Cyclic Codes

Yunghsiang S. Han

Graduate Institute of Communication Engineering, National Taipei University

Taiwan
E-mail: yshan@mail.ntpu.edu.tw

Description of Cyclic Codes

- If the components of an n-tuple $\boldsymbol{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ are cyclically shifted i places to the right, the resultant n-tuple would be

$$
\boldsymbol{v}^{(i)}=\left(v_{n-i}, v_{n-i+1}, \ldots, v_{n-1}, v_{0}, v_{1}, \ldots, v_{n-i-1}\right)
$$

- Cyclically shifting $\boldsymbol{v} i$ places to the right is equivalent to cyclically shifting $\boldsymbol{v} n-i$ places to the left.
- An (n, k) linear code \boldsymbol{C} is called a cyclic code if every cyclic shift of a code vector in \boldsymbol{C} is also a code vector in \boldsymbol{C}.
- Code polynomial $\boldsymbol{v}(x)$ of the code vector \boldsymbol{v} is defined as

$$
\boldsymbol{v}(x)=v_{0}+v_{1} x+\cdots+v_{n-1} x^{n-1}
$$

- $\boldsymbol{v}^{(i)}(x)=x^{i} \boldsymbol{v}(x) \bmod x^{n}+1$.

Proof: Multiplying $\boldsymbol{v}(x)$ by x^{i}, we obtain

$$
x^{i} \boldsymbol{v}(x)=v_{0} x^{i}+v_{1} x^{i+1}+\cdots+v_{n-i-1} x^{n-1}+\cdots+v_{n-1} x^{n+i-1} .
$$

Then we manipulate the equation into the following form:

$$
\begin{aligned}
x^{i} \boldsymbol{v}(x)= & v_{n-i}+v_{n-i+1} x+\cdots+v_{n-1} x^{i-1}+v_{0} x^{i}+\cdots \\
& +v_{n-i-1} x^{n-1}+v_{n-i}\left(x^{n}+1\right)+v_{n-i-1} x\left(x^{n}+1\right) \\
& +\cdots+v_{n-1} x^{i-1}\left(x^{n}+1\right) \\
= & \boldsymbol{q}(x)\left(x^{n}+1\right)+\boldsymbol{v}^{(i)}(x),
\end{aligned}
$$

where $\boldsymbol{q}(x)=v_{n-i}+v_{n-i+1} x+\cdots+v_{n-1} x^{i-1}$.

- The nonzero code polynomial of minimum degree in a cyclic code C is unique.
- Let $\boldsymbol{g}(x)=g_{0}+g_{1} x+\cdots+g_{r-1} x^{r-1}+x^{r}$ be the nonzero code polynomial of minimum degree in an (n, k) cyclic code \boldsymbol{C}. Then
the constant term g_{0} must be equal to 1 .
Proof: Suppose that $g_{0}=0$. Then

$$
\begin{aligned}
\boldsymbol{g}(x) & =g_{1} x+g_{2} x^{2}+\cdots+g_{r-1} x^{r-1}+x^{r} \\
& =x\left(g_{1}+g_{2} x+\cdots+g_{r-1} x^{r-2}+x^{r-1}\right) .
\end{aligned}
$$

If we shift $\boldsymbol{g}(x)$ cyclically $n-1$ places to the right (or one place to the left), we obtain a nonzero code polynomial, $g_{1}+g_{2} x+\cdots+g_{r-1} x^{r-2}+x^{r-1}$, which has a degree less than r. Contradiction.

