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Abstract—An efficient maximum-likelihood soft-decision decoding al-
gorithm for linear block codes using a generalized Dijkstra’s algorithm
was proposed by Han, Hartmann, and Chen. In this correspondence we
prove that this algorithm is efficient for most practical communication
systems where the probability of error is less than10�3 by finding an
upper bound of the computational effort of the algorithm. A suboptimal
decoding algorithm is also proposed. The performance of this suboptimal
decoding algorithm is within 0.25 dB of the performance of an optimal
decoding algorithm for the (104; 52) binary extended quadratic residue
code, and within 0.5 dB of the optimal performance for the(128; 64)
binary BCH code, respectively.

Index Terms—Block codes, decoding, Dijkstra’s algorithm, maximum-
likelihood, soft-decision, suboptimal.

I. INTRODUCTION

The use of block codes is a well-known error-control technique for
reliable transmission of digital information over noisy communication
channels. Linear block codes with good coding gains have been
known for many years; however, these block codes have not been
used in practice for lack of an efficient soft-decision decoding
algorithm.

Several researchers [2], [5], [20], [25] have presented techniques
for decoding linear block codes that convert the decoding problem
into a graph-search problem on a trellis derived from a parity-check
matrix of the code. Thus themaximum-likelihood decoding(MLD)
rule can be implemented by applying the Viterbi algorithm [24] to this
trellis. In practice, however, this breadth-first search scheme can be
applied only to codes with small redundancy or to codes with a small
number of codewords [16]. Some coset decoding schemes have been
proposed [10], [18], [19], [23]; however, they depend on the selection
of a specific subcode. An efficient algorithm has also been proposed
for long high-rate codes, and short- and moderate-length codes [4].

We recently proposed a novel maximum-likelihood soft-decision
decoding algorithm for linear block codes [11]–[13]. This algorithm
uses a generalization of Dijkstra’s algorithm (GDA) [17] to search
through the trellis for a code equivalent to the transmitted code.
The use of this priority-first search strategy drastically reduces the
decoding search space and results in an efficient optimal soft-decision
decoding algorithm for linear block codes. Furthermore, in contrast
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with Wolf’s algorithm [25], the decoding effort of our algorithm is
adaptable to the noise level.

In Section II we review the MLD of linear block codes, describe the
code tree for a linear code, and briefly state the decoding algorithm
proposed in [13]. In Section III we give an upper bound on the
computational effort of this algorithm, and in Section IV we present
a suboptimal decoding algorithm. Simulation results for the(48; 24),
the (104; 52) binary extended quadratic residue codes, and the
(128; 64) binary extended Bose–Chaudhuri–Hocquengham (BCH)
code are given in Section V, and concluding remarks in Section VI.

II. PRELIMINARIES

Let CCC be a binary(n; k) linear block code with generator matrix
GGG, and letccc = (c0; c1; � � � ; cn�1) be a codeword ofCCC transmitted
over a time-discrete memoryless channel with output alphabetBBB.
Furthermore, letrrr = (r0; r1; � � � ; rn�1), rj 2 BBB denote the received
vector, and assume thatPr (rj jci) > 0 for all rj 2 BBB and ci 2
GF(2). Let ccc be an estimate of the transmitted codewordccc.

The maximum-likelihood decoding rule(MLD rule) for a time-
discrete memoryless channel can be formulated as [3], [22], [23]

setccc = c`; whereccc` 2 CCC

and
n�1

j=0

(�j � (�1)c )2 �

n�1

j=0

(�j � (�1)c )2 (1)

for all cicici 2 CCC where

�j = ln
Pr (rj j0)

Pr (rj j1)
: (2)

We, therefore, may consider that the “received vector” is��� =
(�0; �1; � � � ; �n�1). In the special case where the codewords ofCCC

have equal probability of being transmitted, the MLD rule minimizes
error probability.

Our decoding algorithm (presented in [13]) uses the priority-first
search strategy, thus avoiding traversing the entire trellis. Guided
by an evaluation functionf , it searches through a graph that is a
trellis for a codeCCC�, which is equivalent to codeCCC. CCC� is obtained
from CCC by permuting the positions of codewords ofCCC in such a
way that the firstk positions of codewords inCCC� correspond to
the “most reliable linearly independent” positions in the received
vector���. Let GGG� be a generator matrix ofCCC� whose firstk columns
form a k � k identity matrix. In this decoding algorithm, the vector
���
� = (��0; �

�

1; � � � ; �
�

n�1) is used as the “received vector.” It is
obtained by permuting the positions of��� in the same manner in
which the columns ofGGG are permuted to obtainGGG�.

Since the probability is very small that our decoding algorithm
will revisit a node of the trellis, our implementation did not check
for repeated nodes [13]. In this case, the graph where the search is
performed is a code tree. A code tree is a way to represent every
codeword of an(n; k) codeCCC� as a path through a tree containing
n + 1 levels . In the code tree, every path is totally distinct from
every other path. The leftmost node is called thestart node, which
is at level0. There are two branches, labeled0 and1, respectively,
that leave each node at the firstk levels. After thek levels, there
is only one branch leaving each node. The2k rightmost nodes are
called goal nodes, which are at leveln.

To determine the sequence of labels encountered when traversing
a path from a node at levelk to a goal node, letGGG� be a generating
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matrix of CCC� whose first k columns form thek � k identity
matrix. Furthermore, letc0; c1; � � � ; ck�1 be the sequence of labels
encountered when traversing a path from the start node to a node
m at level k. Then ck; ck+1; � � � ; cn�1; the sequence of labels
encountered when traversing a path from nodem to a goal node,
can be obtained as follows:

(c0; c1; � � � ; ck; ck+1; � � � ; cn�1) = (c0; c1; � � � ; ck�1)GGG
�
:

The cost of the branch from a node at levelt to a node at level
t+ 1 is assigned the value(��t � (�1)c )2, wherec�t is the label of
the branch. Thus the solution of the decoding problem is converted
into finding a lowest cost path from the start node to a goal node.
Such a path will be called an optimal path.

We define the evaluation functionf for every nodem in the code
tree asf(m) = g(m)+h(m), whereg(m) is the cost of the path from
the start node to nodem andh(m) is an estimate of the minimum
cost among all the paths from nodem to goal nodes. The cost of a
path is obtained by summing all the branch costs encountered while
constructing this path. The GDA requires that for all nodesmi and
mj such that nodemj is an immediate successor of nodemi

h(mi) � h(mj) + c(mi; mj) (3)

where c(mi; mj) is the branch cost between nodemi and node
mj . This requirement guarantees that the GDA will find an optimal
path. In the GDA, the next node to be expanded is the one with the
smallest value off on the list of all leaf nodes (list OPEN) of the
subtree constructed so far by the algorithm. Thus list OPEN must
be kept ordered according to the valuesf of its nodes. Every time
the GDA expands a node, it calculates valuesf of two immediate
successors of this node and then inserts these two successors into
list OPEN. In this process the GDA visits are these two successors.
All the nodes on list OPEN also keep the labels of the paths from
the start node to them, which can be used to calculate functionf .
When the algorithm chooses to expand a goal node, it is time to stop
because the algorithm has constructed a path with minimum cost.

For practical applications there may exist many functionsh that
satisfy inequality (3). Following are some results presented in [13]
that can be used to design a suitable functionh to reduce the number
of nodes visited.

