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Introduction

1. Let Y denote a binary response variable.

2. For instance, Y might indicate vote in an election (Democrat,

Republican), event occurrence present or not.

3. Denoting the two outcomes by 0 and 1 gives the Bernoulli random

variable with mean

E(Y) = 1× P(Y = 1) + 0× P(Y = 0) = π(x) (1)

4. Denote π(x) as “success” probability

5. Depend on variables of explanatory variable XXX = (X1, X2, . . . , Xp)T.
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Binary Random Variable

1. Y denote a binary response variable as 0 and 1 gives the Bernoulli

random variable

E(Y) = 1× P(Y = 1) + 0× P(Y = 0) = π(x) (2)

E(Y2) = 12π(x) + 02[1− π(x)] = π(x) (3)

2. The variance of Y is

Var(Y) = E(Y2)− [E(Y)]2 = π(x)[1− π(x)] (4)
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Linear Probability Model with OLS

1. For a binary response, the regression model

E(Y) = π(x) = α + βx (5)

2. If we regress π on x using ordinary least square (OLS), the linear

probability model has two major structural defects, non-linearity and

heteroscedasticity.
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Linear Probability Model with OLS

3. Probabilities must fall between 0 and 1,

OLS predicts π < 0 and π > 1

4. Heteroscedastic and not constant variance of Y is

Var(Y) = π(1− π)
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Linear Probability Model with OLS

1. Transformation sin−1√π

2. Makes the variance approximately constant

3. Solves the second problem but not the first

4. Hard to interpret model
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Linear Probability Model with GLIM

1. For a binary response, the regression model

E(Y) = π(x) = α + βx (6)

2. If Ys are independent, consider a GLM with identity link function.
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Logistic Regression Model

• yi ∼ Bin(ni, πi) i = 1, . . . , C,

• πi depends on covariates xi = (x1i, x2i, . . . xpi)T

• The relationship is

logit(πi) = log
(

πi
1− πi

)
= xT

i βββ (7)

where βββ = (β1, β2, . . . , βp)T is to be estimated.
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Logistic Regression Model and EL50

1. If we only have single covariate, say x, as continuous variable.

2. Let

logit[πi(xi)] = α + βxi. (8)

3. The parameter β determines the rate of increase of decrease of the

S-shaped curve.

4. The sign of β indicates whether the curve ascends or descends, and

the rate of change increase as |β| increases.
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Logistic Regression Model and EL50

5. A straight line drawn tangent to the curve at a particular x value

describes the rate of change at that point.

6. For logistic regression parameter β, that line has slope equal to

β[π(x)(1− π(x))].

c©Jeff Lin, MD., PhD. Logistic Regression, 10



Logistic Regression Model and EL50

7. The steepest slope of the curve occurs at x for which π(x) = 0.5;

that x value is −α
β.

8. This value is sometimes called the median effective level and is

denoted EL50.

9. It represents the level at which each outcome has a 50% change.
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Logistic Regression Model and Odds Ratio

πi =
exT

i βββ

1 + exT
i βββ

(9)

1. logit of πi is log odds

2. coefficient are log odds ratios

3. β j is the additive increase in log odds resulting from a one unit

increase in xij.
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Logistic Regression Model and Odds Ratio

1. Single covariate, x, two levels 0, 1.

πi(xi = 1) =
eα+βxi

1 + eα+βxi
=

eα+β

1 + eα+β
(10)

πi(xi = 0) =
eα+βxi

1 + eα+βxi
=

eα

1 + eα (11)

logit[πi(xi)] = α + βxi (12)

πi(xi)
1− πi(xi)

= exp(α + βxi) (13)

log(Odds Ratio) = logit(π(xi = 1))− logit(π(xi = 0)) = β

2. β is just the log odds ratio of xi = 1 respect to xi = 0.
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Logistic Regression Model

1. Advantage for both prospective or retrospective studies

2. Empirical (sample) logit vs. grouped predictor(s) plot

empirical logit = log
(

yi +
1
2

ni − yi +
1
2

)
= XXXβββ (14)

3. “Quick and dirty” method for estimating βββ is to regress the empirical

logit on xi by OLS

4. X is continuous, group the data before calculating empirical logit
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Likelihood

For n independent observations, the log likelihood is

f (yi; θi, φ) = exp
[

yiθi − b(θi)
a(φ)

+ c(yi, φ)
]

(15)

`̀̀(βββ) = ∑
i

log f (yi; θi, φ) = ∑
i

`i (16)

c©Jeff Lin, MD., PhD. Logistic Regression, 15



Likelihood

We consider the proportion as a Binomial distribution

niyi ∼ Bin(ni, πi) (17)

in the generalized linear model, (Bernoulli distribution is a special case

of Binomial Distribution).
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Likelihood

f (yi; θi, φ)

= ni

(
ni

niyi

)
πniyi(1− πi)

ni−niyi

= exp
[
niyi log πi + (ni − niyi) log(1− πi) + log

(
ni

(
ni

niyi

))]
= exp

[yi log
( πi

1−πi

)
+ log(1− πi)

1/ni
+ log

(
ni

(
ni

niyi

))]
= exp

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
(18)
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Likelihood

θi = log
( πi

1− πi

)
(19)

πi =
eθi

1 + eθi
(20)

b(θi) = − log(1− πi) = log[1 + eθi] (21)

c(yi, φ) = log
(

ni

(
ni

niyi

))
(22)

a(φ) = φ/ni (23)

φ = 1 (24)
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Likelihood

E(Yi) =
∂b(θi)

∂θi
=

eθi

1 + eθi
= πi (25)

Var(Yi) = b′′(θi)a(φ) =
eθi(1 + eθi)− eθi(eθi)

(1 + eθi)2 a(φ) (26)

=
eθi

(1 + eθi)2a(φ) =
πi(1− πi)

ni
(27)
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Estimation

Again we assume a(φ) the same for all observations and now let

πi = π(xi), i = 1, 2, . . . , C such that

πi = π(xT
i βββ) = expit(xT

i βββ) =
exT

i βββ

1 + exT
i βββ

(28)

ηi = g(µi) = θi = logit(πi) = log
πi

(1− πi)
= xT

i βββ (29)
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Estimation

The most common iterative methods are

Newton-Raphson and Fisher’s scoring.

These are closely related.
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Estimation: Newton-Raphson Method

1. Let βββ(m) denote the mth approximation for the ML estimate β̂ββ.

2. For the Newton-Raphson method,

βββ(m+1) = βββ(m) + (III(m))−1UUU(m) (30)

3. where III is the information matrix having elements ∂2`̀̀(βββ)/∂βh∂β j,

4. UUU is the score function, a vector having elements ∂`̀̀(βββ)/∂β j.

5. III(m) and UUU(m) are III and UUU evaluated at βββ = βββ(m).
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Estimation: Fisher’s Scoring Method

1. The formula for Fisher’s scoring is

βββ(m+1) = βββ(m) + (III(m))−1UUU(m) (31)

or III(m)βββ(m+1) = III(m)βββ(m) +UUU(m) (32)

2. where III is expected information matrix III = E(III), the Fisher’s

information matrix.

3. III(m) is the mth approximation for the estimated expected information

matrix; that is, III(m) has elements - E[∂2`̀̀(βββ)/∂βh∂β j], evaluated at

βββ(m).
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Estimation

Certain simplifications occur when a GLIM uses the canonical link.

For the canonical link (logit) in Binomial distribution,

ηi = θi = xT
i βββ = ∑

j
xijβ j (33)
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Estimation

L(βββ) ∝
C
∏
1

(
ni
yi

)
π

yi
i (1− πi)

n−yi (34)

`̀̀i(βββ) ∝ yi log
(

πi
(1− πi)

)
− ni log(1− πi) (35)

`̀̀(βββ) ∝
C
∑
1

`̀̀i(βββ) =
C
∑
1

yix
T
i βββ−

C
∑
1

ni log
(
1 + exT

i βββ)
(36)
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Estimation

The score function, UUU(βββ), is

UUU(β j) =
∂`̀̀

∂β j
(37)

=
C
∑
1

yixij −
C
∑
1

ni

(
exT

i βββ

1 + exT
i βββ

)
xij (38)

=
C
∑
1

(yi − µi)xij (39)

where µi = E(Yi) = niπi.
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Estimation

The second derivatives are

III(β j, βh) = −
∂2`̀̀(βββ)
∂βh∂β j

(40)

=
C
∑
1

nixij
∂

∂βh

(
exT

i βββ

1 + exT
i βββ

)
(41)

=
C
∑
1

niπi(1− πi)xijxih (42)
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Estimation

1. Let yC×1 = (y1, . . . , yC)T, µµµC×1 = (µ1, . . . , µN)T,

XXXC×p = (xT
1 , . . . , xT

C), and the elements of µµµ are non-linear functions

of an assumed value βββ.

