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Abstract- In this paper  we present a  novel and  efficient 
maximum-likel ihood soft-decision decoding algorithm for linear 
block codes.  The  approach used here converts the decoding 
problem into a  search problem through a  graph that is a  trellis 
for an  equivalent code of the transmitted code.  A general ized 
Dijkstra’s Algorithm, which uses a  priority-first search strategy, 
is employed to search through this graph. This search is guided 
by  an  evaluation function f def ined to take advantage of the 
information provided by  the received vector and  the inherent 
propert ies of the transmitted code.  This function f is used  to 
reduce drastically the search space and  to make the decoding 
efforts of this decoding algorithm adaptable to the noise level. 
For example, for most real channels of the 35  000  samples tried, 
simulation results for the (128,64) binary extended BCH code 
show that the proposed decoding algorithm is fifteen orders of 
magni tude more efficient in time and  in space than that p roposed 
by Wolf. Simulation results for ‘the (104, 52)  binary extended 
quadrat ic residue code are also given. 

Index Terms- block codes,  decoding, Dijkstra’s algorithm, 
maximum-likelihood, priority-first search, soft-decision, trellis 

I. INTRODUCTION 

T HE use of block codes is a well-known error-control 
technique for reliable transmission of digital information 

over noisy communication channels. Linear block codes with 
good coding gains have been known for many years; however, 
these block codes have not been used in practice for lack of 
an efficient soft-decision decoding algorithm. 

This paper deals with the maximum-likelihood soft-decision 
decoding of linear block codes. By maximum-likelihood de- 
coding (MLD), we mean the minimization of the probability 
of decoding to an incorrect codeword when all codewords 
have equal probability of being transmitted. By soft-decision 
we mean the use of real numbers (e.g., the analog output of 
filters matched to the signals) associated with every component 
of the codeword in the decoding procedure. Soft-decision 
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decoding can provide about 2 dB of additional coding gain 
when compared to hard-decision decoding. 

Several researchers [6], [28], [24] have presented techniques 
for decoding linear block codes that convert the decoding 
problem into a graph-search problem on a trellis derived from 
the parity-check matrix of the code. Thus the MLD rule can 
be implemented by applying the Viterbi Algorithm [27] to this 
trellis. In practice, however, this breadth-first search scheme 
can be applied only to codes with small redundancy or to codes 
with a small number of codewords [21]. 

In this paper we present a novel maximum-likelihood soft- 
decision decoding algorithm for linear block codes. This 
algorithm uses a generalization of Dijkstra’s algorithm [22] 
to search through the trellis for a  code equivalent to the 
transmitted code. The use of this priority-first search strategy 
for decoding drastically reduces the search space and results in 
an efficient optimal soft-decision decoding algorithm for linear 
block codes. Furthermore, in contrast with Wolf’s algorithm 
[28], the decoding efforts of our decoding algorithm are 
adaptable to the noise level. 

In Section II we review maximum-likelihood decoding of 
linear block codes and describe a trellis for a  linear code. In 
Section III we give a short description of Dijkstra’s Algorithm 
and its generalization. In Section IV we present our decoding 
algorithm. Simulation results for the (104,52) binary extended 
quadratic residue code and the (128,64) binary extended BCH 
code are given in Section V. Concluding remarks are presented 
in Section VI. 

II. PRELIMINARIES 

Let C be a binary (n, k) linear code with generator matrix 
G, and let c= (CO, cl,. . . , c,-1) be a codeword of C trans- 
mitted over a time-discrete memoryless channel with output 
alphabet B. Furthermore, let T  = (~0, ~1,. . . , T,-i), rj E B 
denote the received vector, and assume that Pr(rj]ci) > 0 
for rj E B and c; E GF(2). Let 2  be an estimate of the 
transmitted codeword c. 

The maximum-likelihood decoding rule (MLD rule) for a  
time-discrete memoryless channel can be formulated as 

set e  = ce where ce = (tea, ccl, . . . , ce(,-1)) E G and 
n-1 n-l 

n Pr(TjICej) > n Pr(rjlcij) for all 
j=o j=o 

G = (Go, Cd,. . . ) Ci(,-1)) E c. 

0018-9448/93$03.00 0 1993 IEEE 



HAN et al.: ML SOFT-DECISION DECODING OF LINEAR BLOCK CODES 1515 

Following the formulation given in [17], we define the bit procedure’to reduce the number of states in the trellis for C 
log-likelihood ratio of rj as P41. 

Wrj IO) 
In order to avoid traversing the entire trellis, a  different 

” = In Pr(rj]l) ’ 
search strategy-such as the priority-first search-must be 
employed. In the next section we present a generalization 

Furthermore, let 4  = (40, $1,. . . , &..I). By [17, Theorem 51 of the well-known Dijkstra’s algorithm, which uses such a 
the MLD rule can be written as strategy [22]. 

set 2  = ce, where cl E C and 

TX-1 n-1 

C (4j - (-l)c”)2 I C ($j - (-l)“j)” for all ci E C. 
j=o j=o 

(1) 
In the special case where the codewords of C have equal 
probability of being transmitted, the MLD rule minimizes error 
probability. 

We  now give a short description of a  trellis [l] for the code 
C where the search will be performed. Let H be a parity-check 
matrix of C, and let hi, 0  _< i < n be the column vectors of 
H. Furthermore, let c = (CO, cl, . . . , ~~-1) be a codeword of 
C. W ith respect to this codeword, we recursively define the 
states St, -1 _< t < n, as 

III. GENERALIZED DIJKSTRA’S ALGORITHM 

Dijkstra’s Algorithm (DA) [ll] is usually employed to find 
a minimum cost path from the start node to every other node 
of a  weighted directed graph (in our case, a trellis). In this 
case the algorithm visits all the nodes in the graph, but can 
easily be modified to find a minimum cost path from the start 
node to the goal node, that is, an optimal path. This modified 
algorithm may not visit all the nodes in the graph. We  now 
give a short description of this algorithm. 

