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Scheduling Algorithms for Minimizing Age of
Information in Wireless Broadcast Networks with

Random Arrivals: The No-Buffer Case
Yu-Pin Hsu, Eytan Modiano, and Lingjie Duan

Abstract—Age of information is a new network performance metric that captures the freshness of information at end-users. This paper
studies the age of information from a scheduling perspective. To that end, we consider a wireless broadcast network where a
base-station (BS) is updating many users on random information arrivals under a transmission capacity constraint. For the offline case
when the arrival statistics are known to the BS, we develop a structural MDP scheduling algorithm and an index scheduling algorithm,
leveraging Markov decision process (MDP) techniques and the Whittle’s methodology for restless bandits. By exploring optimal
structural results, we not only reduce the computational complexity of the MDP-based algorithm, but also simplify deriving a closed
form of the Whittle index. Moreover, for the online case, we develop an MDP-based online scheduling algorithm and an index-based
online scheduling algorithm. Both the structural MDP scheduling algorithm and the MDP-based online scheduling algorithm
asymptotically minimize the average age, while the index scheduling algorithm minimizes the average age when the information arrival
rates for all users are the same. Finally, the algorithms are validated via extensive numerical studies.

Index Terms—Age of information, scheduling algorithms, Markov decision processes.
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1 INTRODUCTION

In recent years there has been a growing research interest
in an age of information [3]. The age of information is moti-
vated by a variety of network applications requiring timely
information. Examples range from information updates for
network users, e.g., live traffic, transportation, air quality,
and weather, to status updates for smart systems, e.g., smart
home systems, smart transportation systems, and smart grid
systems.

Fig. 1 shows an example network, where network users
u1, · · · , uN are running applications that need some timely
information (e.g., user u1 needs both traffic and transporta-
tion information for planning the best route), while at some
epochs, snapshots of the information are generated at the
sources and sent to the users in the form of packets over
wired or wireless networks. The users are being updated
and keep the latest information only. Since the information
at the end-users is expected to be as timely as possible,
the age of information is therefore proposed to capture the
freshness of the information at the end-users; more precisely,
it measures the elapsed time since the generation of the
information. In addition to the timely information for the
network users, the smart systems also need timely status
(e.g., locations and velocities in smart transportation sys-
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Fig. 1. Timely information updates for network users.

tems) to accomplish some tasks (e.g., collision-free smart
transportation systems). As such, the age of information is
a good metric to evaluate these networks supporting age-
sensitive applications.

Next, we characterize the age-sensitive networks in two
aspects. First, while packet delay is usually referred to as
the elapsed time from the generation to its delivery, the age
of information includes not only the packet delay but also
the inter-delivery time, because the age of information keeps
increasing until the information at the end-users is updated.
We hence need to jointly consider the two parameters so as
to design an age-optimal network. Moreover, while tradi-
tional relays (i.e., intermediate nodes) need buffers to keep
all packets that are not served yet, the relays in the network
of Fig. 1 for timely information at most store the latest
information and discard out-of-date packets. The buffers for
minimizing the age here are no longer as useful as those in
traditional relay networks.



2

In this paper, we consider a wireless broadcast network,
where a base-station (BS) is updating many network users
on timely information. The new information is randomly
generated at its source. We assume that the BS can serve
at most one user for each transmission opportunity. Under
the transmission constraint, a transmission scheduling algo-
rithm manages how the channel resources are allocated for
each time, depending on the packet arrivals at the BS and
the ages of the information at the end-users. The scheduling
design is a critical issue to optimize network performance.
In this paper we hence develop scheduling algorithms for
minimizing the long-run average age.

1.1 Contributions
We study the age-optimal scheduling problem in the wire-
less broadcast network without the buffers at the BS. Our
main contributions lie at designing novel scheduling al-
gorithms and analyzing their age-optimality. For the case
when the arrival statistics are available at the BS as prior
information, we develop two offline scheduling algorithms,
leveraging a Markov decision process (MDP) and the Whit-
tle index. However, the MDP and the Whittle index in
our problem will be difficult to analyze as they involve
long-run average cost optimization problems with infinite state
spaces and unbounded immediate costs [4]. Moreover, it is in
general very challenging to obtain the Whittle index in
closed form. By investigating some structural results, we
not only successfully resolve the issues but also simplify
the calculation of the Whittle index. It turns out that our
index scheduling algorithm is very simple. When the arrival
statistics are unknown, we develop online versions of the
two offline algorithms. We show that both offline and online
MDP-based scheduling algorithms are asymptotically age-
optimal, and the index scheduling algorithm is age-optimal
when the information arrival rates for all users are the
same. Finally, we compare these algorithms via extensive
computer simulations, and further investigate the impact of
the buffers storing the latest information.

1.2 Related works
The general idea of age was proposed in [5] to study how to
refresh a local copy of an autonomous information source
to maintain the local copy up-to-date. The age defined in [5]
is associated with discrete events at the information source,
where the age is zero until the source is updated. Differently,
the age of information in [3] measures the age of a sample
of continuous events; therefore, the sample immediately be-
comes old after generated. Many previous works, e.g., [3, 6–
10], studied the age of information for a single link. The
papers [3, 6] considered buffers to store all unserved packets
(i.e., out-of-date packets are also stored) and analyzed the
long-run average age, based on various queueing models.
They showed that neither the throughput-optimal sampling
rate nor the delay-optimal sampling rate can minimize the
average age. The paper [7] considered a smart update and
showed that the always update scheme might not minimize
the average age. Moreover, [8, 9] developed power-efficient
updating algorithms for minimizing the average age. The
model in [10] considered no buffer or a buffer to store the
latest information.
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Fig. 2. A BS updates N users u1, · · · , uN on information of sources
s1, · · · , sN , respectively.

Of the most relevant works on scheduling multiple users
are [11–15]. The works [11–13] considered buffers at a BS to
store all out-of-date packets. The paper [14] considered a
buffer to store the latest information with periodic arrivals,
while information updates in [15] can be generated at will. In
contrast, our work is the first to develop both offline and on-
line scheduling algorithms for random information arrivals,
with the purpose of minimizing the long-run average age.

2 SYSTEM OVERVIEW

2.1 Network model
We consider a wireless broadcast network in Fig. 2 consist-
ing of a base-station (BS) and N wireless users u1, · · · , uN .
Each user ui is interested in timely information generated
by a source si, while the information is transmitted through
the BS in the form of packets. We consider a discrete-time
system with slot t = 0, 1, · · · . Packets from the sources (if
any) arrive at the BS at the beginning of each slot. The
packet arrivals at the BS for different users are independent
of each other and also independent and identically dis-
tributed (i.i.d.) over slots, following a Bernoulli distribution.
Precisely, by Λi(t), we indicate if a packet from source si
arrives at the BS in slot t, where Λi(t) = 1 if there is a
packet; otherwise, Λi(t) = 0. We denote the probability
P [Λi(t) = 1] by pi.

Suppose that the BS can successfully transmit at most
one packet during each slot, i.e., the BS can update at most
one user in each slot. By D(t) ∈ {0, 1, · · ·N} we denote a
decision of the BS in slot t, where D(t) = 0 if the BS does
not transmit any packet and D(t) = i for i = 1, · · · , N if
user ui is scheduled to be updated in slot t.

In this paper we fosus on the scenario without depolying
any buffer at the BS, where an arriving packet is discarded if
it is not transmitted in the arriving slot. The no-buffer network
is not only simple to implement for practical systems, but
also was shown to achieve good performance in a single link
(see [10]). In Section 6, we will numerically study networks
with buffers in general.

2.2 Age of information model
We initialize the ages of all arriving packets at the BS to
be zero. The age of information at a user becomes one on
receiving a new packet, due to one slot of the transmission
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time. Let Xi(t) be the age of information at user ui in slot t
before the BS makes a scheduling decision. Suppose that the
age of information at a user increases linearly with slots if
the user is not updated. Then, the dynamics of the age of
information for user ui is

Xi(t+ 1) =

{
1 if Λi(t) = 1 and D(t) = i;
Xi(t) + 1 else, (1)

where the age of information in the next slot is one if the
user gets updated on the new information; otherwise, the
age increases by one. Let X(t) = (X1(t), · · · , XN (t)) be the
age vector in slot t.

