Chapter 8: Markov Chains ${ }^{1}$

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University
Taiwan
E-mail: yshan@mail.ntpu.edu.tw

[^0]
8.1 Markov Processes

- A random process $X(t)$ is a Markov process if the future of the process given the present is independent of the past. That is, if for arbitrary times $t_{1}<t_{2}<\cdots<t_{k}<t_{k+1}$, we have
- For discrete-valued Markov processes

$$
\begin{aligned}
& P\left[X\left(t_{k+1}\right)=x_{k+1} \mid X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{1}\right)=x_{1}\right] \\
= & P\left[X\left(t_{k+1}\right)=x_{k+1} \mid X\left(t_{k}\right)=x_{k}\right] ;
\end{aligned}
$$

- For continuous-valued Markov process

$$
P\left[a<X\left(t_{k+1}\right) \leq b \mid X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{1}\right)=x_{1}\right]
$$

$$
=P\left[a<X\left(t_{k+1}\right) \leq b \mid X\left(t_{k}\right)=x_{k}\right] .
$$

- The pdf of a Markov process is given by

$$
\begin{aligned}
& f_{X\left(t_{k+1}\right)}\left(x_{k+1} \mid X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{1}\right)=x_{1}\right) \\
= & f_{X\left(t_{k+1}\right)}\left(x_{k+1} \mid X\left(t_{k}\right)=x_{k}\right) .
\end{aligned}
$$

Example: Consider the sum process:

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}=S_{n-1}+X_{n}
$$

where the X_{i} 's are an iid sequence. S_{n} is a Markov process since

$$
\begin{aligned}
P\left[S_{n+1}=s_{n+1} \mid S_{n}=s_{n}, \ldots, S_{1}=s_{1}\right] & =P\left[X_{n+1}=s_{n+1}-s_{n}\right] \\
& =P\left[S_{n+1}=s_{n+1} \mid S_{n}=s_{n}\right] .
\end{aligned}
$$

Example: Consider the moving average of a Bernoulli sequence:

$$
Y_{n}=\frac{1}{2}\left(X_{n}+X_{n-1}\right),
$$

where X_{i} are independent Bernoulli sequence with $p=1 / 2$. We show that Y_{n} is not a Markov process. The pmf of Y_{n} is

$$
\begin{aligned}
P\left[Y_{n}\right. & =0]=P\left[X_{n}=0, X_{n-1}=0\right]=1 / 4 \\
P\left[Y_{n}=1 / 2\right] & =P\left[X_{n}=0, X_{n-1}=1\right]+P\left[X_{n}=1, X_{n-1}=0\right. \\
& =1 / 2
\end{aligned}
$$

and

$$
P\left[Y_{n}=1\right]=P\left[X_{n}=1, X_{n-1}=1\right]=1 / 4 .
$$

Now consider

$$
\begin{aligned}
P\left[Y_{n}=1 \mid Y_{n-1}=1 / 2\right] & =\frac{P\left[Y_{n}=1, Y_{n-1}=1 / 2\right]}{P\left[Y_{n-1}=1 / 2\right]} \\
& =\frac{P\left[X_{n}=1, X_{n-1}=1, X_{n-2}=0\right]}{1 / 2} \\
& =\frac{(1 / 2)^{3}}{1 / 2}=1 / 4 .
\end{aligned}
$$

Suppose that we have additional knowledge about past, then

$$
\begin{gathered}
P\left[Y_{n}=1 \mid Y_{n-1}=1 / 2, Y_{n-2}=1\right] \\
=\frac{P\left[Y_{n}=1, Y_{n-1}=1 / 2, Y_{n-2}=1\right]}{P\left[Y_{n-1}=1 / 2, Y_{n-2}=1\right]}=0 .
\end{gathered}
$$

Graduate Institute of Communication Engineering, National Taipei University

Thus

$$
P\left[Y_{n}=1 \mid Y_{n-1}=1 / 2\right] \neq P\left[Y_{n}=1 \mid Y_{n-1}=1 / 2, Y_{n-2}=1\right] .
$$

- A integer-valued Markov random process is called a Markov chain.
- If $X(t)$ is a Markov chain for $t_{3}>t_{2}>t_{1}$, then we have

$$
\begin{aligned}
& P\left[X\left(t_{3}\right)=x_{3}, X\left(t_{2}\right)=x_{2}, X\left(t_{1}\right)=x_{1}\right] \\
& =P\left[X\left(t_{3}\right)=x_{3} \mid X\left(t_{2}\right)=x_{2}\right] P\left[X\left(t_{2}\right)=x_{2} \mid X\left(t_{1}\right)=x_{1}\right] P\left[X\left(t_{1}\right)=x_{1}\right]
\end{aligned}
$$