As in Wolf’s algorithm, a node in the trellis may be visited 
twice. Thus, for each visited node m, we store the path P’, 
from the start node to node m  with minimum cost g(m) 
found so far by the algorithm. That is, if P’, has labels 

e  
Q),;iJl,..., ve, then g(m) = c($i - (-1)‘i)2. Note that 

and 

s-1 = 0  i=o 
the value of g(m) may be updated, since the minimum cost 
path from start node to node m  may change as the search 

t 
St = St-1 + ctht = Cc,hi, 0  5 t < n. 

i=o 

Clearly, ~~-1 = o for all codewords of C. The above recursive 
equation can be used to draw a trellis diagram. In this trellis, 
s-1 = 0 identifies the start node that is at level -1; s+i = 
0 identifies the goal node that is at level n  - 1; and each state 
.str 0  5 t < n - 1  identities a node at level t. Furthermore, 
each transition (arc) is labeled with the appropriate codeword 
bit ct. Thus, there is a one-to-one correspondence between 
the codewords of C and the sequences of labels encountered 
when traversing a path in the trellis from start node to the goal 
node. A more detailed description of a  trellis for a  linear block 
code can be found in [28]. Note that the trellis defined here 
corresponds to the expurgated trellis of [28]. 

In order to implement the MLD rule using the trellis for 
C, we need to associate a cost to every arc in this trellis. 
Therefore, the cost of the arc from St.-i to st = St-1 + c&t is 
assigned the value (& -( -l)ct)2. The solution of the decoding 
problem is thus converted to finding a path from the start node 
to the goal node, that is, a  codeword c = (CO, cl, . ..,cn-1 ) 

n-1 

such that c(+i - (-l)ci) 2  is minimum among all paths from 
i=o 

the start node to the goal node. Such a path is denoted as an 
optimal path. 

Wolf’s algorithm [28] finds an optimal path by applying the 
Viterbi algorithm [27] to search through the trellis for C. Thus, 
this decoding algorithm uses a breadth-first search strategy to 
accomplish this search. The time and space complexities of 
Wolf’s algorithm are of O(n x min(2”,2”-L)) [lo], since 
it traverses the entire trellis. However, Forney has given a 

progresses. 
It will be convenient to introduce the notion of a  successor 

operator that is applied to a node. This operator, when applied 
to a node m, (1) gives all the immediate successors of node 
m; (2) for every immediate successor of node m, checks 
if such a node was visited before; (3) for every immediate 
successor of node m, stores the minimum cost path from the 
start node to this node and the cost of this path found so far by 
the algorithm. We  call this process of applying the successor 
operator to a node expanding the node. 

DA maintains two lists of nodes of the given trellis, namely, 
list CLOSED and list OPEN. List CLOSED contains the set of 
nodes that were expanded. List OPEN contains the set of nodes 
that were visited, but not expanded. The algorithm selects node 
m  on list OPEN with minimum g(m). It expands this node and 
inserts it into list CLOSED. It inserts into list OPEN only the 
immediate successors of node m  that have not been expanded 
before. When the algorithm selects to expand the goal node it 
has found an optimal path. 

The correctness of this algorithm is based on the following 
fact: When a node is selected for expansion, the algorithm 
has already found a minimum cost path from the start node to 
this node [ll] and, consequently, we do not need to update the 
lowest cost path‘from the start node to any node that is already 
on list CLOSED. Furthermore, when expanding node m, we 
do not need to update the lowest cost path from the start node 
to any descendant of an immediate successor of node m  that 
is already on list CLOSED. 

The problem of determining whether a newly visited node is 
on list OPEN or list CLOSED can be computationally expen- 
sive, and we may therefore decide to avoid making this check, 
in which case the search tree may contain several repeated 
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nodes, and list CLOSED does not need to be maintained. These 
node repetitions lead to redundant successor computations and 
there is a trade-off between the computation cost of testing 
for repeated nodes and the computation cost of generating a 
larger search tree. Note that in DA, testing for repeated nodes 
is performed. 

As pointed out before, DA associates to every node m  
visited by the value g(m). This value can be treated as an 
estimate of the cost of the minimum cost path from the start 
node to node m. However, in many graph search problems 
we may be able to obtain an estimate, h(m), of the cost 
of the minimum cost path from node m  to the goal node. 
Thus f(m) = g(m) + h(m) can be treated as an estimate 
of the minimum cost path from the start node to the goal 
node that goes through node m. We  will impose h(s,-1) = 0 
on the heuristic function since s+i is the goal node and 
no estimation is necessary for it. The Generalized Dijkstra’s 
Algorithm (GDA) uses f(m) instead of g(m) to guide the 
search through the trellis. Function h is known as a heuristic 
function, and function f as an evaluation function [22]. 

In order to guarantee that GDA finds an optimal path, we 
impose the following condition on the heuristic function h. 

Condition: For all nodes rni and rnj such that node rnj is 
an immediate successor of node mi, 

h(w) 5 h(mj) + c(mi, mj), (2) 

where c(m;, mj) is the arc cost between node rni and node 
mj. 

The condition guarantees that when a node is selected for 
expansion GDA has already found a minimum cost path from 
the start node to this node. Thus when GDA selects to expand 
the goal node, it has already found an optimal path. The proof 
that GDA finds an optimal path is given in Appendix A. 

From now on we will assume that the function h used in 
GDA satisfies the condition. 

The following results of GDA will be used in the design of 
our decoding algorithm. Proofs of these results can be found 
in Appendix B. 

Result 1) For every node m, 

h(m) I h*(m), 

where h*(m) is the actual cost of a  minimum cost path from 
node m  to the goal node. 

