Chapter 8: Markov Chains

Yunghsiang S. Han

Graduate Institute of Communication Engineering,
National Taipei University
Taiwan
E-mail: yshan@mail.ntpu.edu.tw

1Modified from the lecture notes by Prof. Mao-Ching Chiu
8.1 Markov Processes

- A random process $X(t)$ is a Markov process if the future of the process given the present is independent of the past. That is, if for arbitrary times $t_1 < t_2 < \cdots < t_k < t_{k+1}$, we have

 - For discrete-valued Markov processes
 \[
 P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k, \ldots, X(t_1) = x_1] = P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k];
 \]

 - For continuous-valued Markov process
 \[
 P[a < X(t_{k+1}) \leq b | X(t_k) = x_k, \ldots, X(t_1) = x_1]
 \]
\[P[a < X(t_{k+1}) \leq b | X(t_k) = x_k]. \]

- The pdf of a Markov process is given by

\[
\begin{align*}
 f_{X(t_{k+1})}(x_{k+1} | X(t_k) = x_k, \ldots, X(t_1) = x_1) \\
 = f_{X(t_{k+1})}(x_{k+1} | X(t_k) = x_k).
\end{align*}
\]
Example: Consider the sum process:

\[S_n = X_1 + X_2 + \cdots + X_n = S_{n-1} + X_n, \]

where the \(X_i \)'s are an iid sequence. \(S_n \) is a Markov process since

\[
P[S_{n+1} = s_{n+1} | S_n = s_n, \ldots, S_1 = s_1] = P[X_{n+1} = s_{n+1} - s_n]
\]

\[
= P[S_{n+1} = s_{n+1} | S_n = s_n].
\]
Example: Consider the moving average of a Bernoulli sequence:

\[Y_n = \frac{1}{2}(X_n + X_{n-1}), \]

where \(X_i \) are independent Bernoulli sequence with \(p = 1/2 \). We show that \(Y_n \) is not a Markov process. The pmf of \(Y_n \) is

\[
P[Y_n = 0] = P[X_n = 0, X_{n-1} = 0] = 1/4,
\]
\[
P[Y_n = 1/2] = P[X_n = 0, X_{n-1} = 1] + P[X_n = 1, X_{n-1} = 0] = 1/2
\]

and
\[
P[Y_n = 1] = P[X_n = 1, X_{n-1} = 1] = 1/4.
\]
Now consider

\[P[Y_n = 1|Y_{n-1} = 1/2] = \frac{P[Y_n = 1, Y_{n-1} = 1/2]}{P[Y_{n-1} = 1/2]} \]

\[= \frac{P[X_n = 1, X_{n-1} = 1, X_{n-2} = 0]}{1/2} \]

\[= \frac{(1/2)^3}{1/2} = 1/4. \]

Suppose that we have additional knowledge about past, then

\[P[Y_n = 1|Y_{n-1} = 1/2, Y_{n-2} = 1] = \frac{P[Y_n = 1, Y_{n-1} = 1/2, Y_{n-2} = 1]}{P[Y_{n-1} = 1/2, Y_{n-2} = 1]} = 0. \]
Thus

\[P[Y_n = 1|Y_{n-1} = 1/2] \neq P[Y_n = 1|Y_{n-1} = 1/2, Y_{n-2} = 1]. \]
• A integer-valued Markov random process is called a Markov chain.

• If \(X(t) \) is a Markov chain for \(t_3 > t_2 > t_1 \), then we have

\[
P[X(t_3) = x_3, X(t_2) = x_2, X(t_1) = x_1] \\
= P[X(t_3) = x_3|X(t_2) = x_2]P[X(t_2) = x_2|X(t_1) = x_1]P[X(t_1) = x_1],
\]

• In general,

\[
P[X(t_{k+1}) = x_{k+1}, X(t_k) = x_k, \ldots, X(t_1) = x_1] \\
= P[X(t_{k+1}) = x_{k+1}|X(t_k) = x_k]P[X(t_k) = x_k|X(t_{k-1}) = x_{k-1}] \cdots \\
\times P[X(t_2) = x_2|X(t_1) = x_1]P[X(t_1) = x_1].
\]
8.2 DISCRETE-TIME MARKOV CHAIN

• Let X_n be a discrete-time integer-valued Markov chain that starts at $n = 0$ with pmf

$$p_j(0) = P[X_0 = j], \quad j = 0, 1, 2, \ldots.$$

• The joint pmf of the first $n + 1$ values is

$$P[X_n = i_n, \ldots, X_0 = i_0]$$

$$= P[X_n = i_n|X_{n-1} = i_{n-1}] \cdots P[X_1 = i_1|X_0 = i_0]P[X_0 = i_0].$$

• Assume that the one-step state transition probabilities are fixed and do not change with time (homogeneous
transition probability), that is,

$$P[X_{n+1} = j|X_n = i] = p_{ij} \quad \text{for all } n.$$

- The joint pmf for $X_n, X_{n-1}, \ldots, X_0$ is then given by

$$P[X_n = i_n, \ldots, X_0 = i_0] = p_{i_{n-1},i_n} \cdots p_{i_0,i_1} p_{i_0}(0).$$