A $(7,4)$ Cyclic Code Gnerated by $\boldsymbol{g}(x)=1+x+x^{3}$

Messages	Code Vectors							Code polynomials
$\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)$	0	0	0	0	0	0	0	$\mathbf{0}=\mathbf{0} \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$	1		0	1	0	0	0	$1+X+X^{3}=1 \cdot \mathrm{~g}\left(X^{\prime}\right)$
$\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)$	0	1	1	0	1	0	0	$X+X^{2}+X^{4}=X \cdot \mathrm{~g}(X)$
$\left(\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right)$	1	0	1	1	1	0	0	$1+X^{2}+X^{3}+X^{4}=(1+X) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right)$	0	0	1	1	0	1	0	$X^{2}+X^{3}+X^{5}=X^{2} \cdot \mathrm{~g}(X)$
$\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)$	1	1	1	0	0	1	0	$1+X+X^{2}+X^{5}=\left(1+X^{2}\right) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right)$	0	1	0	1	1	1	0	$X+X^{3}+X^{4}+X^{5}=\left(X+X^{2}\right) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right)$	1	0	0	0	1	1	0	$1+X^{4}+X^{5}=\left(1+X+X^{2}\right) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$	0	0	0	1	1	0	1	$X^{3}+X^{4}+X^{6}=X^{3} \cdot \mathrm{~g}\left(X^{\prime}\right)$
$\left(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right)$	1	1	0	0	1	0	1	$1+X+X^{4}+X^{6}=\left(1+X^{3}\right) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}0 & 1 & 0 & 1\end{array}\right)$	0	1	1	1	0	0	1	$X+X^{2}+X^{3}+X^{6}=\left(X+X^{3}\right) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right)$	1	0	1	0	0	0	1	$1+X^{2}+X^{6}=\left(1+X+X^{3}\right) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right)$	0	0	1	0	1	1	1	$X^{2}+X^{4}+X^{5}+X^{6}=\left(X^{2}+X^{3}\right) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right)$	1	1	1	1	1	1	1	$\begin{aligned} & 1+X+X^{2}+X^{3}+X^{4}+X^{5}+X^{6} \\ & \quad=\left(1+X^{2}+X^{3}\right) \cdot \mathrm{g}(X) \end{aligned}$
$\left(\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right)$	0	1	0	0	0	1	1	$X+X^{5}+X^{6}=\left(X+X^{2}+X^{3}\right) \cdot \mathrm{g}(X)$
$\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)$	1	0	0		0	1	1	$\begin{aligned} 1 & +X^{3}+X^{5}+X^{6} \\ & =\left(1+X+X^{2}+X^{3}\right) \cdot g(X) \end{aligned}$

Graduate Institute of Communication Engineering, National Taipei University

- Consider the polynomial $x \boldsymbol{g}(x), x^{2} \boldsymbol{g}(x), \ldots, x^{n-r-1} \boldsymbol{g}(x)$. Clearly, they are cyclic shifts of $\boldsymbol{g}(x)$ and hence code polynomials in \boldsymbol{C}. Since \boldsymbol{C} is linear, a linear combination of $\boldsymbol{g}(x), x \boldsymbol{g}(x), \ldots, x^{n-r-1} \boldsymbol{g}(x)$,

$$
\begin{aligned}
\boldsymbol{v}(x) & =u_{0} \boldsymbol{g}(x)+u_{1} x \boldsymbol{g}(x)+\cdots+u_{n-r-1} x^{n-r-1} \boldsymbol{g}(x) \\
& =\left(u_{0}+u_{1} x+\cdots+u_{n-r-1} x^{n-r-1}\right) \boldsymbol{g}(x),
\end{aligned}
$$

is also a code polynomial where $u_{i} \in\{0,1\}$.

- Let $\boldsymbol{g}(x)=1+g_{1} x+\cdots+g_{r-1} x^{r-1}+x^{r}$. be the nonzero code polynomial of minimum degree in an (n, k) cyclic code \boldsymbol{C}. A binary polynomial of degree $n-1$ or less is a code polynomial if and only if it is a multiple of $\boldsymbol{g}(x)$.
Proof: Let $\boldsymbol{v}(x)$ be a binary polynomial of degree $n-1$ or less.

Suppose that $\boldsymbol{v}(x)$ is a multiple of $\boldsymbol{g}(x)$. Then

$$
\begin{aligned}
\boldsymbol{v}(x) & =\left(a_{0}+a_{1} x+\cdots+a_{n-r-1} x^{n-r-1}\right) \boldsymbol{g}(x) \\
& =a_{0} \boldsymbol{g}(x)+a_{1} x \boldsymbol{g}(x)+\cdots+a_{n-r-1} x^{n-r-1} \boldsymbol{g}(x) .
\end{aligned}
$$

Since $\boldsymbol{v}(x)$ ia a linear combination of the code polynomials, $\boldsymbol{g}(x), x \boldsymbol{g}(x), \ldots, x^{n-r-1} \boldsymbol{g}(x)$, it is a code polynomial in \boldsymbol{C}. Now let $\boldsymbol{v}(x)$ be a code polynomial in \boldsymbol{C}. Dividing $\boldsymbol{v}(x)$ by $\boldsymbol{g}(x)$, we obtain

$$
\boldsymbol{v}(x)=\boldsymbol{a}(x) \boldsymbol{g}(x)+\boldsymbol{b}(x)
$$

where the degree of $\boldsymbol{b}(x)$ is less than the degree of $\boldsymbol{g}(x)$. Since $\boldsymbol{v}(x)$ and $\boldsymbol{a}(x) \boldsymbol{g}(x)$ are code polynomials, $\boldsymbol{b}(x)$ is also a code polynomial. Suppose $\boldsymbol{b}(x) \neq 0$. Then $\boldsymbol{b}(x)$ is a code polynomial with less degree than that of $\boldsymbol{g}(x)$. Contradiction.