Result 2) If node mi is selected for expansion, then 
f(m) 5 f(q), h  w ere rnj is an immediate successor of 
node mi, which is not on list CLOSED. 

Result 3) Let P be a path found by GDA from the start 
node to the goal node with cost UB. GDA still finds an 
optimal path if it removes from list OPEN any node m  for 
which f(m) 2 UB. 

From the description of GDA it is clear that the most 
important factor in the efficiency of GDA is the selection 
of the heuristic function h and, consequently, the evaluation 
function f. 

Finally, we remark that GDA is a particular case of Algo- 
rithm A* that is widely used in Artificial Intelligence search 
problems [22]. Algorithm A* finds an optimal path, but it 

imposes less restriction on the heuristic function h than we 
have imposed. Furthermore, Algorithm A* can be considered 
as a branch-and-bound type algorithm. In general, it is difficult 
to give any idea of how well a  branch-and-bound algorithm 
will perform on a given problem. Nevertheless, the technique 
is sufficiently powerful that it is often used in practical 
applications [7]. 

IV. DECODING ALGORITHM 

Our decoding algorithm uses GDA to search through a trellis 
for a  code C* that is equivalent to code C. C* is obtained from 
C by permuting the positions of codewords of C in such a way 
that the first k positions of codewords in C* correspond to the 
“most reliable linearly independent” positions in the vector 4. 
Let G* be a generator matrix of C* whose first Ic columns 
form the k x Ic identity matrix. The time complexity of the 
procedure to construct G* is O(k2 x n); however, many of 
the operations performed during this construction can be done 
in parallel. In this case, the time complexity becomes O(kx n). 

In our decoding algorithm the vector I$* = (&, &, . . . , 
$Lpl) is used as the “received vector.” It is obtained by 
permuting the positions of I$ in the same manner in which 
the columns of G are permuted to obtain G*. 

GDA, guided by an evaluation function f, searches through 
a trellis for C*. As noted before, function f is defined for 
every node m  in the trellis as 

f(m ) = g(m) + h(m), 
where g(m) is the lowest cost path from the start node to node 
m  found so far by the algorithm. 

We  now define our heuristic function h, which satisfies the 
condition. In order to define a function h that is a  “good” 
estimator of h* we must use properties of the linear block 
code that are invariant under any permutation of the positions 
of the codewords. 

Let HW = {wi 10 5 i 5  I} be the set of all distinct 
Hamming weights that codewords of C may have. Further- 
more, assume wa < wi < . . . < W I. Our heuristic function 
is defined to take into consideration the linear property of C*- 
and that the Hamming distance between any two codewords 
of C* must belong to HW. 

Let c* be a given codeword of C*. Our function h will 
be defined with respect to c*, which is called the seed of the 
decoding algorithm. 

1) For nodes at level f?, -1 2 e < Ic - 1: 
Let m  be a node at level l, and let Be, isi, . . . , cg be the labels 
of the lowest cost path P’, from the start node to node m  
found so far by the algorithm. We  now construct the.set, T(m), 
of all binary n-tuples w such that their first ! + 1 entries are 
the labels of P’, and dH(w, c*) E HIV, where dH(Z, y) is 
the Hamming distance between x and g. That is, 

T(m) = {wlw = (‘iio,Fl, . . . ,tie,we+l, . . . , w,-I) 
and dH(w,c*) E HIV}. 

Note that T(m) # 0. This can easily be seen by considering 
the binary Ic-tuple u = @a, Vi, . . . , Fl, 0, . . . ,O) and noting 
that u. G* E T(m). 
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We now define function h as 

-1 n-1 

h(m) = w$~ ) c ((bf - (-1)“q2 . 

is+1 1 

2) For nodes at level e, Ic - 1  5 e < n: Because of the linear 
property of C* and the fact that the first k columns of G* are 
linearly independent, there is only one path from any node 
at level k - 1  to the goal node. Furthermore, we can easily 
determine the labels vi, w;+~, . . . , ~;-i of this path by using 

n-1 

G* and calculate its cost as c (4; - (-1)“:) 2. In view of 
i=k 

the above fact, we define function h as 
n-l 

h(m) = c (4: - (-l)‘:z)2, 
id+1 

where w;+i, v;+~, . . . , v:-~ are the labels of the only path P, 
from node m  to the goal node. Note that if node m  is the goal 
node, then h(m) = 0. Furthermore, h(m) = h*(m) since there 
is only one path from node m  to the goal node and h(m) is 
the cost of this path. 

The proof that our heuristic function satisfies the condition 
is given in Appendix C. 

For a given seed c*, the evaluation function f is f(m) = 
g(m) + h(m). It is very important that the time complexity 
for calculating h(m) be “reasonable,” for otherwise the time 
taken by the decoding algorithm is spent calculating h(m), 
even though there are only a few nodes to be visited in the 
trellis. In Appendix D we present an algorithm, whose time 
complexity is O(n), to calculate h(m) for node m  at level 
l, -1 5 & < k - 1. 

We  now give a property of our heuristic function h that will 
be used to speed up the decoding procedure. The proof of this 
property is given in Appendix E. 

Property: For a given seed c*, if nodes mei and me2 are 
immediate successors of node mj, then 

f(mel) =f(mj) or f(me2) =f(mj), where -1 <j < L-2. 