Let X be the set consisting of all age vectors (x1, · · · , xN )
where the ages satisfy xi ≥ 1 for all i and xi ̸= xj for all
i ̸= j. Since the BS can update at most one user in each slot,
if an initial age vector X(0) is outside X, then eventually age
vector X(t) will enter X and stay in X onwards; otherwise,
someone is never updated and its age approaches infinity. In
other words, the age vector outside X is transient. Without
loss of generality, we assume that initial age vector X(0)
is within X. Later, in the proof of Lemma 6, we will show
that any transmission decision before the age vector enters
X will not affect the minimum average age (defined in the
next section).

2.3 Problem formulation
A scheduling algorithm π = {D(0), D(1), · · · } specifies a
transmission decision for each slot. We define the average
age under scheduling algorithm π by

lim sup
T→∞

1

T + 1
Eπ

[
T∑

t=0

N∑
i=1

Xi(t)

]
,

where Eπ represents the conditional expectation, given that
scheduling algorithm π is employed. We remark that this
paper focuses on the total age of users for delivering clean
results; whereas our design and analysis can work perfectly
for the weighted sum of the ages. Our goal is to develop age-
optimal scheduling algorithms, defined below.

Definition 1. A scheduling algorithm π is age-optimal if it
minimizes the average age.

In this paper, we will develop two offline scheduling al-
gorithms and two online scheduling algorithms. Leveraging
Markov decision process (MDP) techniques and Whittle’s
methodology, we develop two offline scheduling algorithms
in Sections 3 and 4, respectively, when the arrival statistics
are available to the BS; later, two online versions of the
offline algorithms are proposed in Section 5 for the case
when the arrival statistics are oblivious to the BS. For clarity
and continuity, we move some proofs of this paper to
the appendices in the supplemental material. The complete
content in single file is also available at [16].

3 A STRUCTURAL MDP SCHEDULING ALGORITHM

Our first scheduling algorithm is driven by the MDP tech-
niques. To that end, we formulate our problem as an MDP
∆ with the components [17] below.

• States: We define the state S(t) of the MDP in slot
t by S(t) = (X1(t), · · · , XN (t), Λ1(t), · · · ,ΛN (t)).

Let S be the state space consisting of all states
(x1, · · · , xN , λ1, · · · , λN ) where

– (x1, · · · , xN ) ∈ X or xi > N for all i;
– λi ∈ {0, 1} for all i.

The state space includes some transient age vectors.
That is used to fit truncated states in Section 3.2. We
will show later in Lemma 6 that adding these tran-
sient states will not change the minimum average
age. Note that S is a countable infinite set because the
ages are possibly unbounded.

• Actions: We define the action of the MDP in slot t to
be D(t). Note that the action space is finite.

• Transition probabilities: By Ps,s′(d) we denote the
transition probability of the MDP from state s =
(x1, · · · , xN , λ1, · · · , λN ) to state s′ = (x′

1, · · · , x′
N ,

λ′
1, · · · , λ′

N ) under action D(t) = d. According to the
age dynamics in Eq. (1) and the i.i.d. assumption of
the arrivals, we can describe the non-zero Ps,s′(d) as

Ps,s′(d) =
∏

i:λ′
i=1

pi
∏

i:λ′
i=0

(1− pi),

if x′
i = (xi+1)−xi1i=d and λi=1 for all i = 1, · · · , N ,

where 1 is the indicator function.
• Cost: Let C(S(t), D(t) = d) be the immediate cost of

the MDP if action D(t) = d is taken in slot t under
state S(t), representing the resulting total age in the
next slot:

C(S(t), D(t) = d) ≜
N∑
i=1

Xi(t+ 1)

=
N∑
i=1

(Xi(t) + 1)−Xd(t) · Λd(t),

where we define X0(t) = 0 and Λ0(t) = 0 for all t
(for the no update case d = 0), while the last term
indicates that user ud is updated in slot t.

The objective of the MDP ∆ is to find a policy π (with the
same definition as the scheduling algorithm) that minimizes
the average cost V (π) defined by

V (π) = lim sup
T→∞

1

T + 1
Eπ

[
T∑

t=0

C(S(t), D(t))

]
.

Definition 2. A policy π of the MDP ∆ is ∆-optimal if it
minimizes the average cost V (π).

Then, a ∆-optimal policy is an age-optimal scheduling
algorithm. Moreover, policies of the MDP can be classified
as follows. A policy of the MDP is history dependent if D(t)
depends on D(0), · · · , D(t− 1) and S(0) · · · ,S(t). A policy
is stationary if D(t1) = D(t2) when S(t1) = S(t2) for any
t1, t2. A randomized policy specifies a probability distribution
on the set of decisions, while a deterministic policy makes a
decision with certainty. A policy in general belongs to one
of the following sets [17]:

• ΠHR: a set of randomized history dependent policies;
• ΠSR: a set of randomized stationary policies;
• ΠSD: a set of deterministic stationary policies.

Note that ΠSD ⊆ ΠSR ⊆ ΠHR [17], while the complexity of
searching a ∆-optimal policy increases from left to right.
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According to [17], there may exist neither ΠSR nor ΠSD

policy that is ∆-optimal. Hence, we target at exploring a
regime under which a ∆-optimal policy lies in a smaller
policy set ΠSD, and investigating its structures.

3.1 Characterization of the ∆-optimality

To characterize the ∆-optimality, we start with introducing
an infinite horizon α-discounted cost, where 0 < α < 1 is
a discount factor. We subsequently connect the discounted
cost case to the average cost case, because structures of a ∆-
optimal policy usually depend on its discounted cost case.

Given initial state S(0) = s, the expected total α-discounted
cost under scheduling algorithm π (that can be history
dependent) is

Vα(s;π) = lim
T→∞

Eπ

[
T∑

t=0

αtC(S(t), D(t))|S(0) = s

]
.

Definition 3. A policy π of the MDP ∆ is ∆α-optimal if it
minimizes the expected total α-discounted cost Vα(s;π). In
particular, we define

Vα(s) = min
π

Vα(s;π).

Moreover, by hα(s) = Vα(s) − Vα(0) we define the
relative cost function, which is the difference of the min-
imum discounted costs between state s and a reference
state 0. We can arbitrarily choose the reference state, e.g.,
0 = (1, 2, · · · , N, 1, · · · , 1) in this paper. We then introduce
the discounted cost optimality equation of Vα(s) below.

Proposition 4. The minimum expected total α-discounted cost
Vα(s), for initial state s, satisfies the following discounted cost
optimality equation:

Vα(s) = min
d∈{0,1,··· ,N}

C(s, d) + αE[Vα(s
′)], (2)

where the expectation is taken over all possible next state s′ reach-
able from the state s, i.e., E[Vα(s

′)] =
∑

s′∈S Ps,s′(d)Vα(s
′). A

deterministic stationary policy that realizes the minimum of the
right-hand-side (RHS) of the discounted cost optimality equation
in Eq. (2) is a ∆α-optimal policy. Moreover, we can define a value
iteration Vα,n(s) by Vα,0(s) = 0 and for any n ≥ 0,

Vα,n+1(s) = min
d∈{0,1,··· ,N}

C(s, d) + αE[Vα,n(s
′)]. (3)

Then, Vα,n(s)→ Vα(s) as n→∞, for every s and α.

Proof. Please see Appendix A.

The value iteration in Eq. (3) is helpful for characterizing
Vα(s), e.g., showing that Vα(s) is a non-decreasing function
in the following.

Proposition 5. Vα(xi,x−i,λ) is a non-decreasing function
in xi, for given x−i = (x1, · · · , xN ) − {xi} and λ =
(λ1, · · · , λN ).

Proof. Please see Appendix B.

Using Propositions 4 and 5 for the discounted cost case,
we show that the MDP ∆ has a deterministic stationary ∆-
optimal policy, as follows.

Lemma 6. There exists a deterministic stationary policy that
is ∆-optimal. Moreover, there exists a finite constant V ∗ =
limα→1(1 − α)Vα(s) for every state s such that the minimum
average cost is V ∗, independent of initial state s.

Proof. Please see Appendix C.

We want to further elaborate on Lemma 6.

• First, note that there is no condition for the existence
of a deterministic stationary policy that is ∆-optimal.
In general, we need some conditions to ensure that
the reduced Markov chain by a deterministic sta-
tionary policy is positive recurrent. Intuitively, we
can think of the age of our problem as an age-
queuing system, consisting of an age-queue, input
to the queue, and a server. The input rate is one per
slot since the age increases by one for each slot, while
the server can serve an infinite number of age-packets
for each service opportunity. As such, we always can
find a scheduling algorithm such that the average
arrival rate is less than the service rate and thus the
reduced Markov chain is positive recurrent. Please
see the proof in Appendix C for details.