Theorem 1: Let h�(m) be the minimum cost among all the paths
from nodem to goal nodes and

f
�(m) = g(m) + h

�(m):

For every nodem, if h(m) satisfies inequality (3), then

h(m) � h
�(m):

Theorem 2: Let two functions

f1(m) = g(m) + h1(m)

and

f2(m) = g(m) + h2(m)

satisfy

h1(m) �h2(m) � h
�(m)

for every non-goal nodem. Furthermore, there exists a unique
optimal path. Then the GDA, using evaluation functionf2, will never
expend more nodes than the algorithm using evaluation functionf1.

Theorem 3: Assume that there exists a unique optimal path and
thatf�(mstart)(= h�(mstart)) is the cost of the optimal path, where
mstart is the start node. Then, for any nodem selected for expansion
(open) by the GDA

f(m) � f
�(mstart):

From the above theorems, we intend to design a functionh such
that the valueh(m) for any non-goal nodem is as large as possible;
however, the computational effort ofh(m) is usually higher when
h(m) is larger. The best functionh we may have ish�. Usually, the
computation ofh�(m) involves the search of a path from nodem
to a goal node with minimum cost, and such a search is intractable.
Thus there is a tradeoff between the number of nodes visited and the
computation complexity of functionh. Normally, to define a good
function h we need to have some knowledge of the structure of the
graph where the search is performed.

We use some properties of linear block codes to define our function
h [13] that satisfies inequality (3). For every received vector���,
since we order the components in��� according to their reliability,
the properties that we use to define functionh must be invariant
under any permutation of the positions of the codewords with which
we obtain CCC

� from CCC; otherwise, we need to define different
functionh for every received vector, which is impractical. Since the
Hamming distance between any two codewords is invariant under
the permutations with which we obtainCCC� from CCC, our heuristic
function is designed to take into consideration the fact that the
Hamming distance between any two codewords ofCCC

� must belong
to HW , whereHW = fwij0 � i � Ig is the set of all distinct
Hamming weights that codewords ofCCC may have. Furthermore,
assumew0 < w1 < � � � < wI . Let ccc� be a given codeword of
CCC
�. Our functionh is defined with respect toccc�, which is called the

seed of the decoding algorithm.

1) For nodes at level̀, with 0 � ` � k � 1:
Let m be a node at level̀ , and letv0; v1; � � � ; v`�1 be

the labels of the pathPPP 0

m from the start node to nodem. Let
the setT (m) contain all binaryn-tuplesvvv such that their first
` entries are the labels ofPPP 0

m anddH(v; cv; cv; c�) 2 HW , where
dH(x; yx; yx; y) is the Hamming distance betweenxxx andyyy. That is,

T (m) = fvvvjvvv = (v0; v1; � � � ; v`�1; v`; � � � ; vn�1)

anddH(v; cv; cv; c�) 2 HWg:

Note thatT (m) 6= ;. This can easily be seen by considering the
binary k-tuple uuu = (v0; v1; � � � ; v`�1; 0; � � � ; 0) and noting
that uuu � GGG� 2 T (m):

We now define functionh as

h(m) = min
vvv2T (m)

n�1

i=`

(��i � (�1)v )2 :

2) For nodes at level̀, with k � ` � n:
Let m be a node at level̀. We define functionh as

h(m) =

n�1

i=`

(��i � (�1)v )2

wherev�` ; v
�

`+1; � � � ; v
�
n�1 are the labels of the only pathPmPmPm

from nodem to a goal node. Note that if nodem is a goal
node, thenh(m) = 0. Since we can construct the only path
from any nodem at level `, with ` � k, to the goal node
usingGGG�, the estimateh(m) computed here is always exact.
Furthermore,h(m) = h�(m) since there is only one path from
nodem to a goal node andh(m) is the cost of this path.
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An algorithm to calculateh(m) for node m at level `, with
0 � ` � k � 1, whose time complexity isO(n), is presented in
[12] and [13]. In [13] it is shown that our decoding algorithm is a
depth-first search type that will search the code tree only up to level
k. The labels of the combined paths from the start node to nodem at
level k, and from nodem to a goal node, correspond to a codeword.
Therefore, the cost of this pathf(m) can be used as an upper bound
(UB) on the cost of an optimal path. Therefore, we can use this
UB to reduce the size of list OPEN. Furthermore, the algorithm will
still find an optimal path even if in the computation of functionh
the algorithm considers all the Hamming weights of any superset
of HW . More details about this decoding algorithm can be found in
[12] and [13], where we also described other speedup techniques such
as the stopping criterion and changing the seed during the decoding
procedure. It is shown by the simulation results in [12] and [13]
that speedup techniques reduce the number of nodes visited by our
decoding algorithm. Therefore, it is worthwhile to briefly describe
the speedup techniques here.

The search procedure can be stopped at any time when we know
that a generated codewordc�`c

�

`c
�

` = (c�`0; c
�

`1; � � � ; c�`(n�1)) satisfies
inequality (1). The following criterion can be used to indicate this
fact.

Criterion: Let mstart be the start node.

If h(mstart) =

n�1

j=0

(��j � (�1)c )2

whereh(mstart) is calculated with respect to seedc�`c
�

`c
�

` , thenc�`c
�

`c
�

` satisfies
inequality (1).

Hence, during the decoding procedure, if the algorithm generates a
new codeword and the cost of the path whose labels correspond to
this codeword is the lowest found so far by the algorithm, then we
may check whether the new codeword satisfies the criterion or not. If
so, this codeword satisfies inequality (1) and the decoding procedure
stops.

Another speedup technique is not fixing seedccc� during the decod-
ing of ����. When seedccc� is allowed to change, we have an adaptive
decoding procedure. In order to avoid increasing computational
complexity when the seed is changed at some stage of the decoding
procedure, we may not want to recalculate the values of functionh
with respect to this new seed for every node on list OPEN. Under
these circumstances, nodes on list OPEN may calculate the values of
function h with respect to different seeds.

Since all the theorems and simulation results are obtained when we
assume that codeCCC is transmitted over a memoryless, additive white
Gaussian noise (AWGN) channel, we describe the channel here. We
assume that antipodal signaling is used in the transmission so that the
jth components of the transmitted codewordccc and received vector
rrr are

cj = (�1)c
p
E and rj = (�1)c

p
E + ej

respectively, whereE is the signal energy per channel bit andej is
a noise sample of a Gaussian process with single-sided noise power
per hertzN0. The variance ofej is N0=2 and the signal-to-noise
ratio (SNR) for the channel is = E=N0. In order to account for
the redundancy in codes of different rates, we used the SNR per
transmitted information bitb = Eb=N0 = n=k = =R, where
R = k=n is the code rate.

III. A NALYSIS OF THE COMPUTATIONAL EFFORT OF THEALGORITHM

Our decoding algorithm can be considered a branch-and-bound
algorithm. In general, it is difficult to know how well a branch-and-

bound algorithm will perform on a given problem [6]; however, we
can derive an upper bound on the average number of nodes visited
by our decoding algorithm, which shows that this decoding algorithm
is very efficient for most practical communication systems where the
probability of error is less than10�3.