- In general,

$$
\begin{aligned}
& P\left[X\left(t_{k+1}\right)=x_{k+1}, X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{1}\right)=x_{1}\right] \\
= & P\left[X\left(t_{k+1}\right)=x_{k+1} \mid X\left(t_{k}\right)=x_{k}\right] P\left[X\left(t_{k}\right)=x_{k} \mid X\left(t_{k-1}\right)=x_{k-1}\right] \ldots \\
& \times P\left[X\left(t_{2}\right)=x_{2} \mid X\left(t_{1}\right)=x_{1}\right] P\left[X\left(t_{1}\right)=x_{1}\right] .
\end{aligned}
$$

8.2 DISCRETE-TIME MARKOV CHAIN

- Let X_{n} be a discrete-time integer-valued Markov chain that starts at $n=0$ with pmf

$$
p_{j}(0)=P\left[X_{0}=j\right], \quad j=0,1,2, \ldots
$$

- The joint pmf of the first $n+1$ values is

$$
\begin{aligned}
& P\left[X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right] \\
= & P\left[X_{n}=i_{n} \mid X_{n-1}=i_{n-1}\right] \cdots P\left[X_{1}=i_{1} \mid X_{0}=i_{0}\right] P\left[X_{0}=i_{0}\right] .
\end{aligned}
$$

- Assume that the one-step state transition probabilities are fixed and do not change with time (homogeneous
transition probability), that is,

$$
P\left[X_{n+1}=j \mid X_{n}=i\right]=p_{i j} \quad \text { for all } n
$$

- The joint pmf for $X_{n}, X_{n-1}, \ldots, X_{0}$ is then given by

$$
P\left[X_{n}=i_{n}, \ldots, X_{0}=i_{0}\right]=p_{i_{n-1}, i_{n}} \cdots p_{i_{0}, i_{1}} p_{i_{0}}(0) .
$$

- X_{n} is completely specified by the initial $\operatorname{pmf} p_{i}(0)$ and
the matrix of one-step transition probabilities P :

$$
P=\left[\begin{array}{cccc}
p_{00} & p_{01} & p_{02} & \cdots \\
p_{10} & p_{11} & p_{12} & \cdots \\
\vdots & \vdots & \vdots & \vdots \\
p_{i 0} & p_{i 1} & p_{i 2} & \cdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

- P is called transition probability matrix.
- Each row of P must add to one since

$$
1=\sum_{j} P\left[X_{n+1}=j \mid X_{n}=i\right]=\sum_{j} p_{i j} .
$$

Example: A Markov model for speech:

- Two states: silence and speech activity

Example: Let S_{n} be the binomial counting process. In one step, S_{n} can either stay the same or increase by one. The transition probability can be given by

$$
P=\left[\begin{array}{ccccc}
1-p & p & 0 & 0 & \cdots \\
0 & 1-p & p & 0 & \cdots \\
0 & 0 & 1-p & p & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

Graduate Institute of Communication Engineering, National Taipei University

The n-step transition probabilities

- Let $P(n)=\left\{p_{i j}(n)\right\}$ be the matrix of n-step transition probabilities, where

$$
p_{i j}(n)=P\left[X_{n+k}=j \mid X_{k}=i\right] \quad n \geq 0, i, j \geq 0 .
$$

- Since transition probabilities do not depend on time, we have

$$
P\left[X_{n+k}=j \mid X_{k}=i\right]=P\left[X_{n}=j \mid X_{0}=i\right] .
$$

- Consider the two-step transition probabilities:

$$
P\left[X_{2}=j, X_{1}=k \mid X_{0}=i\right]=\frac{P\left[X_{2}=j, X_{1}=k, X_{0}=i\right]}{P\left[X_{0}=i\right]}
$$

$$
\begin{aligned}
& =\frac{P\left[X_{2}=j \mid X_{1}=k\right] P\left[X_{1}=k \mid X_{0}=i\right] P\left[X_{0}=i\right]}{P\left[X_{0}=i\right]} \\
& =P\left[X_{2}=j \mid X_{1}=k\right] P\left[X_{1}=k \mid X_{0}=i\right] \\
& =p_{i k}(1) p_{k j}(1) .
\end{aligned}
$$