• Second, since our MDP ∆ involves a long-run av-
erage cost optimization with a countably infinite state
space and unbounded immediate cost, a ∆-optimal
policy of such an MDP might not satisfy the average
cost optimaility equation like Eq. (2) (see [18] for
a counter-example), even though the optimality of
a deterministic stationary policy is established in
Lemma 6.

In addition to the optimality of deterministic station-
ary policies, we show that a ∆-optimal policy has a nice
structure. To investigate such structural results not only
facilitates the scheduling algorithm design in Section 3,
but also simplifies the calculation of the Whittle index in
Section 4.

Definition 7. A switch-type policy is a special deterministic
stationary policy of the MDP ∆: for given x−i and λ, if the
action of the policy for state s = (xi,x−i,λ) is ds = i, then
the action for state s′ = (xi + 1,x−i,λ) is ds′ = i as well.

In general, showing that a ∆-optimal policy satisfies
a structure relies on an optimality equation; however, as
discussed, the average cost optimality equation for the MDP
∆ might not be available. To resolve this issue, we first
investigate the discounted cost case by the well-established
value iteration in Eq. (3), and then extend to the average cost
case.

Theorem 8. There exists a switch-type policy of the MDP ∆ that
is ∆-optimal.

Proof. First, we start with the discounted cost case, and
show that a ∆α-optimal scheduling algorithm is switch-
type. Let να(s; d) = C(s, d) + αE[Vα(s

′)]. Then, Vα(s) =
mind∈{0,1,··· ,N} να(s; d). Without loss of generality, we sup-
pose that a ∆α-optimal action at state s = (x1,x−1,λ) is
to update the user u1 with λ1 = 1. Then, according to the
optimality of d∗(x1,x−1,λ) = 1,

να(x1,x−1,λ; 1)− να(x1,x−1,λ; j) ≤ 0,
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for all j ̸= 1.
Let 1 = (1, · · · , 1) be the vector with all entries being

one. Let xi = (0, · · · , xi, · · · , 0) be the zero vector except
for the i-th entry being replaced by xi. To demonstrate the
switch-type structure, we consider the following two cases:

1) For any other user uj with λj = 1: Since
Vα(x1,x−1,λ) is a non-decreasing function in x1

(see Proposition 5), we have

να(x1 + 1,x−1,λ; 1)− να(x1 + 1,x−1,λ; j)

=xj − (x1 + 1) + αE[Vα(1,x−1 + 1,λ′)

− Vα(x1 + 2,x−1 + 1− xj ,λ
′)]

≤xj − x1 + αE[Vα(1,x−1 + 1,λ′)

− Vα(x1 + 1,x−1 + 1− xj ,λ
′)]

=να(x1,x−1,λ; 1)− να(x1,x−1,λ; j) ≤ 0,

where λ′ is the next arrival vector.
2) For any other user uj with λj = 0: Similarly, we have

να(x1 + 1,x−1,λ; 1)− να(x1 + 1,x−1,λ; j)

=− (x1 + 1) + αE[Vα(1,x−1 + 1,λ′)

− Vα(x1 + 2,x−1 + 1,λ′)] ≤ 0.

Considering the two cases, a ∆α-optimal action for state
(x1 + 1,x−1,λ) is still to update u1, yielding the switch-
type structure.

Then, we preceed to establish the optimality for the
average cost case. Let {αn}∞n=1 be a sequence of the dis-
count factors. According to [19], if the both conditions in
Appendix C hold, then there exists a subsequence {βn}∞n=1

such that a ∆-optimal algorithm is the limit point of the
∆βn -optimal policies. By induction on βn again, we obtain
that a ∆-optimal is switch-type as well.

3.2 Finite-state MDP approximations
The classical method for solving an MDP is to apply a value
iteration method [17]. However, as mentioned, the aver-
age cost optimality equation might not exist. Even though
average cost value iteration holds like Eq. (3), the value
iteration cannot work in practice, as we need to update
an infinite number of states for each iteration. To address
the issue, we propose a sequence of finite-state approximate
MDPs. In general, a sequence of approximate MDPs might
not converge to the original MDP according to [20]. Thus,
we will rigorously show the convergence of the proposed
sequence.

Let X(m)
i (t) be a virtual age of information for user ui in

slot t, with the dynamic being

X
(m)
i (t+ 1) =

{
1 if Λi(t) = 1, D(t) = i;[
X

(m)
i (t) + 1

]+
m

else,

where we define the notation [x]+m by [x]+m = x if x ≤ m
and [x]+m = m if x > m, i.e., we truncate the real age by m.
This is different from Eq. (1). While the real age Xi(t) can go
beyond m, the virtual age X

(m)
i (t) is at most m. Here, we

reasonably choose the truncation m to be greater than the
number N of users, i.e., m > N . Later, in Appendix D (see
Remark 23), we will discuss some mathematical reasons for
the choice.

By {∆(m)}∞m=N+1 we define a sequence of approximate
MDPs for ∆, where each MDP ∆(m) is the same as the
original MDP ∆ except:

• States: The state in slot t is S(m)(t) = (X
(m)
1 (t),

· · · , X(m)
N (t),Λ1(t), · · · ,ΛN (t)). Let S(m) be the

state space.
• Transition probabilities: Under action D(t) = d,

the transition probability P
(m)
s,s′ (d) of the MDP ∆(m)

from state s = (x1, · · · , xN , λ1, · · · , λN ) to state
s′ = (x′

1, · · · , x′
N , λ′

1, · · · , λ′
N ) is

Ps,s′(d) =
∏

i:λ′
i=1

pi
∏

i:λ′
i=0

(1− pi),

if x′
i = [(xi + 1) − xi1i=d and λi=1]

+
m for all i =

1, · · · , N .

Remember that the state space S of the MDP ∆ includes
some transient age vectors, e.g., (N, · · · , N). That is be-
cause, if not, the truncated state space S(m) would not be
a subset of original state space S.

Next, we show that the proposed sequence of approxi-
mate MDPs converges to the ∆-optimum.

Theorem 9. Let V (m)∗ be the minimum average cost for the
MDP ∆(m). Then, V (m)∗ → V ∗ as m→∞.

Proof. Please see Appendix D.

3.3 Structural MDP scheduling algorithm
Now, for a given truncation m, we are ready to propose a
practical algorithm to solve the MDP ∆(m). The traditional
relative value iteration algorithm (RVIA), as follows, can be
applied to obtain an optimal deterministic stationary policy
for ∆(m):

V
(m)
n+1(s) = min

d∈{0,1,··· ,N}
C(s, d) + E[V (m)

n (s′)]− V (m)
n (0),

(4)

for all s ∈ S(m) where the initial value function is V (m)
0 (s) =

0. For each iteration, we need to update actions for all virtual
states by minimizing the RHS of Eq. (4) as well as update
V (m)(s) for all s ∈ S(m). As the size of the state space
is O(mN ), the computational complexity of updating all
virtual states in each iteration of Eq. (4) is more than O(mN ).
The complexity primarily results from the truncation m of
the MDP ∆(m) and the number N of users. In this section,
we focus on dealing with large values of m for the case of
fewer users. In next section we will solve the case of more
users.

To develop a low-complexity scheduling algorithm for
fewer users, we propose structural RVIA in Alg. 1, which is
an improved RVIA by leveraging the switch-type structure.
In Alg. 1, we seek an optimal action d∗s for each virtual state
s ∈ S(m) by iteration. For each iteration, we update both the
optimal action d∗s and V (m)(s) for all virtual states. If the
switch property holds1, we can determine an optimal action
immediately in Line 5; otherwise we find an optimal action
according to Line 7. By Vtmp(s) in Line 9 we temporarily

1. The optimal policy for the truncated MDPs is switch-type as well,
according to the same proof as Theorem 8.
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Algorithm 1: Structural RVIA.

1 V (m)(s)← 0 for all virtual states s ∈ S(m);
2 while 1 do
3 forall s ∈ S(m) do
4 if there exists ζ > 0 and i ∈ {1, · · · , N} such that

d∗(xi−ζ,x−i,λ) = i then
5 d∗s ← i;
6 else
7 d∗s ←

argmind∈{0,··· ,N} C(s, d) + E[V (m)(s′)];
8 end
9 Vtmp(s)← C(s, d∗s) + E[V (m)(s′)]− V (m)(0);

10 end
11 V (m)(s)← Vtmp(s) for all s ∈ S(m).
12 end

keep the updated value, which will replace V (m)(s) in
Line 11. Using the switch structure to prevent from the
minimum operations on all virtual states in the conventional
RVIA, we can reduce the computational complexity result-
ing from the size m. Next, we establish the optimality of the
structural RVIA for the approximate MDP ∆(m).