One important measure of the computational effort of an algorithm
is its time complexity [1]. If the complexity is taken as the “average”
complexity over all inputs of fixed size, then the complexity is
called the expected (average) complexity. In a decoding problem,
the inputs are received vectors. The time complexity of our decoding
algorithm is the multiplication of the number of nodes visited and
the time complexity to calculate the functionf(m) [11]. Since the
time complexity to calculate the functionf(m) in our decoding
algorithm isO(n), the average complexity of our decoding algorithm
is determined by the average numbers of nodes visited [12], [13].

In order to derive an upper bound on the average number of nodes
visited by our decoding algorithm, we will define another heuristic
function, hs, that satisfies the condition

hs(m) � hp(m) for every node of the code tree

wherehp is the function defined in the preceding section. Thus by
Theorem 2, the decoding algorithm using the functionhp will never
open more nodes than the decoding algorithm using the functionhs.

We now define the functionhs and the functionfs. Let m be a
node at level̀ , with ` � k�1, and letv0; v1; � � � ; v`�1 be the labels
of the pathPPP 0

m from the start node to nodem. Definehs andfs as

hs(m) =

n�1

i=`

(j�ij � 1)2

and

fs(m) = g(m) + hs(m)

where

g(m) =

`�1

i=0

�i � (�1)v
2

:

For a node at a level greater thank�1, the functionhs will be defined
as in the previous section. It is easy to see thaths(m) � hp(m)
for every node of the code tree. By the above definition, when
the decoding algorithm is calculatingfs(m) and hs(m), �i, with
0 � i � n � 1, and vi, with 0 � i � ` � 1, must be known.
Before the decoding procedure starts,�i can be obtained by (2) and
the received vector. Hence,�i can be stored and used when the
algorithm calculatesfs(m) and hs(m) for any nodem. When the
decoding algorithm visits nodem, the path from the start node to
nodem in the code tree is known, since all nodes on list OPEN keep
the labels of the paths from the start node to them. Therefore, the
labels on this path,vi, are known. Since the calculation offs(m)
and hs(m) involves only n terms, at most, of known values for
which the algorithm does not need to calculate or search, the time
complexities of calculatinghs(m) and fs(m) areO(n). However,
for any nodem at level `, with ` � k � 1, if the value of function
fs of its immediate predecessorm0 is known, we may obtainfs(m)
from fs(m

0) by the simple computation given below.
Assume that nodem is not the start nodemstart, and that node

m is at level `, with ` � k � 1. Let nodem0 be the immediate
predecessor of nodem. Furthermore, letyyy = (y0; y1; � � � ; yn�1) be
the hard decision of���. That is,

yi =
1; if �i < 0
0; otherwise.

Let v`�1 be the label of the branch between nodem0 and nodem
and let� denote a modula2 addition. Since

hs(m) = hs(m
0)� (j�`�1j � 1)2
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then

fs(m) = g(m) + hs(m)

= g(m0) + (�`�1 � (�1)v )2 + hs(m
0)� (j�`�1j � 1)2:

Consequently,

fs(m) = fs(m
0) + (y`�1 � v`�1)(4 � j�`�1j): (4)

Thus whenfs(m0) is calculated,fs(m) can be obtained by (4). Since
the start nodemstart has no predecessor, we cannot use (4) to obtain
the valuefs(mstart).

In order to obtain an upper bound of the computational effort
of our decoding algorithm, we first derive an upper bound of the
computational effort of a simplified version of it, which we denote
by SDA. In this version

1) we do not order the positions of���,
2) we use functionhs as the heuristic function.

For a given received vector���, by Theorem 3, if nodem is selected
for expansion, thenf(m) � f�(mstart), wheref�(mstart) is the
cost of the optimal path. Since we do not order the positions of���,
the components of��� are independent random variables. Furthermore,
since the cost of the path whose labels correspond to the transmitted
codeword is greater than or equal tof�(mstart), by the central limit
theorem we can calculate an upper bound on the probability of a node
being expanded. Consequently, we may calculate an upper bound on
the average number of nodes visited by the SDA.

We now state the main results of the computational effort of the
SDA when codeCCC is transmitted over the AWGN channel given
in Section II. Since the result is derived by using the central limit
theorem, it only holds whenn is large.

Theorem 4: Let Ns be the average number of nodes visited by
the SDA and letQ(�) be the standard normal distribution. Then, for
a largen

Ns � N

where

N =2 k +

k�1

`=0

`

d=1

`

d
Q ��(`; d)

�(`; d)
(5)

�(`; d) =
p
N0 2d Rb + (n� `)

� 2 RbQ(� 2Rb)� 1p
�
e�R

and

�2(`; d) =N0 2d+ (n� `) (4Rb + 2)Q(� 2Rb)

� 2
Rb
�

e�R

� 2 RbQ(� 2Rb)� 1p
�
e�R

2

:

The proof of Theorem 4 is given in Appendix A.
The first term on the right-hand side of (5) is due to the assumption

that the path whose labels correspond to the transmitted codeword
will be expanded. In the second term,Q(��(`; d)=�(`; d)) is an
upper bound on the probability of a node being expanded, where the
node is at level̀ and the sequence of the labels of the path from the
start node to this node have Hamming distanced to the transmitted
codeword.

In the decoding algorithm proposed in [13] we ordered the positions
of ��� to obtain����, which is assumed to be the “received vector.”

Next, we prove that if thek-most reliable positions of��� are linearly
independent, then the reordering will not increase the computational
effort of the SDA.

Theorem 5: If the k-most reliable positions of��� are linearly
independent, then

Ns(���
�) � Ns(���)

whereNs(���
�) andNs(���) are the number of nodes visited by the

SDA when���� and��� are decoded, respectively.
The proof of Theorem 5 can be found in Appendix B.

Let N(����) be the number of nodes visited by the decoding
algorithm proposed in [13] when it decodes���� and letN be the
average number of nodes visited by this decoding algorithm. By
Theorems 2, 4, and 5 as well as the Markov inequality [21], we
have the following result.

Theorem 6: If the k-most reliable positions of��� are linearly
independent, then

N(����) � Ns(���
�) � Ns(���)

N � Ns � N

and

Pr (N(����) � L) � N

L

whereL is any positive real number.

We remark here that it is not always true that thek-most reliable
positions of��� are linearly independent. In this case, we cannot
guarantee thatN(����) � Ns(���). However, in our simulations we
have never encountered a case whereN(����) > Ns(���). Therefore,
we can takeN to be a good estimator of an upper bound onN , the
average number of nodes visited by our decoding algorithm in [13].

When the GDA (SDA) searches for an optimal path in a code
tree of an(n; k) linear block code, the minimum number of nodes
visited by the GDA (SDA) is2k, which is the number of nodes
visited while the GDA (SDA) searches along the optimal path only.
Therefore, the average number of nodes visited by the SDA andN
are greater than or equal to2k. However, the average number of
nodes visited by the decoding algorithm proposed in [13] may be
less than2k due to the effect of the stopping criterion. Since the
computation complexity of the stopping criterion is the same order
as the computation complexity of the SDA that searches along the
optimal path only [13], it is reasonable that we compareN with the
average number of nodes visited by the decoding algorithm in [13]
without using the stopping criterion whenN is close to2k.