2. Also define

WWWC×C = Diag[niπi(1− πi)] (43)

Then it is easy to show that

UUU(βββ) = XXXT(y−µµµ) (44)

III(βββ) = XXXTWWWXXX (45)
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Estimation

1. For one step of Newton-Raphson method, we use βββ(m) the current

estimate of βββ to calculate µµµ(m) and WWW(m).

2. The new estimate of βββ(m+1) is then

βββ(m+1) = βββ(m) + ( XXXT WWW(m) XXX )−1 XXX(y−µµµ(m)) (46)
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Inference of Coefficients

With large samples, a reasonable approximation for inference is

β̂ββ ∼ N
(

βββ, V̂ar(β̂ββ)
)

(47)

where V̂ar(β̂ββ) =
(

XXXT ŴWW XXX
)−1

(48)(
XXXT ŴWW XXX

)−1
comes from the final step of NR.
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Inference of Coefficients: Wald Test

1. To test H0 : β j = 0 vs. HA : β j 6= 0

z =
β̂ j

s.e.(β̂ j)
∼ N(0, 1) (49)

where s.e.(β̂ j) is the square root of the (j, j)th element of V̂ar(β̂ββ).

2. An approximation (1− α)× 100% confidence interval for β j is

β̂ j ± Z1−α/2 s.e.(β̂ j) (50)
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Inference of Coefficients: LR Test

1. To test H0 : β j = 0 vs. HA : β j 6= 0

(a) Remove the jth column from the design matrix X
(b) Re-fit the model

(c) Compare the drop in 2× `̀̀(βββ) to χχχ2
1

2. This is a likelihood ratio (LR) test for single coefficient.

c©Jeff Lin, MD., PhD. Logistic Regression, 32



Inference of Coefficients

1. For a linear function θ = aTβββ, a reasonable approximation is

aTβ̂ββ ∼ N
(
aTβββ, aTV̂ar(β̂ββ)a

)
(51)

2. For a nonlinear function θθθ = g(βββ), the delta method approximation is

g(β̂ββ) ∼ N
(

g(βββ), g′(β̂ββ)TV̂ar(β̂ββ)g′(β̂ββ)
)

(52)
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Inference of Coefficients

3. One important nonlinear function is

πi = πi(βββ) =
exT

i βββ

1 + exT
i βββ

(53)

∂πi
∂β j

= πi(1− πi)xij (54)

∂πi
∂βββ

= πi(1− πi)xi (55)

4. There we estimate variance for the fitted probability π̂i = πi(β̂ββ) is

V̂ar(π̂i) = π2
i (1− πi)

2 xT
i V̂ar(β̂ββ) xi (56)

c©Jeff Lin, MD., PhD. Logistic Regression, 34



Inference of Coefficients

5. In general, from model with π̂i,

V̂ar(π̂i) = π2
i (1− πi)

2 xT
i V̂ar(β̂ββ) xi (57)

this should be smaller than the estimated variance of p̂i (sample

proportion as yi/ni,

V̂ar( p̂i) = p̂i(1− p̂i)/ni). (58)

6. Because it borrows information across the entire dataset y.

7. Note: if the model is not true, the π̂ππ could be substantially biased.

Therefore, it is important to check whether the model fits the data

well.
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Inference of Coefficients

8. Now consider the entire vector of probabilities

πππ = (π1, . . . , πC)T. (59)

9. The C× p Jacobian (first -derivative) matrix for πππ = πππ(βββ) is

∂πππ

∂βββ
= QQQXXX where QQQ = Diag(πi(1− πi)). (60)

10. By multivariate delta method, an approximate covariance matrix is

V̂ar(π̂ππ) = QQQXXX V̂ar(β̂ββ)XXXT QQQ = QQQ XXX
(

XXXT ŴWW XXX
)−1

XXXT QQQ (61)

11. V̂ar(π̂ππ) is C× C, its rank is p, same as
(

XXXT ŴWW XXX
)−1

.
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Goodness-of-Fit Test

If the ni’s are sufficiently large, compare

p-parameter restricted model logit(πi) = xT
i βββ

to C-parameter saturated model (an intercept plus C− 1 dummy

variables to distinguish among the C observation units)
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Goodness-of-Fit Test

1. In restricted model, π̂i and µ̂i = niπ̂i be the ML fitted values.

2. In saturated model, p̂i = yi/ni and yi are the ML estimates for πi
and µi.

3. G2, deviance, measures the distance from π̂ππ to p̂

4. G2 is the likelihood ratio statistic for testing

H0 : restricted model is true

HA : saturated model is true
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Goodness-of-Fit Test

The statistic is

G2 = 2[ `̀̀( p̂; Y)− `̀̀(π̂ππ; Y) ] = 2
[ C

∑
i=1

Yi log p̂i −
C
∑
i=1

Yi log π̂i

]

= 2
C
∑
i=1

Yi log
Yi

nπ̂i
∼ χχχ2

C−p (asymptotically) (62)

Under the null hypothesis, the limiting distribution of G2 is χχχ2 with

degree of freedom, (C− p) given by the number of parameters under

the alternative C minus p, the number of parameters under the null

hypothesis. G2 has the same limiting distribution as Pearson X2
p.
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Testing Nested Models

1. To test:

H0 : M2 simpler model is true (63)

H1 : M1 more complicated model is true (64)

2. Suppose model M2 is a special case of model M1.
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Testing Nested Models

3. Let s1 and s2 denote the numbers of parameters in the two models.

4. Let π̂ππ1 and π̂ππ2 denote ML estimators of cell probabilities for the two

models.
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Testing Nested Models

5. Then

∆G2
M2−M1

= G2(M2)−G2(M1) = 2n ∑ p̂i log
(π̂1i

π̂i2

)
(65)

∆G2
M2−M1

∼ χχχ2
s1−s2

, (66)

has the form of −2(log likelihood ratio) for testing the hypothesis

H0 : M2 holds against HA : M1 holds.

6. When the simpler model hold, G2(M2)−G2(M1) is asymptotically

chi-squared distributed with s1 − s2 degrees of freedom.
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Testing Non-Nested Models

1. AIC: Akaike information criterion

AIC = −2 (maximized log likelihood - number of parameters in model)

(67)

2. With models for categorical Y, this ordering is equivalent to one based

on an adjustment of deviance [G2 − 2(df)], by twice its residual df.

3. The smaller AIC, the better
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Horseshoe Crab Data

1. Table 1 (in file crab.txt) is a study of nesting horseshoe crabs is that

each female horseshoe crab had a male crab resident in her nest.

2. The study investigated factors affecting whether the female crab had

any other males, called satellites, residing nearby.

3. The response outcome for each female crab is her number of satellites.

4. Explanatory variables are the female crab’s color, spine condition,

carapace width, and weight.

5. This data set comes from a study on 173 female horseshoe crabs.
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Horseshoe Crab Data

Table 1: Variables descriptions of Crab Data

Variable Description

C = color (light-medium, medium, dark-medium)

S = spine condition (both good, one worn or broken, both broken)

W = width of carapace in cm

Wt = weight in kg

Sa = number of satellites (male residing nearby)
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Horseshoe Crab Data

1. Figure 1 plots the response counts of satellites against width, with

numbered symbols indicating the number of observations at each

point.

2. The substantial variability makes it difficult to discern a clear trend.
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Crab Data: satellites by width of female crab
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Figure 1: Number of satellites by width of female crab.
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Crab Data

1. We use the binary response of whether a female crab has any

satellites present

2. Y = 1 if a female crab has at least one satellite, and Y = 0 if she has

no satellite.

3. We first use the crab’s width as the sole predictor.
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Crab Data: Linear Probability Model

1. For the ungrouped data, let π(x) denote the probability that a female

horseshoe crab of width x as a satellite.

