Chapter 8: Markov Chains¹

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw

¹Modified from the lecture notes by Prof. Mao-Ching Chiu

8.1 Markov Processes

- A random process X(t) is a Markov process if the future of the process given the present is independent of the past. That is, if for arbitrary times
 t₁ < t₂ < ··· < t_k < t_{k+1}, we have
 - For discrete-valued Markov processes

$$P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k, \dots, X(t_1) = x_1]$$

= $P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k];$

– For continuous-valued Markov process

$$P[a < X(t_{k+1}) \le b | X(t_k) = x_k, \dots, X(t_1) = x_1]$$

$$= P[a < X(t_{k+1}) \le b | X(t_k) = x_k].$$

• The pdf of a Markov process is given by

$$f_{X(t_{k+1})}(x_{k+1} | X(t_k) = x_k, \dots, X(t_1) = x_1)$$

$$= f_{X(t_{k+1})}(x_{k+1} | X(t_k) = x_k).$$

Example: Consider the sum process:

$$S_n = X_1 + X_2 + \dots + X_n = S_{n-1} + X_n,$$

where the X_i 's are an iid sequence. S_n is a Markov process since

$$P[S_{n+1} = s_{n+1} | S_n = s_n, \dots, S_1 = s_1] = P[X_{n+1} = s_{n+1} - s_n]$$

= $P[S_{n+1} = s_{n+1} | S_n = s_n].$

Y. S. Han

Example: Consider the moving average of a Bernoulli sequence:

$$Y_n = \frac{1}{2}(X_n + X_{n-1}),$$

where X_i are independent Bernoulli sequence with p = 1/2. We show that Y_n is not a Markov process. The pmf of Y_n is

$$P[Y_n = 0] = P[X_n = 0, X_{n-1} = 0] = 1/4,$$

$$P[Y_n = 1/2] = P[X_n = 0, X_{n-1} = 1] + P[X_n = 1, X_{n-1} = 0]$$

= 1/2

and

$$P[Y_n = 1] = P[X_n = 1, X_{n-1} = 1] = 1/4.$$

Now consider

$$P[Y_n = 1|Y_{n-1} = 1/2] = \frac{P[Y_n = 1, Y_{n-1} = 1/2]}{P[Y_{n-1} = 1/2]}$$
$$= \frac{P[X_n = 1, X_{n-1} = 1, X_{n-2} = 0]}{1/2}$$
$$= \frac{(1/2)^3}{1/2} = 1/4.$$

Suppose that we have additional knowledge about past, then

$$P[Y_n = 1 | Y_{n-1} = 1/2, Y_{n-2} = 1]$$

$$= \frac{P[Y_n = 1, Y_{n-1} = 1/2, Y_{n-2} = 1]}{P[Y_{n-1} = 1/2, Y_{n-2} = 1]} = 0.$$

Graduate Institute of Communication Engineering, National Taipei University

$$P[Y_n = 1 | Y_{n-1} = 1/2] \neq P[Y_n = 1 | Y_{n-1} = 1/2, Y_{n-2} = 1].$$

- A integer-valued Markov random process is called a Markov chain.
- If X(t) is a Markov chain for $t_3 > t_2 > t_1$, then we have $P[X(t_3) = x_3, X(t_2) = x_2, X(t_1) = x_1]$ $= P[X(t_3) = x_3 | X(t_2) = x_2] P[X(t_2) = x_2 | X(t_1) = x_1] P[X(t_1) = x_1]$
- In general,

$$P[X(t_{k+1}) = x_{k+1}, X(t_k) = x_k, \dots, X(t_1) = x_1]$$

= $P[X(t_{k+1}) = x_{k+1} | X(t_k) = x_k] P[X(t_k) = x_k | X(t_{k-1}) = x_{k-1}] \cdots$
 $\times P[X(t_2) = x_2 | X(t_1) = x_1] P[X(t_1) = x_1].$

• Assume that the one-step state transition probabilities are fixed and do not change with time (homogeneous

$$P[X_{n+1} = j | X_n = i] = p_{ij} \quad \text{for all } n.$$

• The joint pmf for $X_n, X_{n-1}, \ldots, X_0$ is then given by

$$P[X_n = i_n, \dots, X_0 = i_0] = p_{i_{n-1}, i_n} \cdots p_{i_0, i_1} p_{i_0}(0).$$

• X_n is completely specified by the initial pmf $p_i(0)$ and

$$P = \begin{bmatrix} p_{00} & p_{01} & p_{02} & \cdots \\ p_{10} & p_{11} & p_{12} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ p_{i0} & p_{i1} & p_{i2} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