The values ofN for the (48; 24) code forb equal to 2, 3, 4,
5, 6, 7, 8, 9, and 10 dB are given in Fig. 1. In this figure are also
given the simulation results of the average number of nodes visited
by the SDA and by the decoding algorithm proposed in [13] with and
without using the stopping criterion. These averages were obtained
by simulating 10 000 samples. The 10 000 samples were generated
randomly by a codeword generator and then transmitted over the
AWGN channel described in Section II. For the AWGN channel, by
the result given in Appendix A we can substituterrr(rrr�) for ���(����) in
the decoding algorithm. Since

Pr (rij0) = 1p
�N0

exp � (ri �
p
E)2

N0

for the AWGN channel, the bit error probability of uncoded data
(Pe) is the probability thatri < 0 [7]. It can be shown that this
probability Pe is given by

Pe = Q( 2Rb): (6)
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Fig. 1. Average number of nodes visited for the(48; 24) code.

When the probability of error of uncoded data is less than10�3

(Pe � 10�3) and a1=2 rate code is transmitted over the AWGN
channel, by (6),b � 6.8 dB.

By the results given in Fig. 1, the values ofN for the (48; 24)
code are very tight to the average numbers of nodes visited by the
SDA that are obtained by computer simulations. Furthermore, the
values ofN are very tight to the average numbers of nodes visited by
the decoding algorithm proposed in [13] without using the stopping
criterion when SNR is greater than 6 dB. However, because of the
simplifying assumptions we had to make, the values ofN are not tight
to the average numbers of nodes visited by the decoding algorithm
proposed in [13] with and without using the stopping criterion when
SNR is less than 6 dB.

In Figs. 2 and 3 we give the values ofN for the (104; 52) code
and the(128; 64) code forb from 2 to 10 dB, respectively. We also
give the average numbers of nodes visited by the decoding algorithm
proposed in [13] with and without using the stopping criterion for
b from 5 to 10 dB. By the results presented in Figs. 2 and 3, the
values ofN are very tight to the average numbers of nodes visited by
the decoding algorithm proposed in [13] without using the stopping
criterion for SNR greater than 6.8 dB. Furthermore, the values ofN
are closed to2k for SNR greater than 6.8 dB. Thus we may conclude
that the decoding algorithms proposed in [13] are efficient for codes
of moderate lengths for most practical communication systems where
the probability of error is less than10�3 when we assume a1=2
rate code is transmitted over the AWGN channel. Even though this
upper bound is not tight for SNR of less than 6.8 dB, we still have
complexity gains1052�5 = 1047(1064�6 = 1058) on SNR= 5 dB
for the (104; 52) code (the(128; 64) code) compared with Wolf’s
algorithm.

It should be mentioned here that we could not get simulation
results when we applied the decoding algorithm given in [13] to
the (104; 52) and the (128; 64) for b under 5 dB. Due to the
limitations of the memory of the computer, we encountered a received
vector, generated by our simulation program, that could not be
decoded before the computer crashed. However, to the authors’ best

knowledge, this algorithm is still the only feasible optimal decoding
algorithm for these two codes, even forb greater than 5 dB.

IV. SUBOPTIMAL DECODING ALGORITHM

In the previous section we showed that the GDA is quite efficient
for codes of moderate lengths for most practical communication
systems where probability of error is less than10�3; however, by the
results given in Figs. 2 and 3, for codes(104; 52) and(128; 64), the
number of nodes on list OPEN in the decoding algorithm presented
in [13] (GDA) is still too large for the algorithm to have practical
applications for low SNR’s.

The results of our simulations have shown that the number of
nodes that need to be stored on list OPEN before an optimal path is
found is considerably smaller than the total number of nodes stored
before the algorithm stops. Thus we may limit the search with small
degradations on the performance of the algorithm.

In this section we present a suboptimal soft-decision decoding
algorithm in which we limit the size of list OPEN by using the
following two criteria.

1) If a nodem needs to be stored on list OPEN when the size of
list OPEN has reached a given upper bound, then we discard
the node with largerf value between nodem and the node on
list OPEN with the maximum value of functionf .

2) If the probability that an optimal path goes through a node is
smaller than a given parameter, then we do not store this node.
That is, we can make sure that every node that stays on list
OPEN has a high probability that an optimal path goes through
it.

Next, we describe in detail how to use these criteria.
Memory requirements are usually a crucial factor in the practical

implementation of any decoding algorithm, especially in the VLSI
implementation. Since, in the worst case, for any(n; k) code the
maximum size of list OPEN is2k�1, the GDA is impractical even
for the (48; 24) code for low SNR’s. However, simulation results
indicate that the required size of list OPEN may be much smaller
than2k�1 if a small degradation on the performance of the GDA is
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Fig. 2. Average number of nodes visited for the(104; 52) code.

Fig. 3. Average number of nodes visited for the(128; 64) code.

tolerated. Thus in the first criterion we limit the size of list OPEN by
giving an upper bound on the maximum number of nodes that can
be stored on list OPEN.

While the GDA searches for an optimal path in a code tree, it
calculatesf(m) for every nodem visited. If f(m) is large, then node
m has a low probability of being expanded before the optimal path
is found. In other words, whenf(m) is large, the probability that the
optimal path goes through nodem is low and we can discard nodem
before the optimal path is found without degrading the performance
of the GDA much. Therefore, to use the second criterion we need to

calculate the probability that an optimal path goes through a node.
We now demonstrate how to calculate this probability for an AWGN
channel. For any received vector����, if an optimal decoding algorithm
decodes it to a nontransmitted codeword, then it is almost impossible
for a suboptimal decoding algorithm to decode it to the transmitted
codeword. Thus when an optimal decoding algorithm decodes a
received vector to a nontransmitted codeword, we do not care which
codeword a suboptimal decoding algorithm decodes to. Therefore,
it is reasonable to consider only those received vectors that will be
decoded to transmitted codewords by an optimal decoding algorithm.
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That is, when we derive the probability that an optimal path goes
through a node, we will assume that no decoding error will occur
if we employ an optimal decoding algorithm. Under this assumption
we have the following theorem.

Theorem 7: Let a codeword of an(n; k) codeCCC be transmitted
over an AWGN channel. Furthermore, assume the branch cost as-
signed to the branch from a node at levelt to a node at levelt+ 1
in the code tree is replaced with the value

N0

4
p
E
�
�

t �
p
E(�1)c

2

wherec�t is the label of the branch. When no decoding error occurs,
the probability distribution of the cost of an optimal path,h�(mstart),
is approximately a normal distribution with mean� and variance�2,
where

� =n
N0

2

�
2 =n

N2
0

2
:

The proof of Theorem 7 is given in Appendix C and the theorem
holds only for largen.

Let nodem be a node in the code tree of the transmitted(n; k)
codeCCC and letUB be the lowest upper bound on the cost of an
optimal path found so far by the algorithm. By Theorem 1, for any
nodem of the code tree,h(m) � h�(m): Thus if an optimal path
goes through nodem, thenh(m) � h�(m) � h�(mstart). Thus the
probability that an optimal path goes through nodem is less than
or equal toPr (h(m) � h�(mstart) � UB). This leads us to the
following theorem.