2. The simplest model to interpret is the linear probability model,

π(x) = α + βx. (68)
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Crab Data: Linear Probability Model

3. Ordinary least squares fitting yields

π̂(x) = −1.766 + 0.092x. (69)

.

4. At maximum width in this sample of 33.5 cm, its predicted probability

equals π̂(x) = −1.766 + 0.092(33.5) = 1.3 which falls outside the

legitimate range for a binomial parameter (so ML fitting fails).
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Crab Data: Logistic Model

1. The ML parameter estimates for the logistic regression model are

logit(π(x)) = −12.315 + 0.497x. (70)

2. The predicted probability of a satellite is the sample analog

π̂ =
exp(−12.315 + 0.497x)

1 + exp(−12.315 + 0.497x)
. (71)
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Crab Data: Interpretation for Logit Model

3. Since β̂ > 0, the predicted probability π̂ is higher at larger width

values.

4. At the minimum width in this sample of 21.0 cm, the predicted

probability is 0.129.; at the maximum width of 33.5 cm the predicted

probability equals 0.987.

5. The medial effective level is the width at which the predicted

probability equals 0.5, which is x = EL50 = 1 α̂
β̂

= 12.351
0.497 = 24.8.

c©Jeff Lin, MD., PhD. Logistic Regression, 52



Crab Data: Interpretation for Logit Model

6. So, the estimated odds of having a satellite increase by 1.64 for each

1 cm increase in width (a 64% increase).

7. Figure 2, (Agresti 5.2) (1996, Fig5.2), is created using similar steps as

before, except now we add the predicted logistic regression curve.
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Crab Data: Interpretation for Logit Model

8. At the sample mean width of 26.3 cm, the predicted probability of a

satellite equals 0.674.

9. The incremental rate of change in the fitted probability at that point

is β̂π̂(1− π̂) = 0.497(0.674)(1− 0.674).

10. Unlike the linear probability model, the logistic regression model

permits the rate of change to vary as x varies.
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Figure 2: Observed and fitted proportions of satellites by width of female

crab.
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Crab Data: Interpretation for Logit Model

1. For the female horseshoe crabs, the estimated odds of a satellite

multiply by exp(β̂) = exp(0.497) = 1.64 for each centimeter increase

in width.

2. There is a 64% increase; the estimated odds of having a satellite

increase by 1.64 for each 1 cm increase in width.
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Crab Data: Interpretation for Logit Model

3. To illustrate, the mean width value of x = 26.3 has a predicted

probability of a satellite equal to 0.674, and odds

0.674/(1− 0.674) = 2.07.

4. At x = 27.3 = 26.3 + 1.0, on can check that the predicted probability

equal 0.773, and odds 0.773(1− 0.773) = 3.40.

5. But this is a 64% increase; that is, 3.40 = 2.07(1.64).
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Crab Data: Inference for Logit Model

1. Inference for the logistic regression is asymptotic.

2. Parameter estimators in logistic regression models have large-sample

normal distributions.

3. Thus, inference can use the Wald, likelihood-ratio, score triad of

methods

4. Standard errors via the inverse of observed Fisher’s information can be

obtained.
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Crab Data: Inference for Logit Model

5. We illustrate logistic regression inferences with the model for the

probability a horseshoe crab has a satellite, with width as the

predictor.

6. Table 2 showed the fit and standard errors.
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Table 2: Computer Output for Logistic Regression Model with

Horseshoe Crab Data

(From SAS PROC LOGISTIC)

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 171 194.45 1.13

Pearson Chi-Square 171 165.14 0.96

Log Likelihood -97.22
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Table 3: Computer Output for Logistic Regression Model with

Horseshoe Crab Data

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Likelihood Ratio Chi-

Parameter DF Estimate Error Limits 95% Confidence Square

Intercept 1 12.350 2.628 7.198 17.50 7.45 17.80 22.07

width 1 -0.497 0.101 -0.696 -0.29 -0.70 -0.30 23.89

Scale 0 1.000 0.000 1.000 1.00 1.00 1.00
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Crab Data: Inference for Logit Model

1. The estimated effect of width in the fitted equation for the probability

of a satellite is β̂ = 0.497, with ASE = 0.102,

2. The Wald 95% confidence interval for β̂ is 0.497± 1.96(0.102), or

(0.298, 0.697).

3. Table 2 reports a likelihood-ratio confidence interval of (0.308, 0.709),
based on the profile likelihood function.

4. The confidence interval for the effect on the odds per 1-cm increase in

width equals e(0.298), e0.697 = (1.36, 2.01).
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Crab Data: Inference for Logit Model

5. We infer that a 1-cm increase in width has at least a 36% increase

and at most a doubling in the odds of a satellite.

6. The statistic z = β̂

ASE(β̂)
= 0.497/0.102 = 4.9 provides strong

evidence of a positive width effect (p < 0.0001).

7. The equivalent Wald chi-squared statistic, z2 = 23.9, has df = 1.
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Crab Data: Inference for Logit Model

8. The maximized log likelihoods equal `̀̀0 = 112.88 under H0 : β = 0

and `̀̀1 = 97.23 for the full model.

9. The likelihood-ratio statistic equals

−2(`̀̀0 − `̀̀1) = 112.88− 97.23 = 31.3, with df = 1.

10. This provides even stronger evidence than the Wald test.
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Crab Data: Predicting π̂(x) for Logit Model

1. Most software for logistic regression also reports estimates and

confidence intervals for π̂(x) (e.g., PROC GENMOD in SAS with the

OBSTATS option).

2. Software reports

V̂ar(α̂) = 6.910, V̂ar(β̂) = 0.01035, Ĉov(α̂, β̂) = −0.2688. (72)
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Crab Data: Predicting π̂(x) for Logit Model

3. The estimated logit π̂(x) has large-sample ASE given by the

estimated square root of

Var(α̂ + β̂) = V̂ar(α̂) + x2V̂ar(β̂) + 2xĈov(α̂, β̂). (73)
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Crab Data: Predicting π̂(x) for Logit Model

4. Consider this for crabs of width x = 26.5, near the mean width.

5. The estimated logit is −12.351 + 0.497(26.5) = 0.825, and

π̂(x) = 0.695.

6. The estimated predicted logit equals 0.038.

7. The 95% confidence interval for true logit equals

0.825± 1.96(
√

0.038) or (0.44, 1.21). This translates to the interval( exp(0.44)
1 + exp(0.44)

,
exp(1.21)

1 + exp(1.21)

)
= (0.61, 0.77) (74)

for the probability of satellites at width 26.5 cm.
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π̂(x) in Logit Model and Sample Proportion

1. When the logistic regression model truly holds, the model-based

estimator of a probability is considerably better than the sample

proportion.

2. The model has only two parameters to estimate, whereas the

saturated model has a separate parameter for every distinct value of x.
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π̂(x) in Logit Model and Sample Proportion

3. For instance, at x = 26.5, software reports ASE = 0.04 for the

model-based estimate 0.695, whereas the non-model-based ASE is√
p̂(1− p̂)/n =

√
(0.67)(1− 0.67)/6 = 0.19 for the sample

proportion of 0.67 with only 6 observations with x = 26.5 and 4

female crabs of 6 had satellites.

4. The 95% confidence intervals are 0.61, 0.77 using the model versus

(0.30, 0.90) using the sample proportion.
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π̂(x) in Logit Model and Sample Proportion

5. Instead of using only 6 observations, the model uses the information

that all 173 observations provide in estimating the two model

parameters.

6. The result is a much more precise estimate.
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π̂(x) in Logit Model and Sample Proportion

1. Reality is a bit more complicated. In practice, the model is not exactly

true relationship between π(x) and x.

2. However, if it approximates the true probabilities decently, its

estimator still tends to be closer than the sample proportion to the

true value.

3. The model smooths the sample data, somewhat dampening the

observed variability.

4. The resulting estimators tend to be better unless each sample

proportion is based on an extremely large sample.
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Crab Data: GOF for Logit Model

1. We next consider overall goodness-of-fit analysis for the model using

x = width to predict the probability that a female crab has a satellite.

logit π(x) = α + βx. (75)

2. Width takes 66 distinct values for the 173 crabs, with few

observations at most widths.

3. One can view the data as a 66× 2 contingency table.

4. The two cells in each row count the number of crabs with satellites

and the number of crabs without satellites, at that width.
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Crab Data: GOF for Logit Model

5. The chi-squared theory for X2 and G2 applies when the number of

levels of x is fixed, and the number of observations at each level grows.