We  now give a geometric interpretation of f(m) for a  node 
m  at level !, -1 < e < Ic - 1. Consider the set of all n- 
tuples over the real numbers. Fig. 1  depicts c*, 4*, and all the 
points w = (wa,wi,... , II,-1) whose entries are 0 and 1 and 
dH (c*, w) E HW. For calculating f(m), we consider the low- 
est cost path P’, from the start node to node m  found so far by 
the algorithm. Let ;iio, ?J . . . , ?7l be the labels of P’,. Now we 
consider only those points w defined above whose first .!+ 1 en- 
tries are Vu,Zi,. . . , Ft. In Fig. 1  they are indicated by a check 
mark. From the points with check marks we select one that 

e  n-1 

minimizes c($f - (-l)“i)2+ c (4: - (-l)Vi)2. This 
i=O i=e+1 

point is w’ = (Ve,??i, . . . ,Ve, wi+i, . . . , wk-i) in Fig. 1. Thus 

f(m) = &; - (-1)y2+ A5 (c#J: - (-l)“:)2. 

i=O id?+1 . 
It may be impossible to determine the set HW for some 

block codes; however, our algorithm will still find an optimal 
path even if in the computation of function h the algorithm 

4* = (&M . ..&-l) 

w’= (~0,~1,...,,211,w’1+1;.. tJ’ ) J?Z-1 

f(m) = Cfzo(qbT - (-l)“<)’ + ~~~i+l($~ - (-1)“:)” 
Fig. 1. Geometric interpretation of f(m) 

considers all the Hamming weights of any superset of HW. 
If the optimal path is unique, then the decoding algorithm 
using HW will never expand more nodes than an algorithm 
using a superset of HW. This result is a  consequence of 
the following property of GDA: If there are two evaluation 
functions fl(m) = gi(m) + hi(m) and f2(m) = ga(m) + 
ha(m) satisfying hl (m) < hz(m) for every node m, the GDA 
using evaluation function fa will never expand more nodes 
than the GDA using evaluation function fi [22]. Furthermore, 
if there exists a unique optimal path, then the above results 
hold when hi(m) 5 hz(m) is satisfied for every node m. 

We now present some properties of the decoding algorithm 
that can be used to speed up the decoding procedure. By 
the property, when our algorithm expands a node m  at level 
e  < ,4 - 2, we need to compute the value of function f for 
only one of its successors, because the value of function f 
for the other successor is equal to that of node m  and we can 
easily determine which successor has the value f(m). Thus 
our algorithm is a depth-first search type algorithm. 

Let node ml at level e  < Ic - 2  be the node on list OPEN 
n-1 

selected for expansion. Let h(ml) = c (4: - (-l)“i)2. 
i=e+1 

Consider now the path P,,,,, from node ml to node ma at 
level k - 2, whose labels are we+l, we+z, . . . , v&s. It is easily 
seen by the property and the definition of our function h that 
the value of function f for every node in path P,, ,m2 is equal 
to f(mi). Furthermore, by Result 2  we can conclude that path 
P ml,m2 will be the path followed by the algorithm. Thus, we 
do not have to calculate the values of function f for the nodes 
of this path, which reduces considerably the time complexity 
of the algorithm. 

Our algorithm will search the trellis only up to level k - 1, 
since we can construct the only path from any node m  at level 
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L - 1  to the goal node using G*. The labels of the combined 
paths from the start node to node m, and from node m  to the 
goal node, correspond to a codeword. So the cost of this path, 
which is equal to f(m), can be used as an upper bound on the 
cost of an optimal path. By Result 3, we can use this upper 
bound to reduce the size of list OPEN. 

The trellis search can be stopped at any time when we 
know that a generated codeword cg = 

( 
c:~, c&, . . . , c;(~-~) > 

satisfies Inequality 1. The following criterion can be used to 
indicate this fact. 

71-l 

Criterion: If h(s-1) = c (45 - (-l)‘;~)~, where 
j=o 

h(s-1) is calculated with respect to seed c;, then cz satisfies 
Inequality 1. 

Recall that s-1 is the start node. 
The validity of the criterion is based on the fact that, since 

n-1 

C* C T(s-i), then h(mbis-1) 5 c (q5j’ - (-l)czj)2 
i=o 

for any mbit,* E mbiC*. Note that ihe decision criterion 
introduced in [25] is equivalent to the criterion. 

It is important to mention that seed c* does not need to be 
fixed during the decoding of I$*. When seed c* is allowed to 
change, we have an adaptive decoding procedure. In order to 
avoid increasing computation time when the seed is changed 
at some stage of the decoding procedure, we may not want to 
recalculate the values of function h with respect to this new 
seed for every node on list OPEN. Under these circumstances, 
nodes on list OPEN may have values of function h calculated 
with respect to different seeds; thus we can no longer guarantee 
that Inequality 2 will be satisfied, and we cannot assure that 
when a node is selected for expansion the decoding algorithm 
has already found a minimum cost path from the start node 
to this node. Therefore, the decoding algorithm may not find 
an optimal path, but by not checking for repeated nodes it is 
ensured that the decoding algorithm will find an optimal path. 
This can easily be seen, since the procedure will now generate 
a decision tree, and h(m) 5 h*(m) for every node of the 
tree, independently of the seed used to compute h(m). Thus, 
f(m) < g(m) + h*(m). As the procedure is now generating a 
decision tree, the cost of the minimum cost path from the 
start node to the goal node that goes through node m  is 
g(m)+h*(m). If we do, not check for repeated nodes, then the 
adaptive version of GDA will never delete all optimal paths 
during the search procedure. 

V. SIMULATION RESULTS FOR THE AWGN CHANNEL 

In this section we present simulation results for the (104,52) 
binary extended quadratic residue code and the (128,64) 
binary extended BCH code when these codes are transmitted 
over the additive white Gaussian noise (AWGN) channel. We  
assume that antipodal signaling is used in, the transmission so 
that the jth components of the transmitted codeword c and 
received vector r are 

cj = (-l)“jJE and rj = (-l)cjfi+ ej, 

respectively, where E is the signal energy per channel bit and 
ej is a  noise sample of a  Gaussian process with single-sided 
noise power per hertz No. The variance of ej is No/2 and 
the signal to noise ratio (SNR) for the channel is y = E/No. 
In order to account for the redundancy in codes of different 
rates, we used the SNR per transmitted information bit yb = 
&/No = yn/k: in our simulation. For the AWGN channel, 
Imbiq5 = *T [17], so we can substitute r(r*) for +(4*) in 
our decoding algorithm. 