Theorem 10. For MDP ∆(m) with a given m, the limit point
of d∗s in Alg. 1 is a ∆(m)-optimal action for every virtual state
s ∈ S(m). In particular, Alg. 1 converges to the ∆(m)-optimum
in a finite number of iterations.

Proof. (Sketch) According to [17, Theorem 8.6.6], we only
need to verify that the truncated MDP is unichain. Please see
Appendix E for details.

Based on the structural RVIA in Alg. 1, we propose the
structural MDP scheduling algorithm: Given the actions for all
state s ∈ S(m) from Alg. 1, for each slot t the scheduling
algorithm makes a decision according to the virtual age
X

(m)
i (t) for all i, instead of the real age Xi(t). Then, combin-

ing Theorems 9 and 10 yields that the proposed algorithm
is asymptotically ∆-optimal as m approaches infinity.

4 AN INDEX SCHEDULING ALGORITHM

By mean of the MDP techniques, we have developed the
structural MDP scheduling algorithm. The scheduling algo-
rithm not only reduces the complexity from the traditional
RVIA, but also was shown to be asymptotically age-optimal.
However, the scheduling algorithm might not be feasible for
many users; thus, a low-complexity scheduling algorithm
for many users is still needed. To fill this gap, we investigate
the scheduling problem from the perspective of restless
bandits [21]. A restless bandit generalizes a classic bandit by
allowing the bandit to keep evolving under a passive action,
but in a distinct way from its continuation under an active
action.

The restless bandits problem, in general, is PSPACE-hard
[21]. Whittle hence investigated a relaxed version, where a
constraint on the number of active bandits for each slot is re-
placed by the expected number. With this relaxation, Whittle
then applied a Lagrangian approach to decouple the multi-
armed bandit problem into multiple sub-problems, while

proposing an index policy and a concept of indexability. The
index policy is optimal for the relaxed problem; moreover,
in many practical systems, the low-complexity index policy
performs remarkably well, e.g., see [22].

With the success of the Whittle index policy to solve the
restless bandit problem, we apply the Whittle’s approach to
develop a low-complexity scheduling algorithm. However,
to obtain the Whittle index in closed form and to establish
the indexability can be very challenging [21]. To address the
issues, we simplify the derivation of the Whittle index by
investigating structural results like Section. 3.

4.1 Decoupled sub-problem
We note that each user in our scheduling problem can be
viewed as a restless bandit. Then, applying the Whittle’s ap-
proach, we can decouple our problem into N sub-problems.
Each sub-problem consists of a single user ui and adheres
to the network model in Section 2 with N = 1, except for an
additional cost c for updating the user. In fact, the cost c is
a scalar Lagrange multiplier in the Lagrangian approach.
In each decoupled sub-problem, we aim at determining
whether or not the BS updates the user in each slot, for
striking a balance between the updating cost and the cost
incurred by age. Since each sub-problem consists of a single
user only, hereafter in this section we omit the index i for
simplicity.

Similarly, we cast the sub-problem into an MDP Ω, which
is the same as the MDP ∆ in Section 3 with a single user
except:

• Actions: Let A(t) ∈ {0, 1} be an action of the MDP
in slot t indicating the BS’s decision, where A(t) = 1
if the BS decides to update the user and A(t) = 0
if the BS decides to idle. Note that the action A(t)
is different from the scheduling decision D(t). The
action A(t) is used for the decoupled sub-problem. In
Section. 4.4, we will use the MDP Ω to decide D(t).

• Cost: Let C(S(t), A(t)) be an immediate cost if action
A(t) is taken in slot t under state S(t), with the
definition as follows.

C
(

S(t) = (x, λ), A(t) = a
)

≜(x+ 1− x · a · λ) + c · a, (5)

where the first part x+1−x ·a ·λ is the resulting age
in the next slot and the second part is the incurred
cost for updating the user.

A policy µ = {A(0), A(1), · · · } of the MDP Ω specifies
an action A(t) for each slot t. The average cost J(π) under
policy µ is defined by

J(µ) = lim sup
T→∞

1

T + 1
Eµ

[
T∑

t=0

C(S(t), A(t))

]
.

Again, the objective of the MDP Ω is to find an Ω-optimal
policy defined as follows.

Definition 11. A policy µ of the MDP Ω is Ω-optimal if it
minimizes the average cost J(µ).

Traditionally, the Whittle index might be obtained by
solving the optimality equation of J(µ), e.g. [21, 23]. How-
ever, as discussed, the average cost optimality equation for
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the MDP Ω might not exit, and even if it exists, solving
an optimality equation might be tedious. To look for a
simpler way for obtaining the Whittle index, we investigate
structures of an Ω-optimal policy instead, by looking at its
discounted case again. It turns out that our structural results
will further simplify the derivation of the Whittle index.

4.2 Characterization of the Ω-optimality

First, we show that an Ω-optimal policy is stationary deter-
ministic as follows.

Theorem 12. There exists a deterministic stationary policy that
is Ω-optimal, independent of the initial state.

Proof. Please see Appendix F.

Next, we show that an Ω-optimal policy is a special type
of deterministic stationary policies.

Definition 13. A threshold-type policy is a special determinis-
tic stationary policy of the MDP Ω. The action for state (x, 0)
is to idle, for all x. Moreover, if the action for state (x, 1) is
to update, then the action for state (x+ 1, 1) is to update as
well. In other words, there exists a threshold X̄ ∈ {1, 2, · · · }
such that the action is to update if there is an arrival and the
age is greater than or equal to X̄ ; otherwise, the action is to
idle.

Theorem 14. If the update cost c ≥ 0, then there exists a
threshold-type policy that is Ω-optimal.

Proof. It is obvious that an optimal action for state (x, 0)
is to idle if c ≥ 0. To establish the optimality of the
threshold structure for state (x, 1), we need the discounted
cost optimality equation for Jα(s), similar to Proposition 4:

Jα(s) = min
a∈{0,1}

C(s, a) + αE[Jα(s
′)].

Similar to the proof of Theorem 8, we can focus on the
discounted cost case and show that an Ωα-optimal policy is
the threshold type. Let Jα(s; a) = C(s; a) + αE[Jα(s

′)].
Then, Jα(s) = mina∈{0,1} Jα(s; a). Moreover, an Ωα-
optimal action for state s is argmina∈{0,1} Jα(s; a). Sup-
pose that an Ωα-optimal action for state (x, 1) is to update,
i.e.,

Jα(x, 1; 1)−Jα(x, 1; 0) ≤ 0.

Then, an Ωα-optimal action for state (x + 1, 1) is still to
update since

Jα(x+ 1, 1; 1)−Jα(x+ 1, 1; 0)

= (1 + c+ αE[Jα(1, λ
′)])− (x+ 2 + αE[Jα(x+ 2, λ′)])

(a)

≤ (1 + c+ αE[Jα(1, λ
′)])− (x+ 1 + αE[Jα(x+ 1, λ′)])

=Jα(x, 1; 1)− Jα(x, 1; 0) ≤ 0,

where (a) results from the non-decreasing function of
Jα(x, λ) in x given λ (similar to Proposition 5). Hence, an
Ωα-optimal policy is threshold-type.

Thus far, we have successfully identify the threshold
structure of an Ω-optimal policy. The MDP Ω then can be
reduced to a two-dimensional discrete-time Markov chain
(DTMC) by applying a threshold-type policy. To find an

1

p

11

X̄

p

X̄ + 1

1-p

X̄ − 1

1-p

Fig. 3. The post-action age X̃(t) under the threshold-type policy forms
a DTMC.

optimal threshold for minimizing the average cost, in the
next lemma we explicitly derive the average cost for a
threshold-type policy.

Lemma 15. Given the threshold-type policy µ with the threshold
X̄ ∈ {1, 2, · · · }, then the average cost J(µ), denoted by C (X̄),
under the policy is

C (X̄) =

X̄2

2 + ( 1p −
1
2 )X̄ + 1

p2 − 1
p + c

X̄ + 1−p
p

. (6)

Proof. Let X̃(t) be the age after an action in slot t; precisely,
if S(t) = (x, λ) and A(t) = a, then X̃(t) = x+ 1− x · a · λ.
Note that X̃(t), called post-action age (similar to the post-
decsion state [24, 25]), is different from the pre-action age
X(t). Then, the post-action age X̃(t) by the threshold-type
policy forms an one-dimensional DTMC in Fig. 3, with the
transition probabilities being

P [X̃(t+ 1) = i+ 1|X̃(t) = i] = 1, for i = 1, · · · , X̄ − 1;

P [X̃(t+ 1) = i+ 1|X̃(t) = i] = 1− p, for i = X̄, · · · ;
P [X̃(t+ 1) = 1|X̃(t) = i] = p, for i = X̄, · · · .