6. Although we grouped the data using the distinct width values rather

than using 173 separate binary responses, this theory is violated here

in two ways.

7. First, most fitted counts are very small.

8. Second, when more data are collected, additional width values would

occur, so the contingency table would contain more cells rather than a

fixed number.
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Crab Data: GOF for Logit Model

9. Because of this, X2 and G2 for logistic regression models with

continuous or nearly continuous predictors do not have approximate

chi-squared distributions.

10. Normal approximations can be more appropriate, but no single

method has received much attention.

11. One could use X2 and G2 to compare the observed and fitted values

in grouped form.
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Horseshoe Crab Data

1. To get a clear picture, we grouped the female crabs into width

categories (≤ 23.25, 23.25− 24.25, 24.25− 25.25, 25.25−
26.25, 26.25− 27.25, 27.25− 28.25, 28.25− 29.25, > 29.25) and

calculated the sample mean number of satellites for female crabs in

each category.

2. Figure 3 plots these sample mean against the sample mean width in

each category.
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Figure 3: Number of satellites by width of female crab.
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Crab Data: Grouped and Ungrouped

1. Table 7 uses the groupings of Crab Data, giving an 8× 2 table.

2. In each width category, the fitted value for a yes response is the sum

of the estimated probabilities π̂(x) for all crabs having width in that

category; the fitted value for a no response is the sum of 1− π̂(x) for

those crabs.

3. The fitted values are then much larger.

4. Then, X2 and G2 have better validity, although the chi-squared theory

still is not perfect since π(x) is not constant in each category.
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Table 4: Computer Output for Logistic Regression Model with Grouped

Horseshoe Crab Data

(From SAS PROC LOGISTIC)

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates

AIC 227.759 201.694

SC 230.912 208.001

-2 Log L 225.759 197.694
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Table 5: Computer Output for Logistic Regression Model with Grouped

Horseshoe Crab Data

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 28.0644 1 <.0001

Score 25.6828 1 <.0001

Wald 22.2312 1 <.0001
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Table 6: Computer Output for Logistic Regression Model with Grouped

Horseshoe Crab Data

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -11.5128 2.5488 20.4031 <.0001

width 1 0.4646 0.0985 22.2312 <.0001

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

width 1.591 1.312 1.930
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Table 7: Sample mean and variance of numbers of Satellites

Numbers of Numbers of Fitted Fitted Sample Sample

Width (cm) Cases Satellites Yes No Mean Variance

≤ 23.3 14 14 3.64 10.36 1.00 2.77
(23.3, 24.3] 14 20 5.31 8.69 1.43 8.88
(24.3, 25.3] 28 67 13.78 14.22 2.39 6.54
(25.3, 26.3] 39 105 24.23 14.77 2.69 11.38
(26.3, 27.3] 22 63 15.94 6.06 2.86 6.88
(27.3, 28.3] 24 93 19.38 4.62 3.87 8.81
(28.3, 29.3] 18 71 15.65 2.35 3.94 16.88
≥ 29.3 14 72 13.08 0.92 5.14 8.28
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Grouped and Ungrouped

1. Let

X2 = ∑
(observed − fitted)2

fitted
(76)

G2 = 2 ∑(observed)− log
(observed

fitted

)
. (77)

2. Their values are X2 = 5.3 and G2 = 6.2.
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Grouped and Ungrouped

3. Table 7 has eight binomial samples, one for each width setting; the

model has two parameters, so df = 8− 2 = 6.

4. Neither X2 nor G2 shows evidence of lack of fit. p− value > 0.4.

5. Thus, we can feel more comfortable about using the model for the

original ungrouped data.
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Homser and Lemeshow: GOF Test

1. As just noted, with ungrouped data or with continuous or nearly

continuous predictors, X2 and G2 do not have limiting chi-squared

distributions.

2. They are still useful for comparing models, as done above for checking

a quadratic term and as we will comparing the nested models.

3. Also, as just noted, one can apply them in an approximate manner to

grouped observed and fitted values for a partition of the space of x
values.
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Homser and Lemeshow: GOF Test

4. As the number of explanatory variables increases, however,

simultaneous grouping of values for each variable can produce a

contingency table with a large number of cells, most of which have

small counts.

5. Regardless of the number of predictors, one can partition observed

and fitted values according to the estimated probabilities of success

using the original ungrouped data.
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Homser and Lemeshow: GOF Test

6. One common approach forms the groups in the partition so they have

approximately equal size.

7. With 10 groups, the first pair of observed counts and corresponding

fitted counts refers to the n/10 observations having the highest

estimated probabilities, the next pair refers to the 10/n observations

having the second decile of estimated probabilities, and so on.
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Homser and Lemeshow: GOF Test

8. Each group has an observed count of subjects with each outcome and

a fitted value for each outcome.

9. The fitted value for an outcome is the sum of the estimated

probabilities for that outcome for all observations in that group.
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Homser and Lemeshow: GOF Test

10. This construction is the basis of a test due to Hosmer and Lemeshow

(1980, 1989, p.140).

11. They proposed a Pearson statistic comparing the observed and fitted

counts for this partition. Let yij denote the binary outcome for

observation j in group i of the partition, i = 1, . . . , g, j = 1, . . . , ni.

12. Let π̂ij denote the corresponding fitted probability for the model

fitted to the ungrouped data.
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Homser and Lemeshow: GOF Test

13. Their statistic equals

g

∑
i=1

(∑j yij −∑j π̂ij)2

(∑j π̂ij)[1− (∑j π̂ij)/ni]
. (78)

14. When many observations have the same estimated probability, there is

some arbitrariness in forming the groups, and different software may

report somewhat different values.
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Homser and Lemeshow: GOF Test

15. Their Pearson-like statistic does not actually have a chi-square

distribution.

16. This statistic does not have a limiting chi-squared distribution,

because the observations in a group are not identical trials, since they

do not share a common success probability.

17. However, Hosmer and Lemeshow noted that when the number of

distinct patterns of covariate values equals the sample size, the null

distribution is approximated by chi-squared with df = g− 2.
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Homser and Lemeshow: GOF Test

18. SAS PROC LOGISTIC calculates the Hosmer-Lemeshow

goodness-of-fit test when the LACKFIT option is specified on the

MODEL statement.
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LRT for Nested Model

1. One can also detect lack of fit by using a likelihood-ratio test to

compare working model to more complex ones.

2. If we do not find a more complex model that provides a better fit, this

provides same assurance that our fitted model is reasonable.

3. This is more useful in scientific perspective.

4. A large goodness-of-fit statistic is simply indicates there is some lack

of fit, but provides no insight about its nature. Comparing a model to

a more complex model, on the other hand, indicates whether lack of

fit exists of a particular type.
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LRT for Nested Model

1. We illustrated this comparison for two models fitted to the grouped

crab data.

2. Denote the logistic regression model with width as the sole predictor

by M1 and the simpler model having only an intercept parameter as

M0.

3. That simpler model posits independence of width and having a

satellite, and the G2 goodness-of-fit statistic for testing it is simply the

G2 statistic for testing independence in a two-way contingency table.
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LRT for Nested Model

4. For the observed count in the 8× 2 , it equals G2(M0) = 34.0, based

on df = 7.

5. Since the fit of the model with width as a predictor has

G2(M1) = 6.0 based on df = 6,
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LRT for Nested Model

6. The comparison statistic for the two models is

G2(M0 | M1) = G2(M0)−G2(M1) = 34.0− 6.0 = 28.0, with

df = 7− 6 = 1.

7. In fact, this equals the likelihood-ratio statistic −2(`̀̀0 − `̀̀1) = for

testing that β = 0 in the logistic regression model fitted to the

grouped data of Table 7.
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Categorical Predictors

1. Like ordinary regression, logistic regression extends to include

qualitative explanatory variables, often called factors.

2. In this section we use dummy variables to do this.
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ANOVA-Type Representation of Factors

1. For simplicity, we first consider a single factor X, with I categories. In

row i of the I × 2 table, y is the number of outcomes in the first

column successes out of n trials.

2. We treat y as binomial with parameter πi.

3. The logit model with a factor is

log
( πi

1− πi

)
= α + βi. (79)

4. The higher βi is, the higher the value of πi.
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ANOVA-Type Representation of Factors

5. The right-hand side of (79) resembles the model formula for cell

means in one-way ANOVA.