Theorem 8: Let T be the probability that an optimal path goes
through nodem. Furthermore, letUB be an upper bound on the cost
of an optimal path. ThenT � TUB , where

TUB =
1

�
p
2�

UB

h(m)

exp �1

2

t� �

�

2

dt

where

� =n
N0

2

�
2 =n

N2
0

2
:

Thus when a node is visited, the algorithm calculatesTUB for this
node. If this value is less than a given threshold, then we will discard
this node. We remark here that to use the second criterion we need
to replace the branch cost from a node at levelt to a node at level
t + 1 in the code tree with the value

N0

4
p
E
�
�

t �
p
E(�1)c

2

:

Now we describe the outline of our decoding algorithm. In our
suboptimal decoding algorithm we will fix the maximum number
of nodesMB allowed on list OPEN. As in an optimal decoding
algorithm, list OPEN is always kept ordered. When a nodem is
visited, the algorithm calculatesTUB for this node. IfTUB is less than
a given threshold�, then discard this node. Otherwise, we need to
insert this node into list OPEN. If the number of nodes on list OPEN
is equal toMB, then the algorithm discards the node with largerf

value between nodem and the node with the largestf value on list
OPEN. The algorithm inserts the remaining node into list OPEN.

We remark here that all the speedup techniques described in
Section II, such as stopping criterion and changing the seed during
the decoding procedure, can be applied to the suboptimal decoding
algorithm.

V. SIMULATION RESULTS FOR THEAWGN CHANNEL

In order to verify the performance of our suboptimal decoding algo-
rithm, we present simulation results for the(48; 24), the (104; 52)
binary extended quadratic residue codes, and the(128; 64) binary
extended BCH code when these codes are transmitted over the
AWGN channel described in Section II.

For the(48; 24) code,HW = f0; 12; 16; 20; 24; 28; 32; 36; 48g.
We do not knowHW for the (104; 52) and the(128; 64) codes, so
we use a superset for them. For(104; 52) we know thatdmin = 20
and that the Hamming weight of any codeword is divisible by4
[15]. Thus for this code the superset used isfxj(x is divisible by4
and 20 � x � 84) or (x = 0) or (x = 104)g; for (128; 64), the
superset used isfxj (x is even and22 � x � 106) or (x = 0) or
(x = 128)g, since this code hasdmin = 22.

We have implemented a suboptimal version of the adaptive decod-
ing algorithm presented in [13]. Letyyy = (y0; y1; � � � ; yn�1) be the
hard decision ofrrr�. In the optimal version of the adaptive decoding
algorithm presented in [13], the initial seedc�0 is constructed by
c�0 = uuu � GGG�, whereui = yi for 0 � i � k � 1. Although the
received vectorrrr was reordered to getrrr� according to the reliability
of its components, some errors may occur in the firstk components
of yyy when the channel is noisy. Thus the initial seedccc�0 is constructed
by considering the 16 codewords as follows. Let

S = fuuujuuu = (u0; u1; � � � ; uk�1) andui = yi for 0 � i � k � 5

andui = 0 or 1 for k � 4 � i � k � 1g:
For every elementuuu in S, we get a codewordccc� = uuu � GGG�.
Now we let ccc�0 = ccc�, where the value ofh(mstart), calculated
with respect toccc�, is the largest among all the 16 codewords. We
remark here that the selection of these codewords is based on a
simulation observation thatyk�4; yk�3; yk�2; andyk�1 are the four
components amongy0; y1; � � � ; andyk�1 with higher probability to
contain errors. The rule of updating seed is as follows [12], [13].
Let ccc�s be the seed constructed so far by the decoding algorithm.
Whenever a codewordccc�n is generated during the decoding procedure,
the algorithm calculatesh(mstart) with respect toccc�n. If this value
is greater than theh(mstart) calculated with respect toccc�s , thenccc�n
will be the new seed.

The simulation results for the(48; 24) code forb equal to 1, 2, 3,
and 4 dB are given in Fig. 4 and in Table I for threeMB’s; � is equal
to 0.0. Bit error probability of the uncoded data(Pe) is also given.

From the results given in Fig. 4, for the(48; 24) code the
performance of the suboptimal decoding algorithm withMB =
500 is the same as that of the optimal decoding algorithm whose
MB = 224 = 8388608. WhenMB = 250, the performance of
the suboptimal decoding algorithm is slightly worse than that of the
optimal decoding algorithm. From the results given in Table I, the
average number of nodes visited is smaller whenMB is smaller.
Furthermore, when we do not limit the size of list OPEN in the
optimal decoding, the maximum number of nodes in list OPEN will
grow to3961, which is far smaller than8388608, the possible largest
size of list OPEN. However, it is still very large if we compare it
with 500. Therefore, for code(48; 24) to limit MB to 500 seems a
feasible solution for practical application when the SNR is low. Since
the average number of nodes visited by the suboptimal decoding
algorithm withMB = 500 is small(754), it is not necessary to use
the second criterion given in Section IV.

The simulation results for the(104; 52) code for b equal to
1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, and 3.25 dB are given in Fig. 5
and in Table II for three threshold values.MB is equal to3000.
In Fig. 5 we also give a lower bound on the bit error probability
of the maximum-likelihood decoding algorithm. This lower bound
is obtained as follows [8]. For every sample, when the suboptimal
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Fig. 4. Performance of suboptimal decoding algorithm for the(48; 24) code for severalMB’s.

TABLE I
THE AVERAGE NUMBER OF NODES VISITED AND THE MAXIMUM SIZE OF LIST OPEN REQUIRED

DURING THE DECODING OF (48; 24) CODE

decoding algorithm terminates, we have a codeword that is obtained
from the algorithm. If this codeword is closer with respect to
Euclidean distance to the received vector than to the transmitted
codeword, then any optimal decoding algorithm will also decode the
received vector to a nontransmitted codeword. Thus we assume that
the optimal decoding algorithm will decode to the codeword obtained
from the suboptimal decoding algorithm and report if a decoding error
occurs. Bit error probability of the uncoded data is also given in
Fig. 5.

From Fig. 5, for the(104; 52) code the performance of the
suboptimal decoding algorithm with� = 0:0 is within 0.25 dB of
the performance of an optimal decoding algorithm; the performance
of the suboptimal decoding algorithm with� = 0:25 is within 0.65
dB of the performance of an optimal decoding algorithm; and the
performance of the suboptimal decoding algorithm with� = 0:5 is
within 1.025 dB of the performance of an optimal decoding algorithm.
Thus for the samples tried, limiting the size of list OPEN to3000
nodes introduced only a small degradation on the performance of
the algorithm for the(104; 52) code. However, the average number
of nodes visited for the sample tried is several orders of magnitude
smaller than the upper bound given in Fig. 2.

The simulation results for the(128; 64) code forb equal to 1.0,
1.25, 1.5, 1.75, and 2.0 dB are given in Fig. 6 and Table III for three
threshold values.MB is equal to6000. In Fig. 6 we also give a

lower bound on the bit error probability of the maximum-likelihood
decoding algorithm and bit error probability of the uncoded data.

From Fig. 6, for the(128; 64) code the performance of the
suboptimal decoding algorithm with� = 0:0 is within 0.5 dB of
the performance of an optimal decoding algorithm; the performance
of the suboptimal decoding algorithm with� = 0:25 is within 0.6
dB of the performance of an optimal decoding algorithm; and the
performance of the suboptimal decoding algorithm with� = 0:5 is
within 0.75 dB of the performance of an optimal decoding algorithm.
Thus for the samples tried, limiting the size of list OPEN to6000
nodes introduced only a small degradation on the performance of the
algorithm for the(128; 64) code. However, the average number of
nodes visited for the samples tried is several orders of magnitude
smaller than the upper bound given in Fig. 3.