To calculate the average cost of the policy, we associate
each state in the DTMC with a cost. The DTMC incurs the
cost of c + 1 in slot t when the post-action age in slot t is
X̃(t) = 1. That is because the post-action age X̃(t) = 1
implies that the BS updates the user. In addition, the DTMC
incurs the age cost of y in slot t when the post-action age is
X̃(t) = y ̸= 1.

The steady-state distribution ξ = (ξ1, ξ2, · · · ) of the
DTMC can be solved as

ξi =


1

X̄+ 1−p
p

if i = 1, · · · , X̄ ;
1

X̄+ 1−p
p

(1− p)i−X̄ if i = X̄ + 1, · · · .

Therefore, the average cost of the DTMC is

(1 + c)ξ1 +
∞∑
i=2

iξi =

X̄2

2 + ( 1p −
1
2 )X̄ + 1

p2 − 1
p + c

X̄ + 1−p
p

.

We remark that the post-action age introduced in the
above proof are beneficial in many aspects:

• The post-action age can form an one-dimensional
DTMC, instead of the original two-dimensional state
S(t).

• We cannot associate each pre-action age with a fixed
cost, since the cost in Eq. (5) depends on not only
state but also action. Instead, the cost for each post-
action age is determined by its age only.
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• The post-action age will facilitate the online algo-
rithm design in Section 5.

4.3 Derivation of the Whittle index

Now, we are ready to define and derive the Whittle index as
follows.

Definition 16. We define the Whittle index I(s) by the cost
c that makes both actions, to update and to idle, for state s
equally desirable.

In the next theorem, we will obtain a very simple ex-
pression for the Whittle index by combining Theorem 14
and Lemma 15.

Theorem 17. The Whittle index of the sub-problem for state
(x, λ) is

I(x, λ) =

{
0 if λ = 0;
x2

2 −
x
2 + x

p if λ = 1.
(7)

Proof. It is obvious that the Whittle index for state (x, 0) is
I(x, 0) = 0 as both actions result in the same immediate cost
and the same age of next slot if c = 0.

Let g(x) = C (x) in Eq. (6) for the domain of {x ∈ R :
x ≥ 1}. Note that g(x) is strictly convex in the domain. Let
x∗ be the minimizer of g(x). Then, an optimal threshold for
minimizing the average cost C (X̄) is either ⌊x∗⌋ or ⌈x∗⌉:
the optimal threshold is X̄∗ = ⌊x∗⌋ if C (⌊x∗⌋) < C (⌈x∗⌉)
and X̄∗ = ⌈x∗⌉ if C (⌈x∗⌉) < C (⌊x∗⌋). If there is a tie, both
choices are optimal, i.e, equally desirable.

Hence, both actions for state (x, 1) are equally desirable
if and only if the age x satisfies

C (x) = C (x+ 1), (8)

i.e., x = ⌊x∗⌋ and both thresholds of x and x + 1 are
optimal. By solving Eq. (8), we obtain the cost, as stated
in the theorem, to make both actions equally desirable.

According to Theorem 17, both actions might have a tie.
If there is a tie, we break the tie in favor of idling. Then,
we can explicitly express the optimal threshold in the next
theorem.

Lemma 18. The optimal threshold for minimizing the average
cost C (X̄) is x if the cost c satisfies I(x − 1, 1) ≤ c < I(x, 1),
for all x = 1, 2, · · · .

Proof. Please see Appendix G.

Next, according to [26], we have to demonstrate the
indexability such that the Whittle index is feasible.

Definition 19. For a given cost c, let S(c) be the set of
states such that the optimal actions for the states are to idle.
The sub-problem is indexable if the set S(c) monotonically
increases from the empty set to the entire state space, as c
increases from −∞ to∞.

Theorem 20. The sub-problem is indexable.

Proof. If c < 0, the optimal action for every state is to
update; as such, S(0) = ∅. If c ≥ 0, then S(c) is composed
of the set {s = (x, 0) : x = 1, 2, · · · } and a set of (x, 1)
for some x’s. According to Lemma 18, the optimal threshold

monotonically increases to infinity as c increases, and hence
the set S(c) monotonically increases to the entire state
space.

4.4 Index scheduling algorithm
Now, we are ready to propose a low-complexity index
scheduling algorithm based on the Whittle index. For each
slot t, the BS observes age Xi(t) and arrival indicator Λi(t)
for every user ui; then, updates user ui with the highest
value of the Whittle index I(Xi(t),Λi(t)), i.e., D(t) =
argmaxi=1,··· ,N I(Xi(t),Λi(t)). We can think of the index
I(Xi(t),Λi(t)) as a value of updating user ui. The intuition
of the index scheduling algorithm is that the BS intends to
send the most valuable packet.

The optimality of the index scheduling algorithm for
the relaxed version is known [21]. Next, we show that
the proposed index scheduling algorithm is age-optimal for
the original problem (without relaxation), when the packet
arrivals for all users are stochastically identical.

Lemma 21. If the arrival rates of all information sources are
the same, i.e., pi = pj for all i ̸= j, then the index scheduling
algorithm is age-optimal.

Proof. Note that, for this case, the index scheduling al-
gorithm send an arriving packet with the largest age of
information, i.e., D(t) = argmaxi Xi(t)Λi(t) for each slot
t. Then, in Appendix H we show that the policy is ∆-
optimal.

In Section 6 we will further validate the index scheduling
algorithm for stochastically non-identical arrivals by simu-
lations.

5 ONLINE SCHEDULING ALGORITHM DESIGN

Thus far, we have developed two scheduling algorithms in
Sections 3 and 4. Both algorithms are offline, as the struc-
tural MDP scheduling algorithm and the index scheduling
algorithm need the arrival statistics as prior information to
pre-compute an optimal action for each virtual state and the
Whittle index, respectively. To solve the more challenging
case when the arrival statistics are unavailable, in this sec-
tion we develop online versions for both offline algorithms.

5.1 An MDP-based online scheduling algorithm
We first develop an online version of the MDP scheduling
algorithm by leveraging stochastic approximation techniques
[27]. The intuition is that, instead of updating V (m)(s) for all
virtual states in each iteration of Eq. (4), we update V (m)(s)
by following a sample path, which is a set of outcomes of the
arrivals over slots. It turns out that the sample-path updates
will converge to the ∆-optimal solution. To that end, we
need a stochastic version of the RVIA. However, the RVIA in
Eq. (4) is not suitable because the expectation is inside the
minimization (see [24] for details). While minimizing the
RHS of Eq. (4) for a given current state, we would need the
transition probabilities to calculate the expectation. To tackle
this, we design post-action states for our problem, similar to
the proof of Lemma 15.

We define post-action state s̃ as the ages and the arrivals
after an action. The state we used before is referred to as the
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pre-action state. If s = (x1, · · · , xN , λ1, · · · , λN ) ∈ S(m) is a
virtual state of the MDP ∆(m), then the virtual post-action
state after action d is s̃ = (x̃1, · · · , x̃N , λ̃1, · · · , λ̃N ) with

x̃i =

{
1 if i = d and λi = 1;
[xi + 1]

+
m else,

and λ̃i = λi for all i.
Let Ṽ (m)(s̃) be the value function based on the post-

action states defined by

Ṽ (m)(s̃) = E[V (m)(s)],

where the expectation is taken over all possible the pre-
action states s reachable from the post-action state. We
can then write down the post-action average cost opti-
mality equation [24] for the virtual post-action state s̃ =
(x̃1, · · · , x̃N , λ̃1, · · · , λ̃N ):

Ṽ (m)(s̃) + V (m)∗

=E

[
min

d∈{0,1,··· ,N}
C
(
(x̃, λ̃

′
), d

)
+Ṽ (m)([x̃+ 1− x̃dλ̃

′
d]

+
m, λ̃

′
)
]
,

where λ̃′ is the next arrival vector; x̃i = (0, · · · , x̃i, · · · , 0)
denotes the zero vector except for the i-th entry being
replaced by x̃i; λ̃

′
i = (0, · · · , λ̃i, · · · , 0) denotes the zero

vector except for the i-th entry being replaced by λ̃i; the
vector 1 = (1, · · · , 1) is the unit vector. From the above
optimality equation, the RVIA is as follows:

Ṽ
(m)
n+1(s̃) =E

[
min

d∈{0,1,··· ,N}
C
(
(x̃, λ̃

′
), d

)
+Ṽ (m)

n ([x̃+ 1− xdλ̃
′
d]

+
m, λ̃

′
)
]
− Ṽ (m)

n (0). (9)

Subsequently, we propose the MDP-based online schedul-
ing algorithm in Alg. 2 based on the stochastic version of the
RVIA. In Lines 1-3, we initialize Ṽ (m)(s̃) of all virtual post-
action states and start from the reference point. Moreover,
by v we record Ṽ (m)(s̃) of the current virtual post-action
state. By observing the current arrivals Λ(t) and plugging
in Eq. (9), the expectation in Eq. (9) can be removed; as such,
in Line 5 we optimally update a user by minimizing Eq. (10).
Then, we update Ṽ (m)(s̃) of the current virtual post-action
state in Line 7, where γ(t) is a stochastic step-size in slot t
to strike a balance between the previous Ṽ (m)(s̃) and the
updated value v. Finally, the next virtual post-action state is
updated in Lines 8 and 9

Next, we show the optimality of the MDP-based online
scheduling algorithm as slot t approaches infinity.