6. As in ANOVA, the factor has as many parameters {βi} as categories,

but one is redundant.

7. With I categories, X has I − 1 nonredundant parameters.
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ANOVA-Type Representation of Factors

8. One parameter can be set to 0, say βi = 0 (last level = 0) or β1 = 0

(first level = 0.

9. If the values do not satisfy this, we can recode so that it is true.
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ANOVA-Type Representation of Factors

10. For any {πi > 0}, {βi} exist such that model (79) holds.

11. The model has as many parameters I as binomial observations and is

saturated.

12. When a factor has no effect, β1 = β2 = · · · = β I = 0.

13. Since this is equivalent to π1 = π2 = · · · = πI , this model with only

an intercept term specifies statistical independence of X and Y.
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Categorical Predictors: Dummy Variables

1. An equivalent expression of model (79) uses “dummy variables”

(dummy coding).

2. Let xi = 1 for i observations in row i and xi = 0 otherwise,

i = 1, 2, . . . , I − 1.

3. The model is

log
( πi

1− πi

)
= α + β1x1 + +β2x2 + · · ·+ β I−1xI−1. (80)
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Categorical Predictors: Dummy Variables

4. This accounts for parameter redundancy by not forming a dummy

variable for category I.

5. The constraint β I = 0 in (79) corresponds to this form of dummy

variable.

6. The choice of category to exclude for the dummy variable is arbitrary.

7. Some software sets β1 = 0; this corresponds to a model with dummy

variables for categories 2 through I, but not category 1.
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Categorical Predictors:

Effect Coding and Zero-Sum Coding

1. Another way to impose constraints sets ∑i βi = 0.

2. Suppose that X has I = 2categories, so β1 = −β2.

3. This results from “effect coding” (“zero-sum”) for a dummy

variable, x = 1 in category 1 and x = 1- in category 2.

4. For model (79), regardless of the constraint for {βi} and hence {πi}
are the same.

c©Jeff Lin, MD., PhD. Logistic Regression, 103



Categorical Predictors:

Effect Coding and Zero-Sum Coding

5. The differences β̂a − β̂b for pairs (a, b) of categories of X are identical

and represent estimated log odds ratios.

6. Thus, exp(β̂a − β̂b) is the estimated odds of success in category a of

X divided by the estimated odds of success in category b of X.

7. Reparameterizing a model may change parameter estimates but does

not change the model fit or the effects of interest.
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Categorical Predictors: Coding

1. The value βi or β̂i for a single category is irrelevant.

2. Different constraint systems result in different values.

3. For a binary predictor, for instance, using dummy variables with

reference value β2 = 0, the log odds ratio equals β1 − β2 = β1; by

contrast, for effect coding with ±1 dummy variable and hence

β− 1 + β2 = 0, the log odds ratio equals

β− 1 + β2 = 2β1 = −2β− 2.

4. A parameter or its estimate makes sense only by comparison with one

for another category.
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AZT and AIDS Example

1. Table 8 is based on a study escribed in the New York Times (Feb 15,

1991) on the effects of AZT in showing the development of AIDS

symptoms.

2. In the study, 338 veterans whose immune system were beginning to

falter after infection with the AIDS virus were randomly assigned

either to receive AZT immediately or to wait until T cells showed

severe immune weakness.

3. Table 8 cross-classifies the veterans’ race, whether they received AZT

immediately, and whether they developed AIDS symptoms during the

3-year study.
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Table 8: Development of AIDS

Symptoms by AZT Use and Race

Symptoms

Race AZT Use Yes No

White Yes 14 93

No 32 81

Black Yes 11 52

No 12 43
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AZT and AIDS Example: Dummy Variables

1. We identify X with AZT treatment (x1 = 1 for immediate AZT use,

x2 = 0 otherwise) and Z with race (z1 = 1 for whites, z1 = 0 for

blacks), for predicting the probability that AIDS symptoms developed.

2. Thus, α is he log odds of developing AIDS symptoms for black subject

without immediate AZT use,

3. β1 is the increment to the log odds for those with immediate AZT

use, and

4. β2 is the increment to the log odds for white subjects.
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AZT and AIDS Example: Model

5. The model for π(x) = P(Y = 1), and Y denote as the symptoms

occurs.

6. We will represent the predictors as factors with two levels each.

7. This ensures that we have the correct level specifications.

8. The model that is fit is the “main effects” model

logit[P(Y = 1)] = α + βX
i + βZ

k (81)

= α + βAZT
yes + βrace

white (82)

= α + β1 + β2 (83)
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Table 9: Results for Logit Model Fitted AZT and AIDS Example

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 5 335.1512 67.0302

Scaled Deviance 5 335.1512 67.0302

Pearson Chi-Square 5 338.3142 67.6628

Scaled Pearson X2 5 338.3142 67.6628

Log Likelihood -167.5756

Algorithm converged.
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Table 10: Results for Logit Model Fitted AZT and AIDS Example

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -1.0736 0.2629 -1.5889 -0.5582 16.67 <.0001

race1 1 0.0555 0.2886 -0.5102 0.6212 0.04 0.8476

azt1 1 -0.7195 0.2790 -1.2662 -0.1727 6.65 0.0099

Scale 0 1.0000 0.0000 1.0000 1.0000
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AZT and AIDS Example: Estimation

1. The ML estimate of the effect of AZT is β̂1 = −0.7195,

(ASE = 0.279).

2. Thus, the estimated odds ratio between immediate AZT use and

development of AIDS is around exp(−0.7195) = 0.487.

3. The model has four sample logits, one for each binomial response

distributions of AZT use and race.

4. Further analysis suggests that an even simpler model may be

adequate, since the effect of race is not significant.
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Table 11: Parameter Estimates for Logit Model Fitted AZT

and AIDS Example

Definition of Parameters

Parameter Last = Zero First = Zero Sum = Zero

Intercept −1.0736 −1.7375 −1.4056

Race–White 0.0555 0.0000 −0.3597

Race–Black 0.0000 −0.0555 0.3597

AZT–Yes −0.7195 0.0000 0.0277

AZT–No 0.0000 0.7195 −0.0277

c©Jeff Lin, MD., PhD. Logistic Regression, 113



AZT and AIDS Example: Estimation

1. The ML estimate of the effect of AZT is β̂1 = −0.7195,

(ASE = 0.279).

2. Thus, the estimated odds ratio between immediate AZT use and

development of AIDS is around exp(−0.7195) = 0.487.

3. The model has four sample logits, one for each binomial response

distributions of AZT use and race.

4. Further analysis suggests that an even simpler model may be

adequate, since the effect of race is not significant.
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Alcohol and Infant Malformation

1. Table 12 (Graubard and Korn 1987) illustrates the potential

dependence.

2. It refers to a prospective study of maternal drinking and congenital

malformations.

3. After the first three months of pregnancy, the women in the sample

completed a questionnaire about alcohol consumption.

4. Following childbirth, observations were recorded on the presence or

absence of congenital sex organ malformations.
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Alcohol and Infant Malformation

Table 12: Maternal Drinking and Childbirth Sex Organ

Malformation

Alcohol Consumption

(average number of drinks per day)

Malformation 0 < 1 1− 2 3− 5 ≥ 6

Present 48 38 5 1 1

Absent 17,066 14,464 788 126 37
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Alcohol and Infant Malformation

5. When a variable is nominal but has only two categories, statistics that

treat it as ordinal are still valid.

6. Alcohol consumption, measured as the average number of drinks per

day, is an ordinal explanatory variable.

7. This groups a naturally continuous variable.
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Table 13: Results for Logit Model Fitted for Alcohol and Infant

Malformation Data with Categorical Predictors

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -3.6109 1.0134 -5.5972 -1.6246 12.70 0.0004

Alc 0 1 -2.2627 1.0237 -4.2691 -0.2564 4.89 0.0271

Alc 0.5 1 -2.3309 1.0264 -4.3425 -0.3193 5.16 0.0231

Alc 1.5 1 -1.4491 1.1083 -3.6213 0.7231 1.71 0.1910

Alc 4 1 -1.2254 1.4265 -4.0213 1.5706 0.74 0.3903

Alc 7 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000
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Alcohol and Infant Malformation: Categorical Predictor

1. For model (79), we treat malformations as the response and alcohol

consumption as an explanatory factor.