VI. CONCLUSIONS

In this correspondence we present an upper bound on the average
number of nodes visited by the maximum-likelihood soft-decision
decoding algorithm given in [13] (GDA). Since this upper bound is
derived by applying the central limit theorem to a simplified version
of the GDA, the results hold only for large code lengths. However,
from the results presented in Section III, this upper bound shows
that the GDA is efficient for codes of moderate lengths when the
probability of error of the channel is less than10�3. For low SNR’s,
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Fig. 5. Performance of suboptimal decoding algorithm for the(104; 52) code.

Fig. 6. Performance of suboptimal decoding algorithm for the(128; 64) code.

TABLE II
THE AVERAGE NUMBER OF NODES VISITED DURING THE DECODING OF (104; 52) CODE

the GDA becomes impractical for these codes. In order to solve this
problem, we also give a suboptimal version of the GDA that reduces
the decoding complexity, but compensates for a loss in performance.

The branch cost assigned to the branch from a node at levelt

to a node at levelt + 1 in the code tree, presented in Section II

may be replaced with the value�(�1)c ��t to save computation
power. However, the designed heuristic function cannot violate the
requirement of inequality (3) in order to guarantee that the GDA will
find an optimal path. For example, in the case thath(m) = 0 for any
nodem at level`, with ` � k�1, the branch cost cannot be changed
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TABLE III
THE AVERAGE NUMBER OF NODES VISITED

DURING THE DECODING OF (128; 64) CODE

to the new value since it violate the requirement of inequality (3).
More discussion of the new branch costs can be found in Appendix D.

It is interesting to verify the performance of the decoding algorithm
given in [13] when all simulated samples contain at least one error in
the hard decision of the received vector for high SNR’s. We simulated
10 000 samples and the samples containing at least one error among
these 10 000 samples for SNR were equal to 7 and 8 dB. There
are 4489 and 2510 samples containing errors among the samples
simulated for SNR= 7 dB and SNR= 8 dB, respectively. For SNR
= 7 dB, the average number of nodes visited for both cases are 0.0164
and 0.0232, respectively. For SNR= 8 dB, the average number of
nodes visited for both cases was 0.0. Therefore, for high SNR’s, the
decoding algorithm given in [13] is still very efficient when we apply
it to those received vectors whose hard decisions contain at least one
error.

APPENDIX A
PROOF OF THEOREM 4

Let an(n; k) codeCCC be transmitted over an AWGN channel. It is
easy to show that the MLD rule can be formulated as [7]

setccc = ccc`; whereccc` 2 CCC and

n�1

j=0

(a�j � b(�1)c )
2 �

n�1

j=0

(a�j � b(�1)c )2 (7)

for all ccci 2 CCC, wherea andb are any positive nonzero real number.
By the above MLD rule, the branch cost assigned to the branch

from a node at levelt to a node at levelt+ 1 in the code tree may
be replaced with the value(a�t � b(�1)c )2, wherect is the label
of the branch. Furthermore, we may substitute(a�i � b(�1)c )2 for
the value(�i � (�1)c )2 in the definition ofhp. The proof thathp
satisfies inequality (3) is very similar to that given in [13] where we
use old branch costs. Hence, we omit the proof here.

From [14]

Pr (rijo) = 1p
�N0

exp � (ri �
p
E)2

N0

Pr (rij1) = 1p
�N0

exp � (ri +
p
E)2

N0

and

�i = ln
Pr (rij0)
Pr (rij1) =

4
p
E

N0

ri:

Thus

��� =
4
p
E

N0

rrr

and we can substituterrr for ��� in our decoding algorithm whenCCC is
transmitted over the AWGN channel [3], [7] if we seta = N

4

p
E

and
b = 1. Furthermore, without loss of generality we can assume that
all zero codewords000 are transmitted over the AWGN channel.

Let PPP 0000 be the path from the start nodemstart to a goal node
whose labels are all zero. Let us define the cost of the pathPPP 0000 as

g(PPP 0000). That is,

g(PPP 0000) =
n�1

i=0

(ri � 1)2:

From the definition off�s (mstart) which is the cost of an optimal
path, we have

g(PPP 0000) � f�s (mstart):

Now let nodem be a node at level̀ in the code tree and the labels of
pathPPP 0m, the path from nodemstart to nodem, bev0; v1; � � � ; v`�1.
Let S0 = fijvi = 1; 0 � i � ` � 1g and jS0j = d: From the
definition of functionfs

fs(m) = g(m) + hs(m)

=

`�1

i=0

ri � (�1)v +

n�1

i=`

(jrij � 1j)2:

Now we want to calculate the probability that nodem is expanded
by the algorithm. By Theorem 3, if the GDA expands the node
m then fs(m) � f�s (mstart). Thus this probability will be less
than or equal to the probability thatfs(m) � f�s (mstart), i.e.,
Pr (fs(m) � f�s (mstart)): Since

g(PPP 0000) � f�(mstart)

then

Pr (fs(m) � f�s (mstart)) � Pr (fs(m) � g(PPP 0000)):

Furthermore,

fs(m) � g(PPP 0000) iff
`�1

i=0

(ri � (�1)v )2 +

n�1

i=`

(jrij � 1j)2

�
n�1

i=0

(ri � 1)2

iff
i2S

4ri +

n�1

i=`

2(ri � jrij) � 0

iff
i2S

2ri +

n�1

i=`

(ri � jrij) � 0:

Now let us define two new random variables,Zi andZ 0i, as

Zi = 2ri and Z 0i = ri � jrij:
Since0 is transmitted,

Pr (ri) =
1p
�N0

exp � (ri �
p
E)2

N0

:

ThusE(ri) is
p
E andVar (ri) is N0=2. Then

E(Zi) = 2
p
E

and

Var (Zi) = 4Var (ri)

= 2N0:

Now let us calculateE(Z 0i) and Var (Z 0i). We first note that
Z 0i = 2ri if ri < 0 andZ 0i = 0 if ri � 0, whereri is normally
distributed with mean

p
E and varianceN0=2. Thus

E(Z 0i) =
1p
�N0

0

�1
2t exp � (t�p

E)2

N0

dt:
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Let

x =
t�

p
E

N
2

then

E(Z 0i) =

N0

2p
�N0

�

�1

2
N0

2
x +

p
E e� dx

=
2

N0

2p
2�

�

�1

xe� dx

+
2
p
Ep
2�

�

�1

e� dx

=
2

N0

2p
2�

�

�1

xe� dx+ 2
p
EQ �

p
E

N0

2

whereQ(�) is the standard normal distribution,
If y = x2=2, thendy = xdx. Thus

E(Z 0i) = 2
p
EQ �

p
E

N0

2

� N0

�
e�(E=N ):

Similarly,

Var (Z 0i) =E(Z 02i )� E2(Z 0i)

=
1p
�N0

0

�1

(2t)2e
�

dt� E2(Z 0i)

= 2(2E +N0)Q �
p
E

N0

2

� 2
EN0

�
e
� � E2(Z 0i)