- P is called transition probability matrix.
- Each row of P must add to one since

$$1 = \sum_{j} P[X_{n+1} = j | X_n = i] = \sum_{j} p_{ij}.$$

Graduate Institute of Communication Engineering, National Taipei University

Example: Let S_n be the binomial counting process. In one step, S_n can either stay the same or increase by one. The transition probability can be given by

Graduate Institute of Communication Engineering, National Taipei University

The *n*-step transition probabilities

• Let $P(n) = \{p_{ij}(n)\}$ be the matrix of *n*-step transition probabilities, where

$$p_{ij}(n) = P[X_{n+k} = j | X_k = i] \quad n \ge 0, \ i, j \ge 0.$$

• Since transition probabilities do not depend on time, we have

$$P[X_{n+k} = j | X_k = i] = P[X_n = j | X_0 = i].$$

• Consider the two-step transition probabilities:

$$P[X_2 = j, X_1 = k | X_0 = i] = \frac{P[X_2 = j, X_1 = k, X_0 = i]}{P[X_0 = i]}$$

$$= \frac{P[X_2 = j | X_1 = k] P[X_1 = k | X_0 = i] P[X_0 = i]}{P[X_0 = i]}$$

= $P[X_2 = j | X_1 = k] P[X_1 = k | X_0 = i]$
= $p_{ik}(1) p_{kj}(1).$

• 2-step transition probabilities are given by

$$p_{ij}(2) = P[X_2 = j | X_0 = i]$$

= $\sum_k P[X_2 = j, X_1 = k | X_0 = i]$
= $\sum_k p_{ik}(1)p_{kj}(1),$

• Therefore,

$$P(2) = P(1)P(1) = P^2.$$

• In general, we have

$$P(n) = P^n.$$

Graduate Institute of Communication Engineering, National Taipei University

State Probabilities

• Let p(n) denote the row vector of state probabilities at time n. The probability $p_j(n)$ is related to p(n-1) by

$$p_{j}(n) = \sum_{i} P[X_{n} = j | X_{n-1} = i] P[X_{n-1} = i]$$
$$= \sum_{i} p_{ij} p_{i}(n-1).$$

• In matrix notation we have

$$\boldsymbol{p}(n) = \boldsymbol{p}(n-1)P.$$

• $p_j(n)$ is related to p(0) by

$$p_{j}(n) = \sum_{i} P[X_{n} = j | X_{0} = i] P[X_{0} = i]$$
$$= \sum_{i} p_{ij}(n) p_{i}(0).$$

• In matrix notation we have

$$\boldsymbol{p}(n) = \boldsymbol{p}(0)P(n) = \boldsymbol{p}(0)P^n.$$

Example: Let $\alpha = 1/10$ and $\beta = 1/5$ for the following Markov chain:

Find P(n) for n = 2 and 4. Sol: $P^{2} = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}^{2} = \begin{bmatrix} 0.83 & 0.17 \\ 0.34 & 0.66 \end{bmatrix}$

Graduate Institute of Communication Engineering, National Taipei University

Steady State Probabilities

 As n → ∞, the n-step transition probability matrix approaches a matrix in which all the rows are equal to the same pmf

$$p_{ij}(n) \to \pi_j$$
 for all *i*.

• As
$$n \to \infty$$

$$p_j(n) = \sum_i p_{ij} p_i(0) \to \sum_i \pi_j p_i(0) = \pi_j.$$

• As n becomes large, the probability of state j approaches a constant independent of time and the initial state probabilities (equilibrium or steady state).

Markov Chains

• Let the pmf $\boldsymbol{\pi} = \{\pi_j\}$. By noting that as $n \to \infty$, $p_j(n) \to \pi_j$ and $p_i(n-1) \to \pi_i$, we have

$$\pi_j = \sum_i p_{ij} \pi_i,$$

which in matrix notation is

 $\pi = \pi P$ (*n* - 1 linearly independent equations).

• The additional equation needed is provided by

$$\sum_{i} \pi_i = 1.$$

• π is called the stationary state pmf of the Markov chain.

Example: Find the stationary state pmf for the following Markov chain:

Since $\pi_0 + \pi_1 = 1$,

$$\alpha \pi_0 = \beta \pi_1 = \beta (1 - \pi_0).$$

Thus.

$$\pi_0 = \frac{\beta}{\alpha + \beta}, \qquad \pi_1 = \frac{\alpha}{\alpha + \beta}.$$

Graduate Institute of Communication Engineering, National Taipei University