- The number of binary polynomials of degree $n-1$ or less that are multiples of $\boldsymbol{g}(x)$ is 2^{n-r}.
- There are total of 2^{k} code polynomials in $\boldsymbol{C}, 2^{n-r}=2^{k}$, i.e., $r=n-k$.
- The polynomial $\boldsymbol{g}(x)$ is called the generator polynomial of the code.
- The degree of $\boldsymbol{g}(x)$ is equal toi the number of parity-check digits of the code.
- The generator polynomial $\boldsymbol{g}(x)$ of an (n, k) cyclic code is a factor of $x^{n}+1$.

Proof: We have

$$
x^{k} \boldsymbol{g}(x)=\left(x^{n}+1\right)+\boldsymbol{g}^{(k)}(x) .
$$

Since $\boldsymbol{g}^{(k)}(x)$ is the code polynomial obtained by shifting $\boldsymbol{g}(x)$ to
the right cyclically k times, $\boldsymbol{g}^{(k)}(x)$ is a multiple of $\boldsymbol{g}(x)$. Hence,

$$
x^{n}+1=\left\{x^{k}+\boldsymbol{a}(x)\right\} \boldsymbol{g}(x) .
$$

- If $\boldsymbol{g}(x)$ is a polynomial of degree $n-k$ and is a factor of $x^{n}+1$, then $\boldsymbol{g}(x)$ generates an (n, k) cyclic code.
Proof: A linear combination of $\boldsymbol{g}(x), x \boldsymbol{g}(x), \ldots, x^{k-1} \boldsymbol{g}(x)$,

$$
\begin{aligned}
\boldsymbol{v}(x) & =a_{0} \boldsymbol{g}(x)+a_{1} x \boldsymbol{g}(x)+\cdots+a_{k-1} x^{k-1} \boldsymbol{g}(x) \\
& =\left(a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}\right) \boldsymbol{g}(x),
\end{aligned}
$$

is a polynomial of degree $n-1$ or less and is a multiple of $\boldsymbol{g}(x)$. There are a total of 2^{k} such polynomial and they form an (n, k) linear code.

Let $\boldsymbol{v}(x)=v_{0}+v_{1} x+\cdots+v_{n-1} x^{n-1}$ be a code polynomial in
this code. We have

$$
\begin{aligned}
x \boldsymbol{v}(x) & =v_{0} x+v_{1} x^{2}+\cdots+v_{n-1} x^{n} \\
& =v_{n-1}\left(x^{n}+1\right)+\left(v_{n-1}+v_{0} x+\cdots+v_{n-2} x^{n-1}\right) \\
& =v_{n-1}\left(x^{n}+1\right)+\boldsymbol{v}^{(1)}(x)
\end{aligned}
$$

Since both $x \boldsymbol{v}(x)$ and $x^{n}+1$ are divisible by $\boldsymbol{g}(x), \boldsymbol{v}^{(1)}$ must be divisible by $\boldsymbol{g}(x)$. Hence, $\boldsymbol{v}^{(1)}(x)$ is a code polynomial and the code generated by $\boldsymbol{g}(x)$ is a cyclic code.

- Suppose that the message to be encoded is $\boldsymbol{u}=\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)$. Then

$$
x^{n-k} \boldsymbol{u}(x)=u_{0} x^{n-k}+u_{1} x^{n-k+1}+\cdots+u_{k-1} x^{n-1}
$$

Dividing $x^{n-k} \boldsymbol{u}(x)$ by $\boldsymbol{g}(x)$, we have

$$
x^{n-k} \boldsymbol{u}(x)=\boldsymbol{a}(x) \boldsymbol{g}(x)+\boldsymbol{b}(x)
$$

Since the degree of $\boldsymbol{g}(x)$ is $n-k$, the degree of $\boldsymbol{b}(x)$ must be $n-k-1$ or less. Then

$$
\boldsymbol{b}(x)+x^{n-k} \boldsymbol{u}(x)=\boldsymbol{a}(x) \boldsymbol{g}(x)
$$

is a multiple of $\boldsymbol{g}(x)$ and therefore it is a code polynomial.

$$
\begin{aligned}
\boldsymbol{b}(x)+x^{n-k} \boldsymbol{u}(x)= & b_{0}+b_{1} x+\cdots+b_{n-k-1} x^{n-k-1} \\
& +u_{0} x^{n-k}+u_{1} x^{n-k+1}+\cdots+u_{k-1} x^{n-1}
\end{aligned}
$$

then corresponds to the code vector

$$
\left(b_{0}, b_{1}, \ldots, b_{n-k-1}, u_{0}, u_{1}, \ldots, u_{k-1}\right)
$$

A $(7,4)$ Cyclic Code Gnerated by $\boldsymbol{g}(x)=1+x+x^{3}$

Graduate Institute of Communication Engineering, National Taipei University

Generator and Parity-Check Matrices

- The generator matrix of an (n, k) code \boldsymbol{C} is as follows:

- In general, \boldsymbol{G} is not in systematic form. However, it can be put into systematic form with row operation.
- Let

$$
x^{n}+1=\boldsymbol{g}(x) \boldsymbol{h}(x),
$$

where the polynomial $\boldsymbol{h}(x)$ has the degree k and is of the following form:

$$
\boldsymbol{h}(x)=h_{0}+h_{1} x+\cdots+h_{k} x^{k}
$$

with $h_{0}=h_{k}=1$.