2. Regardless of the constraint for βi, {α̂ + β̂} are the sample logits,

reported in Table ??.

3. For instance,

logit(π̂1) = α̂ + β̂ = log(48/17, 066) = −5.87. (84)
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Alcohol and Infant Malformation: Categorical

Predictor

4. For the coding that constrains β5 = 0, α̂ = −3.61 and β̂1 = −2.66.

5. For the coding β1 = 0, α̂ = −5.87.

6. Table 12 and ?? show that except for the slight reversal between the

first and second categories of alcohol consumption, the logits and

hence the sample proportions of malformation cases increase as

alcohol consumption increases.
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Alcohol and Infant Malformation: Categorical

Predictor

7. The simpler model with all βi = 0 specifies independence.

8. For it, α̂ equals the logit for the overall sample proportion of

malformations, or log(93/32481) = −5.86.

9. To test H0 : independence(df = 4, the Pearson statistic is X2 = 12.1

(p− value = 0.02),

10. Likelihood-ratio statistic is G2 = 6.2 (p− value = 0.19).

11. These provide mixed signals.
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Alcohol and Infant Malformation: Categorical

Predictor

12. Table 12 has a mixture of very small, moderate, and extremely large

counts.

13. Even though n = 32, 574, the null sampling distributions of X2 or G2

may not be close to chi-squared.

14. The P-values using the exact conditional distributions of X2 and G2

are 0.03 and 0.13.

15. These are closer, but still give differing evidence.
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Alcohol and Infant Malformation: Categorical

Predictor

16. In any case, these statistics ignore the ordinality of alcohol

consumption.

17. The sample suggests that malformations may tend to be more likely

with higher alcohol consumption.

18. The first two percentages are similar and the next two are also similar,

however, and any of the last three percentages changes substantially

with the addition or deletion of one malformation case.
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Alcohol and Infant Malformation:

Ordinal (Linear) Predictor

1. Model (79) treats the explanatory factor as nominal, since it is

invariant to the ordering of categories.

2. For ordered factor categories, other models are more parsimonious

than this, yet more complex than the independence model.
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Alcohol and Infant Malformation:

Ordinal (Linear) Predictor

3. For instance, let scores {x1, x2, . . . , xI},describe distances between

categories of X. When one expects a monotone effect of X on Y, it is

natural to fit the linear logit model

logit(πi) = α + βxi. (85)

4. The independence model is the special case β = 0.
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Table 14: Results for Logit Model Fitted for Alcohol and Infant

Malformation Data with Categorical Predictors

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -3.6109 1.0134 -5.5972 -1.6246 12.70 0.0004

Alc 0 1 -2.2627 1.0237 -4.2691 -0.2564 4.89 0.0271

Alc 0.5 1 -2.3309 1.0264 -4.3425 -0.3193 5.16 0.0231

Alc 1.5 1 -1.4491 1.1083 -3.6213 0.7231 1.71 0.1910

Alc 4 1 -1.2254 1.4265 -4.0213 1.5706 0.74 0.3903

Alc 7 0 0.0000 0.0000 0.0000 0.0000 . .

Scale 0 1.0000 0.0000 1.0000 1.0000
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Alcohol and Infant Malformation:

Ordinal (Linear) Predictor

1. The near-monotone increase in sample logits in Table ?? indicates

that the linear logit model (85) may fit better than the independence

model.

2. As measured, alcohol consumption groups a naturally continuous

variable.

3. With scores {x1 = 0, x2 = 0.5, x3 = 1.5, x4 = 4.0, x5 = 7.0}, the last

score being somewhat arbitrary,
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Alcohol and Infant Malformation:

Ordinal (Linear) Predictor

4. Table 15 shows results.

5. The estimated multiplicative effect of a unit increase in daily alcohol

consumption on the odds of malformation is exp(0.317) = 1.37.

6. Table 16 shows the observed and fitted proportions of malformation.

7. The model seems to fit well, as statistics comparing observed and

fitted counts are G2 = 1.95 and X2 = 2.05, with = df = 3.
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Table 15: Results for Linear Logit Model Fitted for Alcohol and Infant

Malformation Data

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -5.9605 0.1154 -6.1867 -5.7342 2666.41 <.0001

Alc 1 0.3166 0.1254 0.0707 0.5624 6.37 0.0116

Scale 0 1.0000 0.0000 1.0000 1.0000
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Table 16: Maternal Drinking and Childbirth Sex

Organ Malformation

Alcohol Consumption

(average number of drinks per day)

Malformation 0 < 1 1− 2 3− 5 ≥ 6
Present 48 38 5 1 1

Absent 17,066 14,464 788 126 37

Logit -5.87 -5.94 -506 4.84 -3.61

Proportional

Malformed

Observed 0.0028 0.0026 0.0063 0.0079 0.0263

Fitted 0.0026 0.0030 0.0041 0.0091 0.0231
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Alcohol and Infant Malformation:

Ordinal (Linear) Predictor

1. The Cochran-Armitage trend test i.e., the score test usually gives

results similar to the Wald or likelihood-ratio test of H0 : β = 0 in the

linear logit (85) model.

2. The highly unbalanced counts suggest that it is safest to use the

likelihood function through the likelihood-ratio approach.

3. This is also true for estimation.

4. The profile likelihood 95% confidence interval of (0.02, 0.52) for β

reported is preferable to the Wald interval of

(0.317± 1.96(0.125) = (0.07, 0.56).
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Multiple Logistic Regression

1. Like ordinary regression, logistic regression extends to models with

multiple explanatory variables.

2. For instance, the model for π(x) = P(Y = 1) at values

x = (x1, . . . , xp)T of p predictors is

logit[π(x)] = α + β− 1x1 + β2x2 + · · ·+ βpxp. (86)

3. The alternative formula, directly specifying π(x), is

π(x) =
exp(α + β− 1x1 + β2x2 + · · ·+ βpxp)

1 + exp(α + β− 1x1 + β2x2 + · · ·+ βpxp)
. (87)
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Multiple Logistic Regression

4. The parameter βi refers to the effect of xi on the log odds that

Y = 1, controlling the other j.

5. For instance, exp(βi) is the multiplicative effect on the odds of a

1-unit increase in x, at fixed levels of other xs.

6. An explanatory variable can be qualitative, using dummy variables for

categories.
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Multiple Logistic Regression: Crab Data

1. Like ordinary regression, logistic regression can have a mixture of

quantitative and qualitative predictors.

2. We illustrate with the horseshoe crab data, using the female crab

width and color as predictors.

3. Color has five categories: light, medium light, medium, medium dark,

dark.

4. It is a surrogate for age, older crabs tending to be darker.

5. The sample contained no light crabs, so our models use only the other

four categories.
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Crab Data: Color as a Categorical Variable

6. We first treat color as qualitative.

7. The four categories use three dummy variables.
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Crab Data: Color as a Categorical Variable

8. The model is

logit(π) = α + β1c1 + β2c2 + β3c3 + β4x. (88)

where π = P(Y = 1), x = width, in centimeters, and

c1 = 1 for medium-light color, and 0 otherwise,

c2 = 1 for medium color, and 0 otherwise,

c3 = 1 for medium-dark color, and 0 otherwise.

9. The crab color is dark (category 4) when c1 = c2 = c3 = 0.

c©Jeff Lin, MD., PhD. Logistic Regression, 136



Table 17: Results for Multiple Logit Model Fitted Crab Data

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -12.7151 2.7618 21.1965 <.0001

c1 1 1.3299 0.8525 2.4335 0.1188

c2 1 1.4023 0.5484 6.5380 0.0106

c3 1 1.1061 0.5921 3.4901 0.0617

width 1 0.4680 0.1055 19.6573 <.0001
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Table 18: Results for Multiple Logit Model Fitted Crab Data

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

c1 3.781 0.711 20.102

c2 4.065 1.387 11.909

c3 3.023 0.947 9.646

width 1.597 1.298 1.964
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Crab Data: Color as a Categorical Variable

1. Table 17 shows the ML parameter estimate.

2. For instance, for dark crabs, logit(π̂) = −12.715 + 0.468x; by

contrast, for medium-light crabs, c1 = 1, and

logit(π̂) = (−12.715 + 1.330) + 0.468x.