We  do not know HW for these two codes, so we use a 
superset for them. For (104,52) we know that dmin = 20 and 
that the Hamming weight of any codeword is divisible by 4 
[19]. Thus for this code the superset used is (~1 (X is divisible 
by 4 and 20 2 x 5 84) or (X = 0) or (x = 104)); for 
(128,64), the superset used is {XI (x is even and 22 < x < 
106) or (x = 0) or (X = 128)}, since this code has dmin = 22. 

In the implementation of our decoding algorithm we decided 
not to check for repeated nodes. In this situation the graph 
becomes a decision tree, thus we need not keep list CLOSED. 
Furthermore, list OPEN is always kept ordered according to 
the values f of its nodes. 

If we assume that, 1) the time complexity of the algorithm 
that constructs G* is O(k x n) (implemented by performing 
operations in parallel), 2) the data structure used to implement 
list OPEN is a B-tree [26], and 3) the time complexity of 
the algorithm that constructs the codeword u . G* is O(n) 
(implemented by performing the operation in parallel), then 
the time complexity and the space complexity of our algorithm 
are O(n x N(r)) and 0( n x M(r)), respectively, where 

N(r) = the number of nodes visited during the decoding 
of r; 

M(r) = maximum number of nodes stored on list OPEN 
during the decoding of r. 

The values of N(r) and M(r) will strongly depend upon 
SNR. Up to now we do not have a “good” estimator of 
these values; however, they are upperbounded by 2”+l - 1. In 
the worst case, therefore, the time and space complexities of 
our algorithm are O(n x 2”), which are, under the condition 
k I (n - k), equal to those of Wolf’s algorithm [28], which 
are O(n X min(2k,2n-L)) [lo]. 

Since our decoding algorithm will generate a decision tree, 
we have implemented its adaptive version without compro- 
mising its optimality. The seed c* is updated according to 
the following rule: For every codeword CT generated during 
the decoding of r*, if the value of h(s-1) calculated with 
respect to CT is greater than the value of h(s-1) calculated 
with respect to c*, then set CT as the seed. The rationale behind 
this rule is that, for any node m, h(m) 2 h(s-1) whenever 
these values are calculated with respect to the same seed. We  
remark here that we did not recalculate the values of function 
f with respect to the ‘new seed for the nodes on list OPEN. 
Simulation results attested to the fact that the efficiency of this 
decoding algorithm depends strongly on the selection of the 
initial seed. 
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TABLE1 TABLE III 
SIMULATION FOR THE (104.52) CODE DISTRIBUTION OF N(r), C(r), AND M(r) 

FOR THE (104,52) CODE FOR ~b =  5  dB 

TABLE II 
BIT ERROR PROBABILITY AND CODING GAIN FOR THE (104,52) CODE 

I I I I I I 

/ ‘t’b 1 5dB 1 6dB 1 7dB j 8dB j 

pb 2.028 x 5.023 x 1.494 x 3.079 x 
lo-lo* IO-14* lo-lS* lo-24* 

CG 7.90 8.35 8.80 9.05 

Interval 

0 

Frequencies 

N(r) 1 c r) 1 M(r) 
34030 1 0 1 34196 

i-2000 7 953 1 34994 ] 801 1 
2001-4000 8 2 I 0 
4nn14nnn II 1 I 1  n 

I 
6001-8000 1 0 0 

8001-10 000 1 0 1 1 
10 001-l? nnn  5 ““” II 

II 
m  ‘ I 

I 
A ” I 

I 
m  L I 

I 
18 00140 000 1  3 0 

40 001-144 000 3 0 0 
more than 144 000 0 0 0 

TABLE IV 
SIMULATION FOR THE (128,64) CODE 

In our implementation the initial seed c; is obtained as 
follows. Let u = (~0, ~1,. . . , uk-1) where 

andr*=(rz,r; ,..., Tt-r,ri ,..., r$-i).Now,cT)=u-G*. 
First, we give simulation results for the (104,52) binary 

extended quadratic residue code. Quadratic residue codes are 
known to be very good codes that are difficult to decode even 
when only hard-decision decoding is employed [4], [8], [5], 
[23]. Some quadratic residue codes have been decoded by 
using information-set decoding algorithms [3]. However, these 
algorithms are suboptimal, that is, they do not implement the 
MLD rule. The only two maximum-likelihood soft-decision 
decoding algorithms known to us that can be used to decode 
the (104,52) code are Wolf’s algorithm [28] and Hwang’s 
algorithm [17]. 

It is difficult to compare the performance of our algorithm 
with that of Hwang’s, because he found the subset of code- 
words that must be stored for implementing the MLD rule only 
for very short codes [17, Table I 1. However, we observe that 
the complexities of Wolf’s algorithm are approximately the 
same as those of Hwang’s for the codes presented in Table I 
of [17]. More evidence of this claim can be obtained by using 
the results presented in [9]. We  will therefore compare the 
performance of our algorithm to that of Wolf’s. We  will assume 
for comparison purposes that the time and space complexities 
of Wolf’s algorithm are of O(n x min(2”,2”-“)), since it is 
difficult to find, using Forney’s procedure [14], a  trellis with 
minimum number of states for the (104,52) code. 

Simulation results for the (104,52) code for yb equal to 5 
dB, 6 dB, 7 dB, and 8 dB are given in Table I. These results 
were obtained by simulating 35 000 samples for each SNR. 
Note that the time and space complexities of Wolf’s algorithm 
are proportional to 252 M  4.50 x 10i5, where 

1) N(r) = the number of nodes visited during the decoding 
of r; 

2) C(T) = number of codewords constructed in order to 
decide on the closest codeword to r; 

3) M(r) = maximum number of nodes stored on list OPEN 
during the decoding of T; 

4) max = maximum value among 35 000 samples; 
5) ave = average value among 35 000 samples; 
6) ~b = &/No. 
Since during simulation no decoding errors occurred for 

any of the above SNR’s, the bit error probability is estimated 
using the formula [13] 

(3) 

where nd is the number of codewords of Hamming weight 
dmin. The value of nd was calculated using the results pre- 
sented in [20]. Table II gives an estimate of the bit error 
probability and coding gain for above SNR’s. 

