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Common Discrete Distributions

1. Binomial

2. Poisson

3. Multinomial
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Bernoulli Distribution

1. A random variable Y has a Bernoulli distribution if

X =

1, with probability π;

0, with probability 1− π.
(1)

2. That is

f (y; π) =

πy(1− π)1−y, for x = 0, 1;

0, otherwise.
(2)

E(Y) = π (3)

Var(Y) = π(1− π) (4)
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Binomial Distribution

1. The binomial distribution, one of the more useful distributions, is

based on the idea of a Bernoulli.

2. Many application refer to a fixed number n observations.

3. Let y1, y2, . . . , yn denote responses has the for n repeated

independent and identical trials such that P(Yi = 1) = π and

P(Yi = 0) = 1− π.

4. We use the generic labels “success” and “failure” for outcomes 1

and 0.
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Binomial Distribution

5. Identical trials means that the probability of success π is the same

for each trial. independent trials means that Yis are independent

random variables.

6. These are often called Bernoulli trials.

7. A Bernoulli trial is an experiment with two and only two, possible

outcomes.
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Binomial Distribution

8. The total number successes, Y = ∑n
i Yi has the binomial

distribution as

P[Y = y] = P[exactly y successes in the n trials]

=
(

n
y

)
πy(1− π)n−y. (5)

which index n and parameter π, denote by Bin(n, π).
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Binomial Distribution

9. Formally, a random variable Y is defined to have binomial

distribution if the discrete density function of Y is given by

f (y; n, π) =


(n

y
)
πy(1− π)n−y, for y = 0, 1, 2, · · · , n;

0, otherwise.
(6)

E(Y) = nπ (7)

Var(Y) = nπ(1− π) (8)

where the parameter n, π satisfies 0 ≤ π ≤ 1, π is often denoted

by p and 1− π is often denoted by q.
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Example: Dice probabilities

1. Suppose we are interested in finding the probability of obtaining at

least one 6 in four rolls of a fair dice.

2. This experiment can be modeled as a sequence of four Bernoulli

trials with success probability p = 1
6 = P(die shows 6).

3. Define the random variable X by

X = total number of6s in four rolls.

4. Then X ∼ Bin(n = 4, p = 1
6) and

P(at least one 6) = P(X > 0) = 1− P(X = 0) = 1−
(5

6

)4
= 0.518.
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Binomial Distribution

5. The skewness is described by

E[(Y − µ)3/σ3] = (1− 2π)/
√

nπ(1− π).

6. The distribution converges to normality as n increases, for fixed π.
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Binomial Distribution

7. There is no guarantee that successive binary observations are

independent or identical.

8. Thus, occasionally, we will utilize other distributions.

9. For example, we sample binary outcomes without replacement from

a finite population, we use hypergeometric distribution.
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Poisson Distribution

1. A random variable Y is defined to have Poisson distribution if the

discrete density function of Y is given by

f (y; µ) =


e−µµy

y! for y = 0, 1, 2, · · · ,

0 otherwise.
(9)

E(Y) = µ (10)

Var(Y) = µ (11)

It satisfies E(Y) = Var(Y) = µ.
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Poisson Distribution

2. It is unimodal with mode equal to the integer part of µ.

3. Its skewness is described by E(Y − µ)/σ3 = 1/√µ.

4. The distribution approaches normality as µ increases.

5. The Poisson distribution has a single parameter µ, sometimes called

the intensity parameter.
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Poisson Distribution

6. The Poisson distribution provides a realistic model for many random

phenomena.

7. Since the values of a Poisson random variable are the nonnegative

integers, any random phenomenon for which a count of some sort is

of interest is a candidate for modeling by assuming a Poisson

distribution.

8. This distribution is usually associated with rare events, counts of

events that occur randomly over time or space, which outcomes in

disjoint periods are independent, such as a count might be the

number of a fatal traffic accidents per week.
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Poisson Distribution

9. For example, if we are modeling a phenomenon in which we are

waiting for an occurrence, the number of occurrences in a given time

intervals can sometimes be modeled by the Poisson distribution.