3. At the average width of 26.3 cm, π̂ = 0.399 for dark crabs and 0.715

for medium-light crabs.

c©Jeff Lin, MD., PhD. Logistic Regression, 139



Crab Data: Color as a Categorical Variable

4. The model assumes a lack of interaction between color and width in

their effects.

5. Width has the same coefficient 0.468 for all colors, so the shapes of

the curves relating width to π are identical.

6. For each color, a 1-cm increase in width has a multiplicative effect of

exp(0.468) = 1.60 on the odds that Y = 1.
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Figure 4: Logistic regression model using width and color predictors of

satellite presence
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Crab Data: Color as a Categorical Variable

1. Figure 4 displays the fitted model.

2. Any one curve equals any other curve shifted to the right or left.

3. The parallelism of curves in the horizontal dimension implies that any

two curves never cross.

4. At all width values, color 4 dark has a lower estimated probability of a

satellite than the other colors.

c©Jeff Lin, MD., PhD. Logistic Regression, 142



Crab Data: Color as a Categorical Variable

5. There is a noticeable positive effect of width.

6. The exponentiated difference between two color parameter estimates

is an odds ratio comparing those colors.

7. For instance, the difference for medium-light crabs and dark crabs

equals 1.330.
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Crab Data: Color as a Categorical Variable

8. At any given width, the estimated odds that a medium-light crab has

a satellite are exp(1.330) = 3.8 times the estimated odds for a dark

crab.

9. At width x = 26.3, the odds equal 0.715/0.285 = 2.51 for a

medium-light crab and 0.399/0.601 = 0.66 for a dark crab, for which

2.51/0.66 = 3.8.
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Crab Data: Model Comparison

1. To test whether color contributes significantly to model (88), we test

H0 : β + 1 = β2 = β3 = 0.

2. This states that controlling for width, the probability of a satellite is

independent of color.

3. We compare the maximized log-likelihood `̀̀1 for the full model (88)

to `̀̀0 for the simpler model.

4. The test statistic −2(`̀̀0 − `̀̀1) = 7.0 has df = 3, the difference

between the numbers of parameters in the two models.

5. The chi-squared p-value of 0.07 provides slight evidence of a color

effect.
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Crab Data: Model Comparison

6. The more complex model allowing color × width interaction has three

additional terms, the cross-products of width with the color dummy

variables.

7. Fitting this model is equivalent to fitting logistic regression with width

predictor separately for crabs of each color.

8. Each color then has a different shaped curve relating width to

P(Y = 1), so a comparison of two colors varies according to the width

value.
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Crab Data: Model Comparison

9. The likelihood-ratio statistic comparing the models with and without

the interaction terms equals 4.4, with df = 3.

10. The evidence of interaction is weak p− value = 0.22.
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Crab Data: Color as a Ordinal Variable

1. Color has ordered categories, from lightest to darkest. A simpler

model yet treats this predictor as quantitative.

2. Color may have a linear effect, for a set of monotone scores.

3. To illustrate, for scores c = {1, 2, 3, 4} for the color categories
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Table 19: Crab Data: Color as Ordinal Variable

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -10.0708 2.8069 12.8733 0.0003

color 1 -0.5090 0.2237 5.1791 0.0229

width 1 0.4583 0.1040 19.4129 <.0001
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Table 20: Crab Data: Color as Ordinal Variable

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

color 0.601 0.388 0.932

width 1.581 1.290 1.939

c©Jeff Lin, MD., PhD. Logistic Regression, 150



Crab Data: Color as a Ordinal Variable

1. The model

logit(π) = α + β1c + β4x. (89)

has β̂1 = −0.509(SE = 0.224) and β̂2 = 0.458(SE = 0.104).

2. This shows strong evidence of an effect for each.

3. At a given width, for every one-category increase in color darkness,

the estimated odds of a satellite multiply by exp(−0.509) = 0.60.
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Crab Data: Color as a Ordinal Variable

1. The likelihood-ratio statistic comparing this fit to the more complex

model (88) having a separate parameter for each color equals 1.7

df = 2.

2. This statistic tests that the simpler model (89) is adequate, given that

model (88) holds.

3. It tests that when plotted against the color scores, the color

parameters in (88) follow a linear trend.

4. The simplification seems permissible p− value = 0.44.
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Crab Data: Color with Two Levels

1. The color parameter estimates in the qualitative-color model (88) are

(1.33, 1.40, 1.11, 0), the 0 value for the dark category reflecting its

lack of a dummy variable.

2. Although these values do not depart significantly from a linear trend,

the first three are quite similar compared to the last one.

3. Thus, another potential color scoring for model (89) is (1, 1, 1, 0);
that is, scores = 0 for dark-colored crabs, and scores1 otherwise.
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Table 21: Crab Data: Color as Two Levels

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -12.9795 2.7272 22.6502 <.0001

cscore 1 1.3005 0.5259 6.1162 0.0134

width 1 0.4782 0.1041 21.0841 <.0001
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Table 22: Crab Data: Color as Two Levels

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

cscore 3.671 1.310 10.290

width 1.613 1.315 1.979
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Crab Data: Color as Two Levels

1. The likelihood-ratio statistic comparing model (89) with these binary

scores to model (88) equals 0.5 (df = 2), showing that this simpler

model is also adequate.

2. Its fit is

logit(π̂) = −12.980 + 1.300 + 0.478x, (90)

with standard errors 0.526 and 1.104.

3. At a given width, the estimated odds that a lighter-colored crab has a

satellite are exp(1.300) = 3.7 times the estimated odds for a dark

crab.
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Crab Data: Summary

1. In summary, the qualitative-color model, the quantitative-color model

with scores {1, 2, 3, 4}, and the model with binary color scores

{1, 1, 1, 0} all suggest that dark crabs are least likely to have satellites.

2. A much larger sample is needed to determine which color scoring is

most appropriate.

3. It is advantageous to treat ordinal predictors in a quantitative manner

when such models fit well.

4. The model is simpler and easier to interpret, and tests of the predictor

effect are more powerful when it has a single parameter rather than

several parameters.
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Model Building

1. Having studied the basics of fitting and interpreting logistic regression

models, we now turn our attention to building and applying them.

2. With several explanatory variables, there are many potential models.

3. Model selection for logistic regression faces the same issues as for

ordinary regression.

4. The selection process becomes harder as the number of explanatory

variables increases, because of the rapid increase in possible effects

and interactions.
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Model Building

There are two competing goals:

1. The model should be complex enough to fit the data well.

2. On the other hand, it should be simple to interpret, smoothing rather

than overfitting the data.
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Model Building

1. Most studies are designed to answer certain questions.

2. Those questions guide the choice of model terms.

3. Confirmatory analyses then use a restricted set of models.

4. For instance, a study hypothesis about an effect may be tested by

comparing models with and without that effect.

5. For studies that are exploratory rather than confirmatory, a search

among possible models may provide clues about the dependence

structure and raise questions for future research.
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Model Building

6. In either case, it is helpful first to study the effect on Y of each

predictor by itself using graphics incorporating smoothing for a

continuous predictor or a contingency table for a discrete predictor.

7. This gives a “feel” for the marginal effects.

8. Unbalanced data, with relatively few responses of one type, limit the

number of predictors for the model.
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Model Building: Sample Sizes and Variables

9. One guideline suggests at least 10 outcomes of each type should

occur for every predictor (Peduzzi et al., 1996).

10. If ys 1 only 30 times out of n = 1000, for instance, the model should

contain no more than about three x terms.

11. Such guidelines are approximate, and this does not mean that if you

have 500 outcomes of each type you are well served by a model with

50 predictors.
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Model Building: Multicollinearity

1. Many model selection procedures exist, no one of which is always

best. Cautions that apply to ordinary regression hold for any

generalized linear model.

2. For instance, a model with several predictors may suffer from

“multicollinearity”-correlations among predictors making it seem that

no one variable is important when all the others are in the model.
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Model Building: Multicollinearity

3. A variable may seem to have little effect because it overlaps

considerably with other predictors in the model, itself being predicted

well by the other predictors.

4. Deleting such a redundant predictor can be helpful, for instance to

reduce standard errors of other estimated effects.
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Crab Data: All Main Effect

1. The horseshoe crab data set in Table 1 has four predictors: color (four

categories), spine condition (three categories), weight, and width of

the carapace shell.