= 2(2E +N0)Q �
p
E

N0

2

� 2
EN0

�
e
�

� 2
p
EQ �

p
E

N0

2

� N0

�
e
�

2

:

Now let us define a new random variableX as

X =
i2S

Zi +

n�1

i=`

Z 0i:

By Lindeberg’s central limit theorem [9], the probability distribution
of X is approximately a normal distribution with mean�(`; d) and
variance�2(`; d), where

�(`; d) = dE(Zi) + (n� `)E(Z 0i)

= 2d
p
E + (n� `) 2

p
EQ �

p
E

N0

2

� N0

�
e
�

=
p
N0 2d Rb + (n� `)

� 2 RbQ(� 2Rb)� 1p
�
e�R

�2(`; d) = dVar (Zi) + (n� `)Var (Z 0i)

= 2dN0 + (n� `)

� 2(2E +N0)Q �
p
E

N0

2

� 2
EN0

�
e
�

� 2
p
EQ �

p
E

N0

2

� N0

�
e
�

2

=N0 2d+ (n� `)

� (4Rb + 2)Q(� 2Rb)� 2
Rb
�

e�R

� 2 RbQ(� 2Rb)� 1p
�
e�R

2

:

Thus

Pr (fs(m) � f�s (mstart)) � Pr (X � 0) = Q ��(`; d)

�(`; d)
:

Since fs(m000) � g(PPP 0000) for any nodem000 on pathPPP 0000, we can
assume that nodem000 will be expanded. There arek nodes on this
path that will be expanded. We now consider those nodes that are not
on this path. It is easy to see that, for any node that is not on path
PPP 0000, the labels of the path from nodemstart to it will contain at least
one1. Consider those nodes at level` whose paths containd ones,
where1 � d � ` and 0 � ` � k � 1. From the above argument,

the probability of these nodes being expanded areQ(��(`; d)

�(`; d)
). The

total number of these nodes is`d . Since the firstk positions of any
codeword are information bits, the average number of nodes expanded
by the algorithm is less than or equal to

k +

k�1

`=0

`

d=1

`
d

Q ��(`; d)

�(`; d)
:

Since, when a node is expanded by the algorithm, the algorithm will
visit two nodes, the average number of nodes visited is less than or
equal to

2 k +

k�1

`=0

`

d=1

`
d

Q ��(`; d)

�(`; d)
:

APPENDIX B
PROOF OF THEOREM 5

Let ��� = (�0; �1; � � � ; �n�1) be the received vector and let
���� = (��0; �

�
1; � � � ; ��n�1) be obtained by permuting the positions

of ��� such that the firstk positions are the “most reliable lin-
early independent” positions in���. Furthermore, let��0 = ��(0);
��1 = ��(1); � � � ; and ��n�1 = ��(n�1), where � is a position
permutation. We now prove thatNs(���

�) � Ns(���) by proving that,
for every nodem1 in the search tree generated by the decoding
algorithm when it decodes���, we can find a one-to-one correspondent
nodem2 in the search tree generated by the decoding algorithm when
it decodes���� such thatfs(m1) � fs(m2). Let the labels of the path
from the start node to nodem1 at level ` be c0; c1; � � � ; and c`�1.
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Let us defineSs(`); Sa(`); Sb(`); Sc(`); Sd(`), which are subsets
of f0; 1; 2; � � � ; n � 1g as follows:

Ss(`) = fxjx � `� 1 and �(x) � `� 1g
Sa(`) = fxjx � `� 1g � f�(x)jx 2 Ss(`)g
Sb(`) = fxjx � `� 1g � fxjx 2 Ss(`)g
Sc(`) = f�(x)jx 2 Sb(`)g; and

Sd(`) = fxj�(x) 2 Sa(`)g:
It is clear that

jSa(`)j = jSb(`)j = jSc(`)j = jSd(`)j:
Now let us define the labelsc�0; c

�
1; � � � ; c�`�1 from the start node to

nodem2 as follows:

c�x = c�(x); for x 2 Ss(`)

c�x = y�x � yq(���; `)(x) � cq(���; `)(x); for x 2 Sb(`)

where

yi =0; when �i � 0

=1; otherwise

y�i =0; when ��i � 0

=1; otherwise

and q(���; `) is a bijection fromSb(`) to Sa(`).
It is easy to see that for any nodem1, nodem2 is a one-to-one

correspondence to nodem1.
We next prove thatfs(m1) � fs(m2).

f(m2)� f(m1)

=

`�1

i=0

(��i � (�1)c )2 +

n�1

i=`

(j��i j � 1)2

�
`�1

i=0

(�i � (�1)c )2 �
n�1

i=`

(j�ij � 1)2

=
i2S (`)

(��i � (�1)c )2 +
i2S (`)

(j��i j � 1)2

�
i2S (`)

(�i � (�1)c )2 �
i2S (`)

(j�ij � 1)2

=
i2S (`)

(��i � (�1)c )2 �
i2S (`)

(j�ij � 1)2

�
i2S (`)

(�i � (�1)c )2 �
i2S (`)

(j��i j � 1)2

=
i2S (`)

[(j��i j+ 1)2 � (j��i j � 1)2]

�
i2S (`)

[(j�ij + 1)2 � (j�ij � 1)2]

= 4
i2S (`)

j��i j �
i2S (`)

j�ij

where

Sf (`) = fxjx 2 Sb(`) andc�x � y�x = 1g
and

Se(`) = fxjx 2 Sa(`) andcx � yx = 1g:
Since

c�x = y�x � yq(���; `)(x) � cq(���; `)(x); x 2 Sb(`)

and q(���; `) is a bijection fromSb(`) to Sa(`), then jSf (`)j =
jSe(`)j. Furthermore, since thek-most reliable positions in��� are
linearly independent, it follows thatj��i j � j�j j for anyi 2 Sf(`) and
j 2 Se(`). Thusfs(m2) � fs(m1). By Theorem 3, the GDA will
expand the nodem only whenfs(m) � f�s (mstart). Furthermore,
the cost of the optimal path is the same, no matter when the GDA
decodes��� or ����. Therefore, we haveNs(���

�) � Ns(���).

APPENDIX C
PROOF OF THEOREM 7

Let an (n; k) codeCCC be transmitted over an AWGN channel. If
we assume that no decoding error occurs, then the decoded codeword
that forms an optimal path is the transmitted codeword. Assume the
transmitted codeword is(c0; c1; � � � ; cn�1). By inequality (7), given
in Appendix A, if we seta = N

4
p
E

and b =
p
E, then

h�(mstart) = f�(mstart)

=

n�1

i=0

(a�i � b(�1)c )2

=

n�1

i=0

ri � (�1)c
p
E

2

=

n�1

i=0

ei + (�1)c
p
E � (�1)c

p
E

2

=

n�1

i=0

e2i

where for each0 � i � n � 1; ei’s are independent and identically
distributed (i.i.d.) andei is a normal random variable with mean0
and varianceN0=2. Consequently,

2

N0

n�1

i=0

e2i =
2

N0
h�(mstart)

will be distributed as a chi–square random variable withn degrees
of freedom. From [21] it follows that

� = E(h�(mstart)) = n
N0

2

and �2 =Var (h�(mstart)) = n
N

2
:

However, by the central limit theorem, for large values ofn,
the probability distribution ofh�(mstart) is approximately a normal
distribution with mean� and variance�2, given above.