Theorem 22. If
∑∞

t=0 γ(t) = ∞ and
∑∞

t=0 γ
2(t) < ∞, then

Alg. 2 converges to ∆(m)-optimum.

Proof. According to [28, 29], we only need to verify that the
truncated MDP is unichain, which has been completed in
Appendix E.

In the above theorem,
∑∞

t=0 γ(t) = ∞ implies that
Alg. 2 needs an infinite number of iterations to learn the
∆-optimal solution, while the offline Alg. 1 converges to the
optimal solution in a finite number of iterations. Moreover,∑∞

t=0 γ
2(t) < ∞ means that the noise from measuring

Algorithm 2: MDP-based online scheduling algorithm

/* Initialization */
1 Ṽ (m)(s̃)← 0 for all states s̃ ∈ S(m);
2 s̃← 0;
3 v ← 0;
4 while 1 do

/* Decision in slot t */
5 We optimally make a decision D∗(t) in slot t

according to the current arrivals
Λ(t) = (Λ1(t), · · · ,ΛN (t) in slot t:

D∗(t) = argmin
d∈{0,1,··· ,N}

C ((x̃,Λ(t)), d)

+ Ṽ (m)([x̃+ 1− x̃dΛd(t)]
+
m,Λ(t));

(10)

/* Value update */
6 v ← C ((x̃,Λ(t)), D∗(t)) + Ṽ (m)([x̃+ 1−

x̃D∗(t)ΛD∗(t)(t)]
+
m,Λ(t))− Ṽ (m)(0);

7 Ṽ (m)(s̃)← (1− γ(t))Ṽ (m)(s̃) + γ(t)v;
/* post-action state update */

8 x̃← [x̃+ 1− x̃D∗(t)ΛD∗(t)(t)]
+
m;

9 λ̃← Λ(t).
10 end

Ṽ (m)(s̃) can be controlled. Finally, we want to emphasize
that the proposed Alg. 2 is asymptotically ∆-optimal, i.e., it
converges to the ∆-optimal solution when both the trunca-
tion m and the slot t go to infinity. In Section VI, we will
also numerically investigate the algorithm over finite slots.

5.2 An index-based online scheduling algorithm
Next, we note that the simple Whittle index I(x, λ) in Eq. (7)
depends on its arrival probability only. Thus, if the arrival
probability is unknown, for each slot t we revise the index
by

I(x, λ, t) =

{
0 if λ = 0;
x2

2 −
x
2 + x

p(t) if λ = 1,

where

p(t) =

∑t
τ=0 Λ(τ)

t+ 1
=

p(t− 1) · t+ Λ(t)

t+ 1

is the running average arrival rate. Then, we propose the
index-based online scheduling algorithm as follows. For each
slot t, the BS observes age Xi(t) and arrival indicator Λi(t)
for every user ui; then, calculate pi(t) and update user
ui with the highest value of the revised Whittle index
I(Xi(t),Λi(t), t).

6 SIMULATION RESULTS

In this section we conduct extensive computer simulations
for the proposed four scheduling algorithms. We demon-
strate the switch-type structure of Alg. 1 in Section 6.1.
In Section 6.2 we compare the proposed scheduling algo-
rithms, especially to validate the performance of the online
algorithms over finite slots. Finally, we study the wireless
broadcast network with buffers at the BS in Section 6.3.
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6.1 Switch-type structure of Alg. 1
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Fig. 4. Switch structure of Alg. 1 for (a) p1 = p2 = 0.9; (b) p1 = 0.9,
p2 = 0.5. The dots represent D(t) = 1 to update user u1 and the stars
mean D(t) = 2 to update user u2.

Figs. 4-(a) and 4-(b) show the switch-type structure of
Alg. 1 for two users, when the BS has packets for both
users. The experiment setting is as follows. We run Alg. 1
with the boundary m = 10 over 100,000 slots to search an
optimal action for each virtual state. Moreover, we consider
two arrival rate vectors, with (p1, p2) being (0.9, 0.9) and
(0.9, 0.5) in Figs. 4-(a) and 4-(b), respectively, where the dots
represent D(t) = 1 and the stars mean D(t) = 2 when
the BS has both arrivals in the same slot. We observe the
switch structure in the figures, while Fig. 4-(a) is consistent
with the index scheduling algorithm in Section 4 by simply
comparing the ages of the two users. Moreover, by fixing
the arrival rate p1 = 0.9 for the first user, the BS will give a
higher priority to the second user as p2 decreases in Fig. 4-
(b). That is because the second user takes more time to wait
for the next arrival and becomes a bottleneck.

6.2 Numerical studies of the proposed scheduling al-
gorithms

In this section, we examine the proposed four algorithms
from various perspectives. First, we show the average age of
two users for different p2 in Figs. 5 and 6 with fixed p1 = 0.6
and p1 = 0.8, respectively. Here, we set the boundary
m = 30 for the structural MDP scheduling algorithm. For
the MDP-based online scheduling algorithms, we set the
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MDP online ( (t)=1/t)

MDP online ( (t)=0.1/t)

MDP online ( (t)=0.01/t)
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Fig. 5. Average age for different arrival rate p2, where we fix N = 2 and
p1 = 0.6.
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Fig. 6. Average age for different arrival rate p2, where we fix N = 2 and
p1 = 0.8.
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Fig. 7. Average age for different arrival rate p1 = p2 = p, where we fix
N = 2, 3, 4, respectively.

boundary m = 100; moreover, we consider different step
sizes in both figures, i.e., γ(t) = 1/t, γ(t) = 0.1/t, and
γ(t) = 0.01/t. All the results are averaged over 100,000
slots. How to choose the best step size with provably
performance guarantee is interesting, but is out of scope
of this paper. By simulation, we observe that γ(t) = 0.01/t
works perfectly for our problem to achieve the minimum
average age. Moreover, comparing with the structural MDP
scheduling algorithm, the low-complexity index algorithm
almost achieves the minimum average age, with invisible
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Fig. 8. Average age for different different number N of users, where we
fix the arrival rate p1 = p2 = 1/N .
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performance loss. Even without the knowledge of the ar-
rival statistics, the MDP-based online scheduling algorithm
with γ(t) = 0.01/t and the index-based online scheduling
algorithm are both close to the minimum average age.

Second, we show the average age of more than two users
with N = 2, 3, 4, respectively, in Fig. 7, where we consider
p1 = p2 = p. According to Lemma 21, the index scheduling
algorithm is age-optimal; thus, we find that both online
scheduling algorithms are almost age-optimal again, where
we use γ(t) = 0.01/t only.

Third, we show that the average age of many users in
Fig. 8. In this setting, the two MDP-based scheduling algo-
rithms may be unfeasible because the resulting huge state
space; thus, we consider the two index-based scheduling al-
gorithms only. We find that the low-complexity index-based
online scheduling algorithm again achieves the minimum
average age.

By these numerical studies, we would suggest imple-
menting the index-based online scheduling algorithm. It is
not only simple to implement practically, but also has good
performance.

6.3 Networks with buffers
Thus far, we consider the no-buffer network only. Finally, we
study the buffers at the BS to store the latest information for
each user. Similar to Section 3 we can find an age-optimal
scheduling by an MDP. However, we need to redefine the
states of the MDP ∆. In addition to the age Xi(t) of
information at user ui, by Yi(t) we define the initial age of
the information at the buffer for user ui; precisely,

Yi(t) =

{
0 if Λ(t) = 1;
Yi(t− 1) + 1 else.