1) pb = bit error probability; 
2) CG = coding gain (dB); 
3) * Calculate using (3). 

The distributions of N(T), C(T), and M(T) for the (104,52) 
code for Tb equal to 5 dB are given in Table III. 

We  now give the simulation results for the (128,64) code. 
Since an algebraic decoder that corrects up to 10 bit errors 
can be constructed for this code, the maximum-likelihood soft- 
decision decoding algorithm recently proposed in [18] can be 
implemented. However, in this paper simulation results are 
given only for very short codes up to length 23. Suboptimal 
decoding procedures for this code have been proposed in 
[12], [3]. Again, we will assume for comparison purposes 
that the time and space complexities of Wolf’s algorithm are 
of O(n x min(2”,2”-‘)), since it is very difficult to find, 
using Forney’s procedure [14], a  trellis with the minimum 
number of states for the (128,64) code. Note that the time 
and space complexities of Wolf’s algorithm are proportional 
to 264  M  1.84 x 101'. 

Simulation results for the (128,64) code for Tb equal to 5 
dB, 6 dB, 7 dB, and 8 dB are given in Table IV. These results 
were obtained by simulating 35 000 samples for each SNR. 
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TABLE V 
BIT ERROR PROBABILITY AND CODING GAIN FOR THE(~~~,~~)CODE 

Yb 5 dB 6 dB 7 dB 8 dB 
pb 1.57 x10-12* 1.71~10-~~* 1.82 ~lO-~l* 1.02 x10-27* 

CG 8.85 9.22 9.50 9.70 

Table V gives only an estimate of the bit error probability 
and coding gain for above SNR’s, because no decoding error 
occurred during simulation. 

When calculating Pb using (3), the value of 72d = 243840 
was taken from [2]. 

The distributions of N(T), C(T), and M(T) for the (128,64) 
code for “/b equal to 5 dB are given in Table VI. 

Simulation results for these codes show that for the 35 000 
samples tried, a drastic reduction on the search space was 
achieved for most practical communication systems where the 
probability of error is less than 10T3 (Yb greater than 6.8 dB) 
[8], even when the algorithm uses a superset of HW. 

In order to verify the contribution of our heuristic function 
h to the efficiency of our decoding algorithm, we implemented 
DA with our speed-up techniques for the (128,64) code. 
Simulation results for 6 dB indicate that for the two samples 
that did not satisfy the criterion among the 35 000 samples, 
more than 350 000 nodes needed to be stored. On the other 
hand, our algorithm needed to store at most 856 nodes to 
decode these samples. 

Simulation results showed that our adaptive decoding al- 
gorithm described in this section is at least one order of 
magnitude more efficient in time and space than that proposed 
in [15], where the seed is c* = 0 during the entire decoding 
procedure. 

VI. CONCLUSION 

In this paper we have proposed a novel decoding techfiique. 
Simulation results for the above linear block codes show that 
for the 35 000 samples tried this decoding technique drastically 
reduced the search space, especially for most practical com- 
munication systems where the probability of error is less than 
10e3 (Yb greater than 6.8 dB) [8]. For example, the results of 
Table 4 at 6 dB show that, fo; the 35 000 samples tried, in the 
worst case this decoding algorithm is approximately 15 orders 
of magnitude more efficient in time and space than Wolf’s. 

We would like to emphasize here the flexibility of this 
decoding algorithm. For example, (1) it is applicable to any 
linear block code; (2) it does not require the availability of a 
hard decision decoder; (3) in order to make it more efficient 
to decode a particular code, we can design a heuristic function 
that takes advantage of the specific properties of this code; (4) 
any stopping criterion can be easily incorporated into it. 

Furthermore, we would like to point out that the algorithm 
present in this paper is suitable for a parallel implementation, 
one reason being that when calculating h(m) for node m, the 
algorithm has determined the labels of the path from node m to 
a node at level lc - 2 that it will follow, so the successors of the 
nodes in this path can be open simultaneously and processed 
independently. This will substantially reduce the idle time of 
processors and the overhead due to processor communication; 

TABLE VI 
DISTRIBUTION OF N(r), C(r), AND M(r) 
FOR THE (128,64) CODE FOR yb = 5 dB 

Interval 

0 
l-2000 

N(r) 
33614 
1324 

Frequencies 
C(r) 

0 
34988 

M(r) 
33893 
1096 

2001-4000 21 2 4 
4001-6000 8 2 4 
6001-8000 7 0 0 

8001-10 000 7 4 0 
10 001-18 000 7 2 3 
18 00140 000 4 2 0 

40 001-218 000 8 0 0 
more than 218 000 0 0 0 

thus we expect a very good speed-up from a parallel version 
of our algorithm. 

We remark here that for computing the heuristic function 
h we used only one seed. However, we can generalize the 
procedure to calculate function h with respect to several seeds. 
Details of this approach can be found in [16]. 

We conjecture that this decoding algorithm will be efficient 
for most practical communication systems where the probabil- 
ity of error is less than lop3 (yb greater than 6.8 dB). Since 
the number of nodes opened during the decoding procedure 
is a random variable, in order to verify this conjecture the 
probability distribution of the number of nodes visited must be 
computed in order to determine the computational performance 
of the proposed decoding algorithm. 

For low SNR and for codes of moderate to long lengths, 
the number of nodes opened during the decoding procedure 
may be great and the proposed decoding algorithm impractical. 
Thus the development of a suboptimal decoding algorithm 
based on GDA seems to be a promising line of research. 