- A parity-check matrix of \boldsymbol{C} may be obtained from $\boldsymbol{h}(x)$.
- Let \boldsymbol{v} be a code vector in \boldsymbol{C} and $\boldsymbol{v}(x)=\boldsymbol{a}(x) \boldsymbol{g}(x)$. Then

$$
\begin{aligned}
\boldsymbol{v}(x) \boldsymbol{h}(x) & =\boldsymbol{a}(x) \boldsymbol{g}(x) \boldsymbol{h}(x) \\
& =\boldsymbol{a}(x)\left(x^{n}+1\right) \\
& =\boldsymbol{a}(x)+x^{n} \boldsymbol{a}(x)
\end{aligned}
$$

Since the degree of $\boldsymbol{a}(x)$ is $k-1$ or less, the powers $x^{k}, x^{k+1}, \ldots, x^{n-1}$ do not appear in $\boldsymbol{a}(x)+x^{n} \boldsymbol{a}(x)$. Therefore,

$$
\sum_{i=0}^{k} h_{i} v_{n-i-j}=0 \text { for } 1 \leq j \leq n-k
$$

We take the reciprocal of $\boldsymbol{h}(x)$,

$$
x^{k} \boldsymbol{h}\left(x^{-1}\right)=h_{k}+h_{k-1} x+h_{k-2} x^{2}+\cdots+h_{0} x^{k}
$$

and can see that $x^{k} \boldsymbol{h}\left(x^{-1}\right)$ is also a factor of $x^{n}+1 . x^{k} \boldsymbol{h}\left(x^{-1}\right)$ then generates an $(n, n-k)$ cyclic code with the following $(n-k) \times n$ matrix as a generator matrix:
$\boldsymbol{H}=\left[\begin{array}{ccccccccccccc}h_{k} & h_{k-1} & h_{k-2} & \cdot & \cdot & \cdot & \cdot & h_{0} & 0 & 0 & \cdot & \cdot & 0 \\ 0 & h_{k} & h_{k-1} & h_{k-2} & \cdot & \cdot & \cdot & \cdot & h_{0} & 0 & \cdot & \cdot & 0 \\ 0 & 0 & h_{k} & h_{k-1} & \cdot & \cdot & \cdot & \cdot & \cdot & h_{0} & \cdot & \cdot & 0 \\ \cdot & & & & & & & & & & & & \cdot \\ \cdot & & & & & & & & & & & & \cdot \\ \cdot & 0 & \cdot & \cdot & 0 & h_{k} & h_{k-1} & h_{k-2} & \cdot & \cdot & \cdot & \cdot & h_{0}\end{array}\right]$
Then \boldsymbol{H} is a parity-check matrix of the cyclic code \boldsymbol{C}. We call $\boldsymbol{h}(x)$ the parity polynomial of \boldsymbol{C}.

- Let \boldsymbol{C} be an (n, k) cyclic code with generator polynomial $\boldsymbol{g}(x)$. The dual code of \boldsymbol{C} is also cyclic and is generated by the polynomial $x^{k} \boldsymbol{h}\left(x^{-1}\right)$, where $\boldsymbol{h}(x)=\left(x^{n}+1\right) / \boldsymbol{g}(x)$.
- Let

$$
x^{n-k-1}=\boldsymbol{a}_{i}(x) \boldsymbol{g}(x)+\boldsymbol{b}_{i}(x) \text { for } 0 \leq i \leq k-1
$$

where $\boldsymbol{b}_{i}(x)=b_{i 0}+b_{i 1}+\cdots+b_{i(n-k-1)}$. Since $\boldsymbol{b}_{i}(x)+x^{n-k+i}$ are multiples of $\boldsymbol{g}(x)$, they are code polynomials. Then

$$
\boldsymbol{G}=\left[\begin{array}{cccccccccc}
b_{00} & b_{01} & b_{02} & \cdots & b_{0(n-k-1)} & 1 & 0 & 0 & \cdots & 0 \\
b_{10} & b_{11} & b_{12} & \cdots & b_{1(n-k-1)} & 0 & 1 & 0 & \cdots & 0 \\
b_{20} & b_{21} & b_{22} & \cdots & b_{2(n-k-1)} & 0 & & 1 & \cdots & 0 \\
& \vdots & & & & \vdots & & & \\
& \vdots & & & & \vdots & & & \\
b_{(k-1) 0} & b_{(k-1) 1} & b_{(k-1) 2} & \cdots & b_{(k-1)(n-k-1)} & 0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