Then, we redefine the state by S(t) = {X1(t), · · · , XN (t),
Y1(t), · · · , YN (t)}. Moreover, the immediate cost is rede-
fined as

C(S(t), D(t) = d) =
N∑
i=1

(Xi(t) + 1)− (Xd(t)− Yd(t)),

where we define Y0(t) = 0 for all t. Then, similar to
Section 3, we can show that

• there exists a deterministic stationary policy that is
age-optimal;

• the similar sequence of approximate MDPs con-
verges;

• an age-optimal scheduling algorithm is switch-type:
for every user ui, if a ∆-optimal action at state s =
(xi,x−i,y) is d∗(xi,x−i,y)

= i, then d∗(xi+1,x−i,y)
= i,

where y = (y1, · · · , yN ) is the vector of all initial
ages.

We then modify Alg. 1 for the network with the buffers, as
an age-optimal scheduling algorithm.

To study the effect of the buffers, we consider the trun-
cated MDP with the boundary m = 30 and generate arrivals
with p1 = p2 = p. After averaging the age over 100,000 slots,
we obtain the average age in Fig. 9 for various p, where the
red curve with the triangle markers indicates the no-buffer
networks (by employing Alg. 1) and the blue curve with the
star markers indicates the network with the buffers.

0.4 0.5 0.6 0.7 0.8 0.9
2

3

4

5

6

7

No-buffer network

Buffer network

Fig. 9. Minimum average age for the network with/without the buffers by
running the MDP-based scheduling algorithms, where the arrival rates
p1 = p2 = p.

In this setting, we see mild improvement of the average
age by exploiting the buffers. The buffers reduce the average
age by only around (5.6−5.3)/5.6 ≈ 5% when p = 0.4, and
even lower when p is higher. Let us discuss the following
three cases when both users have arrivals in some slot:

• When both p1 and p2 are high: That means the user
who is not updated currently has a new arrival in
the next slot with a high probability; as such, the old
packet in the buffer seems not that effective.

• When both p1 and p2 are low: Then, the possibility of
the two arrivals in the same slot is very low. Hence,
this would be a trivial case.

• When one of p1 and p2 are high and the other is low: In
this case, the BS will give the user with the lower
arrival rate a higher update priority, as a packet for
the other user will arrive shortly.

According to the above discussions, we observe that the
buffers might not be that effective as expected. The no-buffer
network is not only simple for practical implementation but
also works well.

7 CONCLUDING REMARKS

In this paper, we treated a wireless broadcast network,
where many users are interested in different information
that should be delivered by a base-station. We studied
the age of information by designing and analyzing four
scheduling algorithms, i.e., the structural MDP scheduling
algorithm, the index scheduling algorithm, the MPD-based
online scheduling algorithm, and the index-based online
scheduling algorithm. We not only theoretically investigated
the optimality of the proposed algorithms, but also validate
their performance via the computer simulations. It turns
out that the low-complexity index scheduling algorithm
and both online scheduling algorithms almost achieve the
minimum average age.

Some possible future works are discussed as follows. We
focused on the no-buffer network in this paper. It is an issue
to study provable effectiveness of the buffers and to charac-
terize the regime under which the no-buffer network works
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with marginal performance loss. Moreover, it is interesting
to investigate structural results like ours for simplifying the
calculation of the Whittle index for networks with buffers.
Finally, the paper treated a single-hop network only. It is
interesting to extend our results to multi-hop networks.
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APPENDIX A
PROOF OF PROPOSITION 4
According to [19], it suffices to show that Vα(s) < ∞
for every initial state s and discount factor α. Let f be
the deterministic stationary policy of the MDP ∆ that
chooses D(t) = 0 for all t. Note that, for initial state
s = (x1, · · · , xN , λ1, · · · , λN ), we have

Vα(s; f) = lim
T→∞

Ef

[ T∑
t=0

αtC(S(t), D(t))|S(0) = s
]

=
∞∑
t=0

αt [(x1 + t) + · · ·+ (xN + t)]

=
x1 + · · ·+ xN

1− α
+

αN

(1− α)2
<∞.

By definition of the optimality, we conclude Vα(s) < ∞
since Vα(s; f) <∞.

APPENDIX B
PROOF OF PROPOSITION 5
The proof is based on induction on n of the value iteration
in Eq (3). The result clearly holds for Vα,0(s). Suppose that
Vα,n(s) is non-decreasing in xi. First, note that the immedi-
ate cost C(s, d) =

∑N
i=1(xi + 1)− xdλd is a non-decreasing

function in xi. Second, E[Vα,n(s
′)] is also a non-decreasing

function in xi according to the induction hypothesis. Since
the minimum operator (in Eq. (3)) holds the non-decreasing
property, we conclude that Vα,n+1(s) is a non-decreasing
function as well.

APPENDIX C
PROOF OF LEMMA 6
We divide state space S into two disjoint sets S1 and S2,
where the age vectors in the set S1 belongs to X. Then, set
S2 is a transient set for any scheduling algorithm that will
update each user for at lease once. We consider two cases as
follow.

First, we focus on the MDP ∆ with the restricted state
space S1, and show the lemma holds. According to [19],
we need to verify that the following two conditions are
satisfied.

1) There exists a deterministic stationary policy f of the
MDP ∆ such that the resulting discrete-time Markov
chain (DTMC) by the policy is irreducible, aperiodic,
and the average cost V (f) is finite: We consider the
deterministic stationary policy f as the one that
updates a user with an arrival and the largest age. It
is obvious that the resulting DTMC is irreducible
and aperiodic. Next, we transform the age of in-
formation into an age-queueing network in Fig. 10
consisting of N age-queues q1, · · · , qN , age-packet
arrivals to each queue, and a server. In each slot
an age-packet arrives at the system, since the age
increases by one for each slot. In each slot a channel
associated with queue qi is ON with probability pi.
For each slot the server can serve a queue with an
infinite number of age-packets if its channel is ON.

q1

1 age-packet / 

slot

Λ1(t)

qN

ΛN (t)

i.i.d. time-varying channel

1 age-packet / 

slot

server

Fig. 10. Age-queueing network.

Then, the long-run average total age-queue size is
the average cost. Note that the arrival rate is inte-
rior of the capacity region [30] of the age-queueing
network. Moreover, the policy f is the maximum
weight scheduling algorithm [30] that is shown to be
throughput-optimal; as such, the average age-queue
size is finite. Thus, the average cost V (f) is finite as
well.

2) There exists a nonnegative L such that the relative cost
function hα(s) ≥ −L for all s and α: Let Cs,s′(π) be
the expected cost of the first passage from state s to
state s′ under policy π. Then, using the deterministic
stationary policy f in the first condition, we have
Cs,s′(f) < ∞ (see [19, Proposition 4]) and hα(s) ≥
−C0,s (see [19, proof of Proposition 5]). Moreover,
as Vα(s) is a non-decreasing function in xi (see our
Proposition 5), only state s with xi ≤ N for all i can
probably result in a lower value of Vα(s) than Vα(0).
We hence can choose L = maxs∈S:xi≤N,∀i C0,s.

Thus, according to [19], there exists a deterministic station-
ary policy that is ∆-optimal and minimum average cost is
the constant V ∗, independent of the initial state.

Second, we note that, if the initial state belongs to S2,
then a ∆-optimal policy will update each user for at least
once (e.g, using the above deterministic scheduling algo-
rithm f ); otherwise, the average cost is infinite. In other
words, state S(t) will enter S1 in finite time, and always
stay in the set S1 onwards. Thus, the average cost until the
state enters S1 approaches zero as slots go to infinity, and
the minimum average cost is still the constant V ∗ as in the
first case. Moreover, there exists a deterministic stationary
policy that is ∆-optimal, e.g., following the deterministic
stationary policy f before entering S1 and then following
the ∆-optimal deterministic stationary policy in the first
case.

APPENDIX D
PROOF OF THEOREM 9
Let V (m)

α (s) and h
(m)
α (s) be the minimum expected total α-

discounted cost and the relative cost function for the MDP
∆(m), respectively. According to [31], we need to prove the
following two conditions are satisfied.