- X_n is completely specified by the initial pmf $p_i(0)$ and
the matrix of one-step transition probabilities P:

$$P = \begin{bmatrix}
p_{00} & p_{01} & p_{02} & \cdots \\
p_{10} & p_{11} & p_{12} & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
p_{i0} & p_{i1} & p_{i2} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}$$

- P is called transition probability matrix.
- Each row of P must add to one since

$$1 = \sum_j P[X_{n+1} = j | X_n = i] = \sum_j p_{ij}.$$
Example: A Markov model for speech:

- Two states: silence and speech activity
Example: Let S_n be the binomial counting process. In one step, S_n can either stay the same or increase by one. The transition probability can be given by

$$P = \begin{bmatrix}
1 - p & p & 0 & 0 & \cdots \\
0 & 1 - p & p & 0 & \cdots \\
0 & 0 & 1 - p & p & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{bmatrix}.$$
The n-step transition probabilities

- Let $P(n) = \{p_{ij}(n)\}$ be the matrix of n-step transition probabilities, where

\[
p_{ij}(n) = P[X_{n+k} = j | X_k = i] \quad n \geq 0, \ i, j \geq 0.
\]

- Since transition probabilities do not depend on time, we have

\[
P[X_{n+k} = j | X_k = i] = P[X_n = j | X_0 = i].
\]

- Consider the two-step transition probabilities:

\[
P[X_2 = j, X_1 = k | X_0 = i] = \frac{P[X_2 = j, X_1 = k, X_0 = i]}{P[X_0 = i]}
\]
\[\begin{align*}
&= \frac{P[X_2 = j|X_1 = k]P[X_1 = k|X_0 = i]P[X_0 = i]}{P[X_0 = i]} \\
&= P[X_2 = j|X_1 = k]P[X_1 = k|X_0 = i] \\
&= p_{ik}(1)p_{kj}(1). \\
\end{align*} \]

- 2-step transition probabilities are given by

\[p_{ij}(2) = P[X_2 = j|X_0 = i] = \sum_k P[X_2 = j, X_1 = k|X_0 = i] = \sum_k p_{ik}(1)p_{kj}(1), \]

- Therefore,

\[P(2) = P(1)P(1) = P^2. \]
• In general, we have

\[P(n) = P^n. \]
State Probabilities

- Let $p(n)$ denote the row vector of state probabilities at time n. The probability $p_j(n)$ is related to $p(n - 1)$ by

$$p_j(n) = \sum_i P[X_n = j | X_{n-1} = i]P[X_{n-1} = i] = \sum_i p_{ij}p_i(n - 1).$$

- In matrix notation we have

$$p(n) = p(n - 1)P.$$
• $p_j(n)$ is related to $p(0)$ by

$$p_j(n) = \sum_i P[X_n = j | X_0 = i]P[X_0 = i]$$

$$= \sum_i p_{ij}(n)p_i(0).$$

• In matrix notation we have

$$p(n) = p(0)P(n) = p(0)P^n.$$
Example: Let $\alpha = 1/10$ and $\beta = 1/5$ for the following Markov chain:

Find $P(n)$ for $n = 2$ and 4.

Sol:

$$P^2 = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}^2 = \begin{bmatrix} 0.83 & 0.17 \\ 0.34 & 0.66 \end{bmatrix}$$
and

\[
P^4 = \begin{bmatrix} 0.83 & 0.17 \\ 0.34 & 0.66 \end{bmatrix}^2 = \begin{bmatrix} 0.7467 & 0.2533 \\ 0.5066 & 0.4934 \end{bmatrix}.
\]
Steady State Probabilities

• As $n \to \infty$, the n-step transition probability matrix approaches a matrix in which all the rows are equal to the same pmf

$$p_{ij}(n) \to \pi_j \quad \text{for all } i.$$

• As $n \to \infty$

$$p_j(n) = \sum_i p_{ij}p_i(0) \to \sum_i \pi_j p_i(0) = \pi_j.$$

• As n becomes large, the probability of state j approaches a constant independent of time and the initial state probabilities (equilibrium or steady state).
• Let the pmf $\boldsymbol{\pi} = \{\pi_j\}$. By noting that as $n \to \infty$, $p_j(n) \to \pi_j$ and $p_i(n - 1) \to \pi_i$, we have

$$
\pi_j = \sum_i p_{ij} \pi_i,
$$

which in matrix notation is

$$
\boldsymbol{\pi} = \boldsymbol{\pi} \boldsymbol{P} \quad (n - 1 \text{ linearly independent equations}).
$$

• The additional equation needed is provided by

$$
\sum_i \pi_i = 1.
$$

• $\boldsymbol{\pi}$ is called the stationary state pmf of the Markov chain.
• If we start with $p(0) = \pi$, then

$$p(n) = \pi P^n = \pi$$

— a stationary process.
Example: Find the stationary state pmf for the following Markov chain:

![Markov Chain Diagram]

Sol: we have

\[
\begin{align*}
\pi_0 &= (1 - \alpha)\pi_0 + \beta\pi_i \\
\pi_1 &= \alpha\pi_0 + (1 - \beta)\pi_1.
\end{align*}
\]
Since $\pi_0 + \pi_1 = 1$,

$$\alpha \pi_0 = \beta \pi_1 = \beta (1 - \pi_0).$$

Thus,

$$\pi_0 = \frac{\beta}{\alpha + \beta}, \quad \pi_1 = \frac{\alpha}{\alpha + \beta}.$$