APPENDIX A 

In this appendix we prove by contradiction that if the con- 
dition is satisfied, then when a node is selected for expansion, 
GDA has already found a minimum cost path from the start 
node to this node. Thus, when the algorithm selects to expand 
the goal node, it has found an optimal path. 

Let node mt be any node selected for expansion by GDA. 
Assume that the path from the start node to node mt found so 
far by GDA is not a minimum cost path from the start node 
to node mt. Let P& = (m-l,mo,. . . ,me,. . . ,mt-l,mt) be 
a minimum cost path from the start node to node mt. Let 
node me be the first node in this sequence of nodes that is 
on list OPEN. Furthermore, let g*(m) be the actual cost of 
a minimum cost path from the start node to node m. By the 
condition, 

g*(mt-1) + Wmt-1) 5 g*(mt-1) + h(w) 

+ c(mt-1, mt) = g*(m) + h(m). 

By transitivity we have that 

g*(me) + h(me) _< g*(mt) + h(mt). 

Since s*(me) + h(me) = f(me) and g*(mt) < g(mt), then 
f(me) < f(mt). Contradiction. Cl 
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APPENDIX B 

Proof of Result 1. 

Let mt be any node in the trellis. Let Pt, = 
(mt, mt+l, . . . ,mn-2,m,-l) be a minimum cost path 
from mt to the goal node. Thus, the cost of this 

n-2 

path is h*(mt) = xc(mi,mi+l). By the condition, 
i=t 

h(m,-2) I h(m,-$-; c(m,-2, mm-l). By transitivity, 

h(w) I h(m,-1) + Cc(mi,mi+l). Since h(m,-1) = 0, 
i=t 

then h(mt) I: h*(mt). cl 

Proof of Result 2. 

Assume node rni is selected for expansion. We  now consider 
two cases: 

Case 1. mj was not visited. In this case 

f(mj) = g*(w) + c(mi,mj) + h(mj), 

where g*(m) is the actual cost of a  minimum cost path 
from the start node to node m. By the condition, f(mi) > 
g*(w) + h(m) = f(m). 

Case 2. rnj is on list OPEN. In this case, since rnj is not 
selected for expansion or by Case 1, then f(mi) 2  f(mi). 0  

Proof of Result 3. 

Consider an optimal path P* = (m-.1, mo, . . . , me, . . . , 
m,-1). Let node me be the first node in this sequence of 
nodes that is on list OPEN. Thus 

f(me> = 9* (me) + h(me), 

where g*(m) is the actual cost of a  minimum cost path from 
the start node to node m. By Result 1, 

f(me) = g*(me) + h(me) 5 g*(me) + h*(me). 

Since g*(me) + h*(me) 5 UB, then 

Case 2. 1 = k - 1. h(mr) 5 h*(mr) and h(ms) = 
h*(Q). Since h*(mr)-c(mr,ms) _< h*(mz), then h(ml) 5 
h*(m2) + c(ml, m2) = h(m2) + c(ml, m2). 

Case 3. c > k - 1. h(ml) = h*(ml) and h(m2) = h*(ms). 
Since h*(mr)-c(mr, m2) = h*(ms), then h(mr) = h(m2)+ 
c(ml, m2). q 

APPENDIX D 

Given +* and a seed c*, we present an algorithm to calculate 
h(m) for node m  at level e, -1 5 e < k - 1, whose time 
complexity is O(n). 

First, we present this algorithm for the special case c*= 0. 
Then we show how this algorithm can be applied to calculate 
h(m) for the case c* # 0 by modifying 4*. 

D.l Algorithm for the Case c* = 0 

We  will show that to calculate h(m) we need to construct 
at most two vectors belonging to T(m). 

Consider a node m at level C and let P’, be the lowest 
cost path from the start node to node m  found so far by the 
algorithm. Furthermore, let 370, tir, . . . ,Vl be the labels of P’, . 

P 
Since f(m) = g(m) + h(m) = 2(&I. - (-l)“i)2 + h(m), 

i=o 
then h(m) depends only on the values of $;+l, $G+2,. . ., and 
&f-l. 

Let ue = (ue(e+l), ue(e+q, . . . , Ue(,-1)) be obtained by 

permuting the positions of ($Z+, , $;+2, . . . , &r) in such 
a manner that uei < ue(i+r) for (e + 1) 5 i 5  (n - 2). 
We  remark here that we can easily construct ue from ~-1. 
Furthermore, let WH(Z) be the Hamming weight of x. 

Recall that when c* = 0, 

T(m) = {WIV = (Vo,Vl, . . . ,71e,Ve+l,. . . ,Un-l) 

and WH(V) E HIV}, 
n-1 

and h(m) = min 
VET(m) 

c (& - (-l),i)2 . 
ke+i 

f(me) I UB. Because of the definition of T(m) we can compute h(m) 

If UB = g*(me) + h*(me), then P is an optimal path. If 
using ue instead of ($g+l, $s+2r. . . , &,). 

f(me) < UB, then node me will not be deleted from list IA ‘us = (~0,~i,...,~e,~,(e+i),~,(e+2),...,~,(e+~), 

OPEN. 0 us(e+,+i), . . . , w,(,-1)) and v = (Vu,&,. . . ,?Je,ue+r,. . . , 
v,-1) belong to T(m) such that WH(D,) = WH(V): 

APPENDIX C 
Furthermore, let v,(e+;) = 1 for 1  5 i 5  w and ~,(e+i) = 0 
for (w + 1) 5 i < (n - 1). Thus 

Let node ms at level I be an immediate successor of node 
ml. Furthermore, let tie be the label of the arc from node ml Vu,=(770,211 ,..., Be,l,l,..., 1,0 ,..., 0). 

to node ms and c(mr , m2) = (4; - ( -l)‘e) 2. We  now prove 
that h(ml) 5  h(m2) + c(ml,mz). 