1) There exists a nonnegative L, a nonnegative finite func-
tion F (.) on S such that −L ≤ h

(m)
α (s) ≤ F (s) for all

s ∈ S(m), where m = N+1, N+2, · · · and 0 < α < 1:
We consider a randomized stationary algorithm f
that updates each user (with packet arrival) with
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equal probability for each slot. Similar to Appendix
C, let Cs,0(f) and C

(m)
s,0 (f) be the expected cost from

state s ∈ S(m) to the reference state 0 by applying
the algorithm f to ∆ and ∆(m), respectively. Then,
h
(m)
α (s) ≤ C

(m)
s,0 (f) and Cs,0(f) < ∞ similar to

Appendix C. In the following, we will show that
C

(m)
s,0 (f) ≤ Cs,0(f) and then we can choose the

function F (s) = Cs,0(f).
To that end, we first express P (m)

s,s′ (d) as

P
(m)
s,s′ (d) = Ps,s′(d) +

∑
r(s′)∈S−S(m)

Ps,r(s′)(d),

for some (or no) excess probabilities [31] on some state
r(s′) ∈ S − S(m), depending on next state s′. Since
the scheduling algorithm f is independent of the
age, given arrival vector λ we have C(i,λ),0(f) ≤
C(j,λ),0(f) for age vector i ≤ j. Then, we obtain∑

s′∈S(m)

P
(m)
s,s′ (d)Cs′,0(f)

=
∑

s′∈S(m)

(
Ps,s′(d) +

∑
r(s′)∈S−S(m)

Ps,r(s′)(d)
)
Cs′,0(f)

≤
∑

s′∈S(m)

Ps,s′(d)Cs′,0(f) +
∑

k∈S−S(m)

Ps,k(d)Ck,0(f)

=
∑
s′∈S

Ps,s′(d)Cs′,0(f). (11)

Using the above inequality, we then conclude
C

(m)
s,0 (f) ≤ Cs,0(f) because

C
(m)
s,0 (f) =Ef [C(s, d) +

∑
s′∈S(m)

P
(m)
s,s′ (d)Cs′,0(f)]

≤Ef [C(s, d) +
∑
s′∈S

Ps,s′(d)Cs′,0(f)]

=Cs,0(f).

On the other hand, we can choose L =
maxs∈S:xi≤N,∀i C0,s(f), since h

(m)
α (s) ≥ −C(m)

0,s (f)

(see Appendix C) and −C(m)
0,s (f) ≥ −C0,s(f) simi-

lar to above.
2) The value V

(m)∗
∞ is bounded by V ∗, i.e., V (m)∗

∞ ≤ V ∗:
We claim that V (m)

α (s) ≤ Vα(s) for all m, and then
the condition holds as

V (m)∗ = lim sup
α→1

(1− α)V (m)
α (s)

≤ lim sup
α→1

(1− α)Vα(s) = V ∗.

To verify this claim, we first note that Vα(s) is a non-
decreasing function in age (see Proposition 5). Then,
similar to Eq. (11), we have∑

s′∈S(m)

P
(m)
s,s′ (d)Vα(s

′) ≤
∑
s′∈S

Ps,s′(d)Vα(s
′). (12)

We now prove the claim by induction on n in Eq. (3).
It is obvious when n = 0. Suppose that V (m)

α,n (s) ≤

Vα,n(s), and then

V
(m)
α,n+1(s)

= min
d∈{0,1,···N}

C(s, d) + α
∑

s′∈S(m)

P
(m)
s,s′ (d)V

(m)
α,n (s′)

(a)

≤ min
d∈{0,1,···N}

C(s, d) + α
∑

s′∈S(m)

P
(m)
s,s′ (d)Vα,n(s

′)

(b)

≤ min
d∈{0,1,···N}

C(s, d) + α
∑
s′∈S

Ps,s′(d)Vα,n(s
′)

=Vα,n+1(s),

where (a) results from the induction hypothesis, and
(b) is due to Eq. (12).

Remark 23. Here, we want to emphasize that we have
chosen m > N . If not, the state space S of the MDP ∆ would
have to include more transient states such that all ages are
no more than N , e.g., the age vector of (N, · · · , N). These
additional states are not reachable from state 0. Thus, we
cannot choose the L as in the proof, since C0,s(f) is infinite
if the age vector in state s is (N, · · · , N).

APPENDIX E
PROOF OF THEOREM 10
According to [17, Theorem 8.6.6], the RVIA in Eq. (4) con-
verges to the optimal solution in finite iterations if the
truncated MDP is unichain, i.e., the Markov chain corre-
sponding to every deterministic stationary policy consists of
a single recurrent class plus a possibly empty set of transient
states. Note that for every truncated MDP, there is only one
recurrent class by [32], since the state (m, · · · ,m, 0, · · · , 0) is
reachable (e.g., there is no arrival in the next m slots) from all
other states (where remember that m is the boundary of the
truncated MDP). Hence, the truncated MDPs are unichain
and the theorem follows immediately.

APPENDIX F
PROOF OF THEOREM 12
Given initial state S(0) = s, we define the expected total
α-discounted cost under policy µ by

Jα(s;µ) = lim sup
T→∞

Eµ

[
T∑

t=0

αtC(S(t), A(t))|S(0) = s

]
,

Let Jα(s) = minµ Jα(s;µ) be the minimum expected total
α-discounted cost. A policy that minimizes Jα(s;µ) is called
Ωα-optimal policy. Again, we check the two conditions in
Appendix C.

1) Let f be the deterministic stationary policy of al-
ways choosing action A(t) = 1 for each slot t if
there is an arrival. It is obvious that the resulting
DTMC by the policy is irreducible and aperiodic. To
calculate the average cost, we note that age X(t) by
the policy f is also a DTMC in Fig. 11. The steady-
state distribution ξ = (ξ1, ξ2, · · · , ) of the DTMC is

ξi = p(1− p)i−1 for all i = 1, 2, · · · .
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1 2 3 4

1-p

p

p

1-p

p

1-p 1-p

p

Fig. 11. The age X(t) under the policy f forms a DTMC.

Hence, the average age is
∞∑
i=1

iξi =
∞∑
i=1

ip(1− p)i−1 =
1

p
.

On the other hand, the average updating cost is c · p
as the arrival probability is p. Hence, the average
cost under the policy f is the average age (i.e., 1/p)
plus the average updating cost (i.e., c · p), which is
finite.

2) Similar to Proposition 5, we can show that Jα(x, λ)
is a non-decreasing function in age x for a given
arrival indicator λ; moreover, Jα(x, λ) is a non-
increasing function in λ for a given age x. Thus,
we can choose L = 0.

By verifying the two conditions, the theorem immediately
follows from [19].

APPENDIX G
PROOF OF LEMMA 18
Since I(x, 1) is the updating cost c to make both actions for
state (x, 1) equally desirable and we break a tie in favor of
idling, the optimal threshold is x+1 if the cost is c = I(x, 1),
for all x. We claim that the optimal threshold monotonically
increases with cost c, and then the theorem follows.

To verify the claim, we can focus on the discounted cost
case according to the proof of Theorem 8. Suppose that an
Ωα-optimal action, associated with a cost c1, for state (x, 1)
is to idle, i.e.,

x+ 1 + αE[Jα(x+ 1, λ′)] ≤ 1 + c1 + αE[Jα(1, λ
′)].

Then, an Ωα-optimal action, associated with a cost c2 ≥ c1,
for state (x, 1) is to idle as well since

x+ 1 + αE[Jα(x+ 1, λ′)] ≤1 + c1 + αE[Jα(1, λ
′)]

≤1 + c2 + αE[Jα(1, λ
′)].

Then, the monotonicity is established.

APPENDIX H
PROOF OF LEMMA 21
Similar to the proof of Theorem 8, we can focus on the
discounted cost case. Without loss of generality, we assume
that age x1 ≥ max(x2, · · ·xN ).

Let xij = (0, · · · , xj , · · · , 0) be the zero vector except for
the i-the entry being replaced by xj . By the symmetry of the
users, swap of the initial ages of any two users results in the
same expected total α-discounted cost, i.e.,

E[Vα(x1,x−1,λ)] = E[Vα(xj ,x−1 − xj + xj1,λ)],

for all j ̸= 1. Similar to the proof of Theorem 8, here we
focus on the case when λ1 = 1 and λj = 1. The result
follows from the non-decreasing function of Vα(x1,x−1,λ)
and x1 ≥ xj for all j ̸= 1:

να(x1,x−1,λ; 1)− να(x1,x−1,λ; j)

=xj − x1 + αE[Vα(1,x−1 + 1,λ′)

− Vα(x1 + 1,x−1 + 1− xj ,λ
′)]

=xj − x1 + αE[Vα(xj + 1,x−1 + 1− xj ,λ
′)

− Vα(x1 + 1,x−1 + 1− xj ,λ
′)] ≤ 0.