APPENDIX D

In this appendix we show that the branch cost assigned to the
branch from a node at levelt to a node at levelt + 1 in the code
tree may be replaced with the value�(�1)c ��t . First, we derive
another form of MLD rule which contains the value�(�1)c ��t .
Next, we prove that the functionhp defined in this correspondence
still satisfies inequality (3).

Another form of MLD rule can formulated as follows [3], [14]:

setccc = ccc`; where ccc` 2 CCC

and

n�1

j=0

�(�1)c �j �
n�1

j=0

�(�1)c �j ; for all cicici 2 CCC (8)
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where

�j = ln
Pr (rj j0)

Pr (rj j1)
:

Proof: Since

n�1

j=0

(�j � (�1)c )2 �

n�1

j=0

(�j � (�1)c )2

iff
n�1

j=0

�
2

j � 2

n�1

j=0

(�1)c �j + n �

n�1

j=0

�
2

j � 2

n�1

j=0

(�1)c �j + n

iff
n�1

j=0

�(�1)c �j �

n�1

j=0

�(�1)c �j

then the result holds directly from the MLD rule given in Section
II.

By the above MLD rule we may substitute�(�1)v ��i (�j�ij)
for the value(��i � (�1)v )2 ((j�ij � 1)2) in the definition ofhp
(hs). Next, we prove thathp satisfies inequality (3).

Let nodem2 at level ` be an immediate successor of nodem1.
Furthermore, letv`�1 be the label of the branch from nodem1 to
nodem2 andc(m1; m2) = �(�1)v ��`�1. We now prove that

hp(m1) � hp(m2) + c(m1; m2):

Case 1.̀ � k � 1: Let

vvv = (v0; v1; � � � ; v`�1; v`; v`+1; � � � vn�1) 2 T (m2)

such that

hp(m2) =

n�1

i=`

�(�1)v �
�

i :

Since

vvv 2 T (m2)

then

vvv 2 T (m1):

Thus
n�1

i=`

�(�1)v �
�

i + c(m1; m2) � hp(m1)

i.e.,

hp(m2) + c(m1; m2) � hp(m1):

Case 2.̀ = k:

hp(m1) � h
�

p(m1)

and

hp(m2) = h
�

p(m2):

Since

h
�

p(m1)� c(m1; m2) � h
�

p(m2)

then

hp(m1) � h
�

p(m2) + c(m1; m2) = hp(m2) + c(m1; m2):

Case 3.̀ > k:

hp(m1) = h
�

p(m1)

and

hp(m2) = h
�

p(m2):

Since

h
�

p(m1)� c(m1; m2) = h
�

p(m2)

then

hp(m1) = hp(m2) + c(m1; m2):

Since the proof thaths satisfies inequality (3) is easy we omit it
here.
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A Proof of the Fisher Information
Inequality via a Data Processing Argument

Ram Zamir,Member, IEEE

Abstract—The Fisher information J(X) of a random variable X

under a translation parameter appears in information theory in the
classical proof of the Entropy-Power Inequality (EPI). It enters the
proof of the EPI via the De-Bruijn identity, where it measures the
variation of the differential entropy under a Gaussian perturbation, and
via the convolution inequality J(X + Y )�1 � J(X)�1 + J(Y )�1 (for
independentX and Y ), known as the Fisher Information Inequality (FII).
The FII is proved in the literature directly, in a rather involved way.
We give an alternative derivation of the FII, as a simple consequence
of a “data-processing inequality” for the Cramer–Rao lower bound on
parameter estimation.

Index Terms—Cramer–Rao bound, data processing inequality, entropy-
power inequality, Fisher information, linear modeling, non-Gaussian
noise, prefiltering.

I. INTRODUCTION

The data processing inequality (or the data processing theorem) is
used in information theory for proving the converse channel-coding
theorem [4, Secs. V.3, V.4], [6, Secs. II.8, VIII.9]. This inequality
asserts that if the random variablesW �X�Y form a Markov chain
in this order, then the mutual informations between them satisfy

I(W ;Y ) � I(W ;X): (1)

In the special case whereY is given by a deterministic function�
of X, (1) becomes

I(W ;�(X)) � I(W ;X) (2)
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with equality if W � �(X)�X form a Markov chain, e.g., if�(�)
is an invertible function. The proof of (1) follows straightforwardly
from the chain rule and the positivity of the mutual information [6].

The name “data processing inequality” apparently came from the
analogy to the problem of optimal filtering. Suppose thatW;X; Y

are real variables. In analogy with (1) and (2), it is clear and easy
to verify that the conditional variance, i.e., the mean-squared error
of the conditional mean estimator ofW , satisfies the data processing
inequalities

VAR(W jY ) �VAR(W jX)

and

VAR(W j�(X)) �VAR(W jX) (3)

where

VAR(W jX)
�
= E[W � E(W jX)]2:

When the estimated quantity is a parameter��� (i.e., not a random
variable), it is impossible to use the conditional variance as a measure
for the goodness of the optimal estimator. Instead, it is common to
use the Fisher Information matrix (FI) of the measurementXXX relative
to the parameter vector���, defined as [4], [6], [10]

JJJ(XXX; ���)
�
= COV

@

@���
ln(f���(XXX))

=
1

f���(xxx)

@f���(xxx)

@���
�

@f���(xxx)

@���

t

dxxx (4)

where��� = (�1; � � � ; �m), the setff���(xxx)g is a family of densities ofXXX
parameterized by���; @=@��� denotes the gradient (i.e., a columnvector
of partial derivatives) with respect to the parameters�1; � � � ; �m;
ln(�) denotes the natural logarithm, andCOVf�g denotes them�m
covariance matrix calculated relative to the distribution ofXXX: HereXXX
may either be a single measurement or a vector ofn measurements.
The importance of the matrixJJJ(XXX; ���) follows from the Cramer–Rao
Bound (CRB), [4], [6], [10], saying that for any unbiased estimator
�̂�� = �̂��(xxx) (i.e., estimator for whichEf�̂��(XXX)g = ���) the error vector
�̂�� � ��� satisfies

COVf�̂��(XXX)g � JJJ(XXX; ���)�1 (5)

where throughout the correspondence an inequality between (nonneg-
ative definite) matrices means that the difference matrix is nonneg-
ative definite. As it turns out (see Lemma 3 below), the notion of
data processing extends easily to the FI; if����XXX�YYY satisfy a chain
relation of the formf(xxx; yyyj���) = f���(xxx)f(yyyjxxx) (i.e., the conditional
distribution of Y given X is independent of���), then we have the
data processing inequality

JJJ(YYY ; ���) � JJJ(XXX; ���) (6)

whose deterministic version (in analogy with (2)) is

JJJ(�(XXX);���) � JJJ(XXX; ���): (7)

Equality in (7) holds if�(X) is a sufficient statisticrelative to the
family ff���(x)g, i.e., ��� � �(XXX)�XXX form a chain [6, Sec. II.10].1

In the context of information-theoretic inequalities, e.g., in the
derivation of the Entropy Power Inequality (EPI), there appears a

1An alternative (“Bayesian”) way to express the equality condition is that
���� �(XXX)�XXX for a Markov chain for any distribution on the parameter�:
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