- The corresponding parity-check matrix for \boldsymbol{C} is

$$
\boldsymbol{H}=\left[\begin{array}{cccccccccc}
1 & 0 & 0 & \cdots & 0 & b_{00} & b_{10} & b_{20} & \cdots & b_{(k-1) 0} \\
0 & 1 & 0 & \cdots & 0 & b_{01} & b_{11} & b_{21} & \cdots & b_{(k-1) 1} \\
0 & 0 & 1 & \cdots & 0 & b_{02} & b_{12} & b_{22} & \cdots & b_{(k-1) 2} \\
& \vdots & & & & \vdots & & & & \vdots \\
0 & 0 & 0 & \cdots & 1 & b_{0(n-k-1)} & b_{1(n-k-1)} & b_{2(n-k-1)} & \cdots & b_{(k-1)(n-k-1)}
\end{array}\right]
$$

Encoding of Cyclic Codes

- Encoding process: (1) Multiply $\boldsymbol{u}(x)$ by x^{n-k}; (2) divide $x^{n-k} \boldsymbol{u}(x)$ by $\boldsymbol{g}(x) ;(3)$ form the code word $\boldsymbol{b}(x)+x^{n-k} \boldsymbol{u}(x)$.

Graduate Institute of Communication Engineering, National Taipei University

Example

- Consider the $(7,4)$ cyclic code generated by $\boldsymbol{g}(x)=1+x+x^{3}$. Suppose that the message $\boldsymbol{u}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$ is to be encoded. The contentents in the register are as follows:

Input	Register contents 0
1	1100 (initial state)
1	101 (first shift)
0	100 (third shift)
1	100 (fourth shift)

After four shifts, the contents of the register are (1000). Thus the complete code vector is (1001011).

Graduate Institute of Communication Engineering, National Taipei University

Encoding by Parity Polynomial

- Since $h_{k}=1$, we have

$$
v_{n-k-j}=\sum_{i=0}^{k-1} h_{i} v_{n-i-j} \text { for } 1 \leq j \leq n-k
$$

which is known as a difference equation.

$$
\begin{gathered}
v_{n-k-1}=h_{0} v_{n-1}+h_{1} v_{n-2}+\cdots+h_{k-1} v_{n-k}=u_{k-1}+h_{1} u_{k-2}+\cdots+h_{k-1} u_{0} \\
v_{n-k-2}=u_{k-2}+h_{1} u_{k-3}+\cdots+h_{k-1} v_{n-k-1}
\end{gathered}
$$

- Encoding circuit:

Example

- The parity polynomial of the $(7,4)$ cyclic code generated by $\boldsymbol{g}(x)=1+x+x^{3}$ is

$$
\boldsymbol{h}(x)=\frac{x^{7}+1}{1+x+x^{3}}=1+x+x^{2}+x^{4}
$$

The encoding circuit:

Suppose that the message to be encoded is (1011). Then $v_{3}=1, v_{4}=0, v_{5}=1, v_{6}=1$. The parity-check digits are

$$
\begin{aligned}
& v_{2}=v_{6}+v_{3}+v_{4}=1+1+0=0 \\
& v_{1}=v_{5}+v_{4}+v_{3}=1+0+1=0
\end{aligned}
$$

$$
v_{0}=v_{4}+v_{3}+v_{2}=0+1+0=1
$$

The code vector that corresponds to the message ($\left.\begin{array}{lll}1 & 0 & 1\end{array}\right)$ is (1001011).

Syndrome Computation

- Let $\boldsymbol{r}=\left(r_{0}, r_{1}, \ldots, r_{n-1}\right)$ be the received vector. The syndrome is calculated as $\boldsymbol{s}=\boldsymbol{r} \cdot \boldsymbol{H}^{T}$, where \boldsymbol{H} is the parity-check matrix.
- If syndrome is not identical to zero, \boldsymbol{r} is not a code vector and the presence of errors has been detected.
- Dividing $\boldsymbol{r}(x)$ by the generator polynomial $\boldsymbol{g}(x)$, we obtain

$$
\boldsymbol{r}(x)=\boldsymbol{a}(x) \boldsymbol{g}(x)+\boldsymbol{s}(x) .
$$

- The $n-k$ coefficients of $\boldsymbol{s}(x)$ form the syndrome \boldsymbol{s}. We call $\boldsymbol{s}(x)$ the syndrome.