It is easy to see that 

Case 1. C < k - 1. Let ‘u= (;iJa,?Jr, . . . ,?e, ?Je+r, l/e+s, . . . n-1 n-1 

n-l 

‘~~-1) E T(m2) such that h(m2) = c (4,’ - (-1)“i)2. 
C (Ue; - (-l)“s’)2 5 C (‘ZLei - (-1)“‘)2. 

ke+i i=e+i 

Since VE 
n-1 

i=e+i 

T(m2), then v E T(ml). Thus As a consequence, when calculating h(m) we need only to 
consider vectors in T(m) with patterns such as v,. Thus we 

c (4: - (-l)“i)2 + c(ml,ma) > h(ml), i.e., need to consider only a subset of T(m),T’(m), such that 
i=e+i it contains only vectors with patterns such as v,. Note that 
h(m) + c(ml,m) 2 h(m). T’(m) # 0. 
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We now consider three different patterns of pie. 
Case 1. All components of Ue are negative. 
In this case 

n-1 
h(m) = c (4: - (-l)Vi)2, 

where w = (~e,??r, . . . ,Ve, ue+r, . . . , w,-1) is the vector in 
T’(m) with maximum Hamming weight. 

&e 2. All components of 
zero. 

In this case, 
n-1 

h(m) = c 
i=e+i 

ue are greater than or equal to 

(4,’ - (-l)“i)2, 

where v = (?Ju,Vr, . . . ,Ve, ve+r, . . . , ~-1) is the vector in 
T’(m) with minimum Hamming weight. 

Case 3. ue has at least one negative and one positive 
component. 

I,et we be the number of components in ue that are negative 
and let G& = WH( (GO, Vr, . . . , Fe)). By Cases 1 and 2 we 
can easily show that at most two vectors in T’(m) must be 
inspected to calculate h(m). These vectors are as follows. 

1) V’ = (210,&,~e,V~+l,. . . , u;-1 , ) such that WH(‘U’) is 
the largest value among all the vectors w belonging to T’(m) 
satisfying We  5 ?iJe + We. 

2) vN = (Va,Ur, . . . ,Ve, r$‘+l,. . . , $-,), such that 
W ;l(v”) is the smallest value among all vectors D belonging 
to Z”(m) satisfying WH(V) > % iJe + we.We remark here that 
if ue belongs to Case 3, then at least one of the vectors ‘u’ 
or 0” will always exist. 

If both v’ and v” exist, then 

h(m) = min 

Otherwise, h(m) is calculated using the vector that exists. 

b.2 Algorithm for the Case c* # 0 

Now we show that we can use the procedure 
presented in D.l to calculate h(m) for any c* = 
( c&c; )...I ce*,c;+l )...I CL-1 ). In order to differentiate 
the heuristic function calculated with respect to seed 0 and 
seed c*, we denote the heuristic function, calculating with 
respect to 0 by ho. 

Consider a fictitious node m ’ such that a  path P,, from the 
start node to node m’ has labels Vu @  cz, Gr @  CT,. . . , Ve @  cz. 
We  will show that 

h(m) = vEtgk,, [ g  ((-l)“‘& - (el)wy}, 
i=e+i 

where T(m’) = {wjw = (~0 @  cG,~r $ CT,. . . ,Ue $ cz,ve+r, 
“‘7 ~-1) and ~H(v, 0) E HW}. Note that this value 

is ho(m’) when we assume that the received vector is 
((-l)$$, (-l)“L&. . .) (-1)“+$-1): 

= 

Let v = c* $ PI’. Thus v’ = ‘u $ c*. We  must show 
that v’ E T(m) iff ‘u E T(m’). v’ E T(m) iff v’ = 
(Vo,Vi ,..., Ve,Vi+, ,... Ud-1 , ) and ~H(v’, c*) E HIV iff 
?J @  c* = (Vo,Vr,. . . ,Ue,~~+,, . . . ,vLel) and d~(c* @  
v’,O)EHWiffv=(vo$C;;,~l~C;,...,ve~CT,v~+l~ 

C;+l,...,d-l @  CL-,), and d~(21,0) E HIV iff PI E T(m’). 

Since Y’ E T(m) iff PI E T(m’), then we may consider 
minimization over vectors in T(m’) instead of in T(m). Thus 

h(m) = 

Since the time complexity to find v’ and v” in Case 3 is 
O(n), we can conclude that the time complexity to calculate 
h(m) is O(n). 0  

APPENDIX E 

Proof of the Property 

Consider node me at level 1, -1 5 1 < k~ - 2. 
n-1 

Furthermore, let h(me) = c (4: - (-1)“:) 2  where 
i=e+i 

(11o,~i,...,ve,v~+l,W~+2,...,2)~-1) E T(me). Now con- 
sider the path P,,,,,-, = (me,me+r,. . . ,mk--2) from 
node me to node m&s at level k - 2  whose labels are 

whP2. We  now show that if me+1 is a  node in 
$~‘$$?t’le~el e  + 1, then f(me) = f(me+l). 

By definition f(me) = g(me) + h(me) = g(me) + 

( 6+1 - (-1)““+1)2 + nj (4: - (-1)“:)2 = g(me+l)+ 
ire+2 

n-1 

C (4: - (-1)“:). Since (210, VI,. . . , Ve, WL+l, W i+s, W i+s 
i=e+2 

, . . . , wL-~) E T(me+l), then 
n-1 

c (qs: - (-1)“:)2 
i=e+2 

n-1 

= min 
‘UET(me+l) 

C  (4: - (-l)“i)2 
i=e+2 

otherwise, 

-i 

n-1 

h(me) > &$n4) c (qq - (-1)“;)2 . 
i=e+i 1  
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