2. We now fit a logistic regression model using all these to predict

whether the female crab has satellites (y = 1).
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Crab Data: All Main Effect

3. We start by fitting a model containing main effects,

logit[P(Y = 1)]

= α + β1weight + β− 2width + β3c− 1 + β4c2 + β5c3

+β6s1 + β7s2. (91)

treating color ci and spine condition sj as qualitative factors, with

dummy variables for the first three colors and the first two spine

conditions.
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Table 23: Crab Data: All Main Effect

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 40.5565 7 <.0001

Type 3 Analysis of Effects

Wald

Effect DF Chi-Square Pr > ChiSq

weight 1 1.3765 0.2407

width 1 1.8152 0.1779

color 3 7.1610 0.0669

spine 2 1.0105 0.6034
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Table 24: Crab Data: All Main Effect

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -9.2734 3.8378 5.8386 0.0157

weight 1 0.8258 0.7038 1.3765 0.2407

width 1 0.2631 0.1953 1.8152 0.1779

color 1 1 1.6087 0.9355 2.9567 0.0855

color 2 1 1.5058 0.5667 7.0607 0.0079

color 3 1 1.1198 0.5933 3.5624 0.0591

spine 1 1 -0.4003 0.5027 0.6340 0.4259

spine 2 1 -0.4963 0.6292 0.6222 0.4302
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Crab Data: All Main Effect

1. A likelihood-ratio test that Y is jointly independent of these predictors

simultaneously tests H0 : β1 = · · · = β7 = 0.

2. The test statistic equals 40.6 with df = 7, p− value < 0.0001.

3. This shows extremely strong evidence that at least one predictor has

an effect.

4. Although the overall test is highly significant, the Table ?? results are

discouraging.
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Crab Data: All Main Effect

5. The estimates for weight and width are only slightly larger than their

SE values.

6. The estimates for the factors compare each category to the final one

as a baseline.

7. For color, the largest difference is less than two standard errors; for

spine condition, the largest difference is less than a standard error.
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Crab Data: All Main Effect

8. The small p-value for the overall test, yet the lack of significance for

individual effects, is a warning sign of multicollinearity.

9. We have showed strong evidence of a width effect.

10. Controlling for weight, color, and spine condition, little evidence

remains of a partial width effect.
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Crab Data: All Main Effect

11. However, weight and width have a strong correlation (0.887).

12. For practical purposes they are equally good predictors, but it is nearly

redundant to use them both.

13. It is also not usually sensible to consider a model with interaction but

not the main effects that make up that interaction.
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Selection Algorithms

1. In exploratory studies, an algorithmic method for searching among

models can be informative if we use results cautiously.

2. Goodman (1971) proposed methods analogous to forward selection

and backward elimination in ordinary regression.
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Forward Selection

1. Forward selection adds terms sequentially until further additions do

not improve the fit.

2. At each stage it selects the term giving the greatest improvement in

fit.

3. The minimum p-value for testing the term in the model is a sensible

criterion, since reductions in deviance for different terms may have

different df values.

4. A stepwise variation of this procedure retests, at each stage, terms

added at previous stages to see if they are still significant.
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Backward Elimination

1. Backward elimination begins with a complex model and sequentially

removes terms.

2. At each stage, it selects the term for which its removal has the least

damaging effect on the model e.g., largest p-value.

3. The process stops when any further deletion leads to a significantly

poorer fit.
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Stepwise Selection

1. Stepwise selection procedure combines the forward and backward

procedures.

2. At each stage, a variable is either added, dropped, or interchanged

with another variable, according to a set of rules until a stopping

criterion is met.
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Selection Algorithm: Summary

1. With either approach, for qualitative predictors with more than two

categories, the process should consider the entire variable at any stage

rather than just individual dummy variables.

2. Add or drop the entire variable rather than just one of its dummies.

3. Otherwise, the result depends on the coding.

4. The same remark applies to interactions containing that variable.
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Selection Algorithm: Summary

5. Many statisticians prefer backward elimination over forward

selection, feeling it safer to delete terms from an overly complex

model than to add terms to an overly simple one.

6. Forward selection can stop prematurely because a particular test in

the sequence has low power.

7. Neither strategy necessarily yields a meaningful model.
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Selection Algorithm: Summary

8. Use variable selection procedures with caution!

9. When you evaluate many terms, one or two that are not important

may look impressive simply due to chance.

10. For instance, when all the true effects are weak, the largest sample

effect may substantially overestimate its true effect. See Westfall and

Wolfinger (1997) and Westfall and Young (1993) for ways to adjust

P-values to take multiple tests into account.
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Selection Algorithm: Softwares

1. Some software has additional options for selecting a model.

2. One approach attempts to determine the best model with some fixed

number of terms, according to some criterion.

3. If such a method and backward and forward selection procedures yield

quite different models, this is an indication that such results are of

dubious use.

4. Another such indication would be when a quite different model results

from applying a given procedure to a bootstrap sample of the same

size from the sample distribution.
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Selection Algorithm: Softwares

5. Finally, statistical significance should not be the sole criterion for

inclusion of a term in a model.

6. It is sensible to include a variable that is central to the purposes of

the study and report its estimated effect even if it is not statistically

significant.
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Selection Algorithm: Softwares

7. Keeping it in the model may help reduce bias in estimated effects of

other predictors and may make it possible to compare results with

other studies where the effect is significant perhaps because of a

larger sample size.

8. Algorithmic selection procedures are no substitute for careful thought

in guiding the formulation of models.
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Model Building

1. In selecting a model, we are mistaken if we think that we have found

the true one.

2. Any model is a simplification of reality.

3. For instance, width does not exactly have a linear effect on the

probability of satellites, whether we use the logit link or the identity

link.
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Model Building

4. What is the logic of testing the fit of a model when we know that it

does not truly hold?

5. A simple model that fits adequately has the advantages of model

parsimony.

6. If a model has relatively little bias, describing reality well, it tends to

provide more accurate estimates of the quantities of interest.
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Akaike information criterion (AIC)

1. Other criteria besides significance tests can help select a good model

in terms of estimating quantities of interest.

2. The best known is the Akaike information criterion (AIC).

3. It judges a model by how close its fitted values tend to be to the true

values, in terms of a certain expected value.
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Akaike information criterion (AIC)

4. Even though a simple model is farther from the true model than is a

more complex model, it may be preferred because it tends to provide

better estimates of certain characteristics of the true model, such as

cell probabilities.

5. Thus, the optimal model is the one that tends to have fit closest to

reality.

6. Given a sample, Akaike showed that this criterion selects the model

that minimizes

AIC = −2(maximized log likelihood – number of parameters in model).(92)
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7. This penalizes a model for having many parameters.

8. With models for categorical Y, this ordering is equivalent to one based

on an adjustment of the deviance, G2− 2(df)], by twice its residual df.

9. For cogent arguments supporting this criterion, see Burnham and

Anderson (1998).
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Crab Data

1. We illustrate AIC for model selection. Of models using the three basic

variables, AIC is smallest AIC= 197.5 for (C + W), having main

effects of color and width.

2. The simpler model having a dummy variable for whether a crab is

dark fares better yet AIC= 194.0.

3. Either model seems reasonable.

4. We should balance the lower AIC for the simpler model against its

having been suggested by the fit of C + W.
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New Model Building Strategies for Data Mining

1. As computing power continues to explode, enormous data sets are

more common.

2. A financial institution that markets credit cards may have

observations for millions of subjects to whom they sent advertising, on

whether they applied for a card.

3. For their customers, they have monthly data on whether they paid

their bill on time plus information on many variables measured on the

credit card application.
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New Model Building Strategies for Data Mining

4. The analysis of huge data sets is called data mining.

5. Model building for huge data sets is challenging.

6. There is currently considerable study of alternatives to traditional

statistical methods, including automated algorithms that ignore

concepts such as sampling error or modelling.

7. Significance tests are usually irrelevant, as nearly any variable has a

significant effect if n is sufficiently large.

8. Model-building strategies view some models as useful for prediction

even if they have complex structure.
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New Model Building Strategies for Data Mining

9. Nonetheless, a point of diminishing returns still occurs in adding

predictors to models.

10. After a point, new predictors tend to be so correlated with a linear

combination of ones already in the model that they do not improve

predictive power.

11. For large n, inference is less relevant than summary measures of

predictive power.
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