- If \boldsymbol{C} is a systematic code, then the syndrome is simply the vector sum of the received parity digits and the parity-check digits recomputed from the received information digits.
- Let $\boldsymbol{s}(x)$ be the syndrome of a received polynomial $\boldsymbol{r}(x)$. Then the remainder $\boldsymbol{s}^{(1)}(x)$ resulting from dividing $x \boldsymbol{s}(x)$ by the generator polynomial $\boldsymbol{g}(x)$ is the syndrome of $\boldsymbol{r}^{(1)}(x)$, which is a cyclic shift of $\boldsymbol{r}(x)$.
Proof: We have

$$
x \boldsymbol{r}(x)=r_{n-1}\left(x^{n}+1\right)+\boldsymbol{r}^{(1)}(x) .
$$

Then

$$
\boldsymbol{c}(x) \boldsymbol{g}(x)+\boldsymbol{\rho}(x)=r_{n-1} \boldsymbol{g}(x) \boldsymbol{h}(x)+x[\boldsymbol{a}(x) \boldsymbol{g}(x)+\boldsymbol{s}(x)],
$$

where $\boldsymbol{\rho}(x)$ is the remainder resulting from dividing $\boldsymbol{r}^{(1)}(x)$ by $\boldsymbol{g}(x)$. Then $\boldsymbol{\rho}(x)$ is the syndrome of $\boldsymbol{r}^{(1)}(x)$. Rearranging the
above equation, we have

$$
x \boldsymbol{s}(x)=\left[\boldsymbol{c}(x)+r_{n-1} \boldsymbol{h}(x)+x \boldsymbol{a}(x)\right] \boldsymbol{g}(x)+\boldsymbol{\rho}(x) .
$$

It is clearly that $\boldsymbol{\rho}(x)$ is also the remainder resulting from dividing $x \boldsymbol{s}(x)$ by $\boldsymbol{g}(x)$. Therefore, $\boldsymbol{\rho}(x)=\boldsymbol{s}^{(1)}(x)$.

- The remainder $\boldsymbol{s}^{(i)}(x)$ resulting from dividing $x^{i} \boldsymbol{s}(x)$ be the generator polynomial $\boldsymbol{g}(x)$ is the syndrome of $\boldsymbol{r}^{(i)}(x)$, which is the i th cyclic shift of $\boldsymbol{r}(x)$.

Example

Consider the $(7,4)$ cyclic code generated by $\boldsymbol{g}(x)=1+x+x^{3}$. Suppose that the received vector is $\boldsymbol{r}=\left(\begin{array}{ll}0 & 010110\end{array}\right)$. The syndrome of \boldsymbol{r} is $\boldsymbol{s}=\left(\begin{array}{ll}1 & 0\end{array}\right)$. As the received vector is shifted into the circuit, the contents in the register are as follows:

If the register is shifted once more with the input gate disabled, the new contents will be $\boldsymbol{s}^{(1)}=\left(\begin{array}{ll}1 & 0\end{array}\right)$, which is the syndrome of $\boldsymbol{r}^{(1)}=\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 1\end{array}\right)$.

- We may shift the received vector $\boldsymbol{r}(x)$ into the syndrome register from the right end. However, after the entire $\boldsymbol{r}(x)$ has been shifted into the register, the contents in the register do not form the sybdrome of $\boldsymbol{r}(x)$; rather, they form the syndrome $\boldsymbol{s}^{(n-k)}(x)$ of $\boldsymbol{r}^{(n-k)}(x)$.

Received vector
Proof: We have

$$
x^{n-k} \boldsymbol{r}(x)=\boldsymbol{a}(x) \boldsymbol{g}(x)+\boldsymbol{\rho}(x) .
$$

It is known that

$$
x^{n-k} \boldsymbol{r}(x)=\boldsymbol{b}(x)\left(x^{n}+1\right)+\boldsymbol{r}^{(n-k)}(x) .
$$

Hence,

$$
\boldsymbol{r}^{(n-k)}(x)=[\boldsymbol{b}(x) \boldsymbol{h}(x)+\boldsymbol{a}(x)] \boldsymbol{g}(x)+\boldsymbol{\rho}(x) .
$$

When $\boldsymbol{r}^{(n-k)}(x)$ is divided by $\boldsymbol{g}(x), \boldsymbol{\rho}(x)$ is also the remainder.
Therefore, $\boldsymbol{\rho}(x)$ is indeed the syndrome of $\boldsymbol{r}^{(n-k)}(x)$.

Error Detection

- Let $\boldsymbol{v}(x)$ be the transmitted code word and $\boldsymbol{e}(x)=e_{0}+e_{1} x+\cdots+e_{n-1} x^{n-1}$ be the error pattern. Then

$$
\boldsymbol{r}(x)=\boldsymbol{v}(x)+\boldsymbol{e}(x)=\boldsymbol{b}(x) \boldsymbol{g}(x)+\boldsymbol{e}(x)
$$

- Following the definition of syndrome, we have

$$
\boldsymbol{e}(x)=[\boldsymbol{a}(x)+\boldsymbol{b}(x)] \boldsymbol{g}(x)+\boldsymbol{s}(x) .
$$

This shows that the syndrome is actually equal to the remainder resulting from dividing the error pattern by the generator polynomial.