- 2-step transition probabilities are given by

$$
\begin{aligned}
p_{i j}(2) & =P\left[X_{2}=j \mid X_{0}=i\right] \\
& =\sum_{k} P\left[X_{2}=j, X_{1}=k \mid X_{0}=i\right] \\
& =\sum_{k} p_{i k}(1) p_{k j}(1)
\end{aligned}
$$

- Therefore,

$$
P(2)=P(1) P(1)=P^{2} .
$$

- In general, we have

$$
P(n)=P^{n}
$$

State Probabilities

- Let $\boldsymbol{p}(n)$ denote the row vector of state probabilities at time n. The probability $p_{j}(n)$ is related to $\boldsymbol{p}(n-1)$ by

$$
\begin{aligned}
p_{j}(n) & =\sum_{i} P\left[X_{n}=j \mid X_{n-1}=i\right] P\left[X_{n-1}=i\right] \\
& =\sum_{i} p_{i j} p_{i}(n-1) .
\end{aligned}
$$

- In matrix notation we have

$$
\boldsymbol{p}(n)=\boldsymbol{p}(n-1) P
$$

- $p_{j}(n)$ is related to $\boldsymbol{p}(0)$ by

$$
\begin{aligned}
p_{j}(n) & =\sum_{i} P\left[X_{n}=j \mid X_{0}=i\right] P\left[X_{0}=i\right] \\
& =\sum_{i} p_{i j}(n) p_{i}(0)
\end{aligned}
$$

- In matrix notation we have

$$
\boldsymbol{p}(n)=\boldsymbol{p}(0) P(n)=\boldsymbol{p}(0) P^{n} .
$$

Example: Let $\alpha=1 / 10$ and $\beta=1 / 5$ for the following
Markov chain:

Find $P(n)$ for $n=2$ and 4 .
Sol:

$$
P^{2}=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.2 & 0.8
\end{array}\right]^{2}=\left[\begin{array}{ll}
0.83 & 0.17 \\
0.34 & 0.66
\end{array}\right]
$$

and

$$
P^{4}=\left[\begin{array}{ll}
0.83 & 0.17 \\
0.34 & 0.66
\end{array}\right]^{2}=\left[\begin{array}{ll}
0.7467 & 0.2533 \\
0.5066 & 0.4934
\end{array}\right] .
$$

Steady State Probabilities

- As $n \rightarrow \infty$, the n-step transition probability matrix approaches a matrix in which all the rows are equal to the same pmf

$$
p_{i j}(n) \rightarrow \pi_{j} \quad \text { for all } i .
$$

- As $n \rightarrow \infty$

$$
p_{j}(n)=\sum_{i} p_{i j} p_{i}(0) \rightarrow \sum_{i} \pi_{j} p_{i}(0)=\pi_{j} .
$$

- As n becomes large, the probability of state j approaches a constant independent of time and the initial state probabilities (equilibrium or steady state).
- Let the $\operatorname{pmf} \boldsymbol{\pi}=\left\{\pi_{j}\right\}$. By noting that as $n \rightarrow \infty$, $p_{j}(n) \rightarrow \pi_{j}$ and $p_{i}(n-1) \rightarrow \pi_{i}$, we have

$$
\pi_{j}=\sum_{i} p_{i j} \pi_{i},
$$

which in matrix notation is

$$
\boldsymbol{\pi}=\boldsymbol{\pi} P \quad(n-1 \text { linearly independent equations }) .
$$

- The additional equation needed is provided by

$$
\sum_{i} \pi_{i}=1
$$

- $\boldsymbol{\pi}$ is called the stationary state pmf of the Markov chain.
- If we start with $\boldsymbol{p}(0)=\boldsymbol{\pi}$, then

$$
\boldsymbol{p}(n)=\boldsymbol{\pi} P^{n}=\boldsymbol{\pi} \quad-\text { a stationary process. }
$$

Example: Find the stationary state pmf for the following Markov chain:

Sol: we have

$$
\begin{aligned}
& \pi_{0}=(1-\alpha) \pi_{0}+\beta \pi_{i} \\
& \pi_{1}=\alpha \pi_{0}+(1-\beta) \pi_{1}
\end{aligned}
$$

Since $\pi_{0}+\pi_{1}=1$,

$$
\alpha \pi_{0}=\beta \pi_{1}=\beta\left(1-\pi_{0}\right) .
$$

Thus.

$$
\pi_{0}=\frac{\beta}{\alpha+\beta}, \quad \pi_{1}=\frac{\alpha}{\alpha+\beta} .
$$

[^0]: ${ }^{1}$ Modified from the lecture notes by Prof. Mao-Ching Chiu

