\prime}(\omega)=\frac{\lambda j}{(\lambda-j \omega)^{2}}
$$

Then $E[X]=\boldsymbol{\Phi}_{X}^{\prime}(0) / j=1 / \lambda$.

The Probability Generating Function

- The probability generating function $G_{N}(z)$ of a nonnegative integer-valued random variable N is defined by

$$
G_{N}(z)=E\left[z^{N}\right]=\sum_{k=0}^{\infty} p_{N}(k) z^{k} .
$$

- $G_{N}(z)$ can be viewed as the expected value of a function of N, z^{N}.
- $G_{N}(z)$ is the z-transform of the $\operatorname{pmf} p_{N}(k)$ with a sign change in the exponent.
- Similar to the derivation of the moment theorem, we have

$$
p_{N}(k)=\left.\frac{1}{k!} \frac{d^{k}}{d z^{k}} G_{N}(z)\right|_{z=0} .
$$

$$
\left.\frac{d}{d z} G_{N}(z)\right|_{z=1}=\left.\sum_{k=0}^{\infty} p_{N}(k) k z^{k-1}\right|_{z=1}=\sum_{k=0}^{\infty} k p_{N}(k)=E[N]
$$

$$
\begin{aligned}
\left.\frac{d^{2}}{d z^{2}} G_{N}(z)\right|_{z=1} & =\left.\sum_{k=0}^{\infty} p_{N}(k) k(k-1) z^{k-2}\right|_{z=1} \\
& =\sum_{k=0}^{\infty} k(k-1) p_{N}(k)=E[N(N-1)] \\
& =E\left[N^{2}\right]-E[N]
\end{aligned}
$$

- Thus, the mean and variance of N are given by

$$
E[N]=G_{N}^{\prime}(1)
$$

Example: The probability generating function for the Poisson random variable with parameter α is given by

$$
\begin{aligned}
G_{N}(z) & =\sum_{k=0}^{\infty} \frac{\alpha^{k}}{k!} e^{-\alpha} z^{k}=e^{-\alpha} \sum_{k=0}^{\infty} \frac{(\alpha z)^{k}}{k!} \\
& =e^{-\alpha} e^{\alpha z}=e^{\alpha(z-1)}
\end{aligned}
$$

The first two derivatives of $G_{N}(z)$ are given by

$$
G_{N}^{\prime}(z)=\alpha e^{\alpha(z-1)}
$$

and

$$
G_{N}^{\prime \prime}(z)=\alpha^{2} e^{\alpha(z-1)}
$$

Therefore,

$$
E[N]=\alpha \text { and } V A R[N]=\alpha^{2}+\alpha-\alpha^{2}=\alpha .
$$

The Laplace Transform of the pdf

- The Laplace transform of the pdf is given by

$$
X^{*}(s)=\int_{0}^{\infty} f_{X}(x) e^{-s x} d x=E\left[e^{-s X}\right]
$$

- $X^{*}(s)$ can be viewed as an expected value of a function of X, $e^{-s X}$.
- The moment theorem also holds for $X^{*}(s)$:

$$
E\left[X^{n}\right]=\left.(-1)^{n} \frac{d^{n}}{d s^{n}} X^{*}(s)\right|_{s=0}
$$

[^0]: ${ }^{1}$ Modified from the lecture notes by Prof. Mao-Ching Chiu