- The decoder has to estimate $\boldsymbol{e}(x)$ based on the syndrome $\boldsymbol{s}(x)$.
- If $\boldsymbol{e}(x)$ is identical to a code vector, $\boldsymbol{e}(x)$ is an undetectable error pattern.
- The error-detection circuit is simply a syndrome circuit with an OR gate with the syndrome digits as inputs.
- For a cyclic code, an error pattern with errors confined to i high-order positions and $\ell-i$ low-order positions is also regarded as a burst of length ℓ or less. such a burst is called end-around burst.
- An (n, k) cyclic code is capable of detecting any error burst of length $n-k$ or less, including the end-around bursts.

Proof: Suppose that the error pattern is a burst of length of $n-k$ or less. Then

$$
\boldsymbol{e}(x)=x^{j} \boldsymbol{B}(x),
$$

where $0 \leq j \leq n-1$ and $\boldsymbol{B}(x)$ is a polynomial of degree $n-k-1$ or less. Since the degree of $\boldsymbol{B}(x)$ is less than that of $\boldsymbol{g}(x), \boldsymbol{B}(x)$ is not divisible by $\boldsymbol{g}(x)$. Since $\boldsymbol{g}(x)$ is a factor of
$x^{n}+1$ and x is not a factor of $\boldsymbol{g}(x), \boldsymbol{g}(x)$ and x^{j} must be relatively prime. Therefore, $\boldsymbol{e}(x)$ is not divisible by $\boldsymbol{g}(x)$. The last part of the above statement is left as an exercise.

- The fraction of undetectable bursts of length $n-k+1$ is $2^{-(n-k-1)}$.

Proof: Consider the bursts of length $n-k+1$ starting from the i th digit position and ending at the $(i+n-k)$ th digit position. There are 2^{n-k-1} such burst. Among these bursts, the only one that cannot be detected is

$$
\boldsymbol{e}(x)=x^{i} \boldsymbol{g}(x)
$$

Therefore, the fraction of undetectable bursts of length $n-k+1$ starting from the i th digit position is $2^{-(n-k-1)}$.

- For $\ell>n-k+1$, the fraction of undetectable error bursts of length ℓ is $2^{-(n-k)}$. The proof is left as an exercise.

Decoding of Cyclic Codes

- Decoding of linear codes consists of three steps: (1) syndrome computation; (2) association of the syndrome to an error pattern; (3) error correction.
- The cyclic structure structure of a cyclic code allows us to decode a received vector $\boldsymbol{r}(x)$ in serial manner.
- The received digits are decoded one at a time and each digit is decoded with the same circuitry.
- The decoding circuit checks whether the syndrome $\beta(x)$ corresponds to a correctable error pattern $\boldsymbol{e}(x)$ with an error at the highest-order position x^{n-1} (i.e., $e_{n-1}=1$).
- If $\beta(x)$ does not correspond to an error pattern with $e_{n-1}=1$, the received polynomial and the syndrome register are cyclically shifted once simultaneously. By doing this, we have $\boldsymbol{r}^{(1)}(x)$ and
$\boldsymbol{s}^{(1)}(x)$.
- The second digit r_{n-2} of $\boldsymbol{r}(x)$ becomes the first digit of $\boldsymbol{r}^{(1)}(x)$. The same decoding processes.
- If the syndrome $\boldsymbol{s}(x)$ of $\boldsymbol{r}(x)$ does correspond to an error pattern with an error at the location x^{n-1}, the first received digit r_{n-1} is an erroneous digit and it must be corrected by taking the sum $r_{n-1} \oplus e_{n-1}$.
- This correction results in a modified received polynomial, denoted by $\boldsymbol{r}_{1}(x)=r_{0}+r_{1} x+\cdots+r_{n-2} x^{n-2}+\left(r_{n-1} \oplus e_{n-1}\right) x^{n-1}$.
- The effect of the error digit e_{n-1} on the syndrome can be achieved by adding the syndrome of $\boldsymbol{e}^{\prime}(x)=x^{n-1}$ to $\boldsymbol{s}(x)$.
- The syndrome $\boldsymbol{s}_{1}^{(1)}$ of $\boldsymbol{r}_{1}^{(1)}(x)$ is the remainder resulting from dividing $x\left[\boldsymbol{s}(x)+x^{n-1}\right]$ by the generator polynomial $\boldsymbol{g}(x)$.
| Since the remainders resulting from dividing $x \boldsymbol{s}(x)$ and x^{n} by $\boldsymbol{g}(x)$ are $\boldsymbol{s}^{(1)}(x)$ and 1 , respectively, we have

$$
\boldsymbol{s}_{1}^{(1)}(x)=\boldsymbol{s}(1)(x)+1
$$

Meggitt Decoder I

Example

Consider the decoding of the $(7,4)$ cyclic code generated by $\boldsymbol{g}(x)=1+x+x^{3}$. This code has minimum distance 3 and is capable of correcting any single error. The seven single-error patterns and their corresponding syndromes are as follows:

$\begin{array}{c}\text { Error pattern } \\ e(X)\end{array}$	$\begin{array}{c}\text { Syndrome } \\ s(X)\end{array}$	$\begin{array}{c}\text { Syndrome vector } \\ \left(s_{0}, s_{1}, s_{2}\right)\end{array}$
$e_{6}(X)=X^{6}$	$s(X)=1+X^{2}$	$\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$
$e_{5}(X)=X^{5}$	$s(X)=1+X+X^{2}$	$\left(\begin{array}{ll}1 & 1\end{array} 1\right.$

Suppose that the code vector $\boldsymbol{v}=\left(\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 1\end{array}\right)$ is transmitted and $\boldsymbol{r}=\left(\begin{array}{llllll}1 & 0 & 1 & 1 & 0 & 1\end{array}\right)$.

Graduate Institute of Communication Engineering, National Taipei University

Meggitt Decoder II

- To decode a cyclic code, the received polynomial $\boldsymbol{r}(x)$ may be shifted into the syndrome register from the right end for computing the syndrome.
- When $\boldsymbol{r}(x)$ has been shifted into the syndrome register, the register contains $\boldsymbol{s}^{(n-k)}(x)$, which is the syndrome of $\boldsymbol{r}^{(n-k)}(x)$. If $\boldsymbol{s}^{(n-k)}(x)$ corresponds to an error pattern $\boldsymbol{e}(x)$ with $e_{n-1}=1$, the highest-order digit r_{n-1} of $\boldsymbol{r}(x)$ is erroneous and must be corrected.
- In $\boldsymbol{r}^{(n-k)}(x)$, the digit r_{n-1} is at the location x^{n-k-1}. When r_{n-1} is corrected, the error effect must be removed from $\boldsymbol{s}^{(n-k)}(x)$.
- The new syndrome $\boldsymbol{s}_{1}^{(n-k)}(x)$ is the sum of $\boldsymbol{s}^{(n-k)}(x)$ and the remainder $\boldsymbol{\rho}(x)$ resulting from dividing x^{n-k-1} by $\boldsymbol{g}(x)$. Since
the degree of x^{n-k-1} is less than the degree of $\boldsymbol{g}(x)$,

$$
\boldsymbol{s}_{1}^{(n-k)}(x)=\boldsymbol{s}^{(n-k)}(x)+x^{n-k-1} .
$$

[^0]
Example

Again, we consider the decoding of the $(7,4)$ cyclic code generated by $\boldsymbol{g}(X)=1+X+X^{3}$. Suppose that the received polynomial $\boldsymbol{r}(X)$ is shifted into the syndrome register from the right end. The seven single-error patterns and their corresponding syndromes are as follows:

Error pattern $e(X)$	Syndrome $s^{(3)}(X)$	Syndrome vector $\left(s_{0}, s_{1}, s_{2}\right)$
$e(X)=X^{6}$	$s^{(3)}(X)=X^{2}$	$\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$
$e(X)=X^{5}$	$s^{(3)}(X)=X$	$\left(\begin{array}{ll}0 & 1\end{array}\right)$
$e(X)=X^{4}$	$s^{(3)}(X)=1$	$\left(\begin{array}{ll}1 & 0\end{array}\right)$
$e(X)=X^{3}$	$s^{(3)}(X)=1+X^{2}$	$\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$
$e(X)=X^{2}$	$s^{(3)}(X)=1+X+X^{2}$	$\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$
$e(X)=X^{1}$	$s^{(3)}(X)=X+X^{2}$	$\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$
$e(X)=X^{0}$	$s^{(3)}(X)=1+X$	$\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$

We see that only when $\boldsymbol{e}(X)=X^{6}$ occurs, the syndrome is (001)
after the entire received polynomial $\boldsymbol{r}(X)$ has been shifted into the syndrome register. If the single error occurs at the location X^{i} with $i \neq 6$, the syndrome in the register will not be (0001) after the entire received polynomial $\boldsymbol{r}(X)$ has been shifted into the syndrome register. However, another $6 i$ shifts, the syndrome register will contain (0 0 1) . Based on this fact, we obtain another decoding circuit for the $(7,4)$ cyclic code generated by $\boldsymbol{g}(X)=1+X+X^{3}$.

[^0]: Graduate Institute of Communication Engineering, National Taipei University