10. On the basic assumptions on which Poisson distribution is built is

that, for small time intervals, the probability of an arrival is

proportional to the length of waiting time.

11. It makes sense to assume that the longer we wait, the more likely

occurrence will enter.

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 13



Example: Mercy Hospital

1. Patients arrive at the emergency room of Mercy Hospital at the

average rate of 6 per hour on weekend evenings.

2. What is the probability of 4 arrivals in 30 minutes on a weekend

evening?

µ =
6

hour
=

3
half-hour

y = 4

f (y = 4) =
34e−3

4!
= 0.1680
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Poisson Sampling

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 15



Poisson Sampling Example: Sprots Injury

1. An investigator plan to study the sports injury rate of college

students in a department of physical education in one academic year.

2. The data will consist of monthly counts of the number of sports

injuries.

3. The result is shown in Table 1.

4. Poisson distribution is a potential probability model for the

number of sports injuries in any given month.
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Poisson Sampling Example: Sprots Injury

Table 1: Counts of sports injury in one year

Month 1 2 3 4 5 6 7 8 9 10 11 12

Count 28 56 51 28 6 5 19 13 13 10 7 11
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Poisson Sampling

Poission Variables for Categorical Data

Table 2: Poission Variables for Categorical Data

Level of a Discrete Variable 1 2 · · · i · · · C
Observed Count y1 y2 · · · yi · · · yC
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Poisson Sampling

1. Observed counts yi, i = 1, . . . , C, in the C cells of a contingency

table.

2. For instance, these might be observations for the C levels of a single

categorical variable, or for C = I J cells of a two-way table.
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Poisson Sampling

1. The Poisson sampling model for count, yi, assumes that they are

independent Poisson random variables.

2. The joint probability function for yi is then the product of the

probabilities for the C cells.

f (yi; µi, i = 1, . . . , C) =
C
∏
1

e−µiµyi

yi!
(12)

3. The total sample size n = ∑ yi also has a Poisson distribution, with

parameter ∑ µi, where µi are called expected frequencies.

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 20



Poisson Sampling Distrobution

1. An important sampling distribution for categorical data treats

count of each level as an as an independent Poisson observation.

2. The sampling scheme is called Poisson sampling.

3. A key feature of the Poisson distribution is that its variance

increases as the mean does.

4. Sample count tend to vary more when their average level is higher.
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Overdispersion of Poisson Sampling Distrobution

1. In practice, count observations often have variance exceeding the

mean, rather than equaling he mean as the Poisson requires.

2. This phenomenon is called overdispersion.

3. The assumption of Poisson sampling is often too simplistic, because

of factors such as overdispersion.

4. Nevertheless, Poisson sampling assumption produce useful results,

albeit in a approximate manner, in a wide variety of categorical data

analysis.
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Multinomial Distribution

1. A random variable YYY = (Y1, Y2, . . . , YC)T has multinomial
distribution, for some integers C ≥ 2, n ≥ 1 and some 0 ≤ π ≤ 1
such that π1 + π2 + · · ·+ πC = 1 and
1 ≤ i ≤ C; y1 + y2 + · · ·+ yC = n, as

P(Y1, Y2, . . . , YC) =

 n!
y1!y2!···yC!π

y1πy2 · · ·πyC
c , for yi = 0, 1, 2, · · · , n,

0 otherwise.
(13)

E(Yj) = nπj, (14)

Var(Yj) = nπj(1− πj), (15)

Cov(Yj, Yk) = −nπjπk. (16)
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Multinomial Distribution

2. Some trials have more than two possible outcomes.

3. Suppose that each of n independent, identical trials can have

outcome in any of C categories (The discrete response variable has

distinct C levels).

4. Let Yij = 1 if trial i has outcome in category j and yij = 0 otherwise.

5. Then YYYi = (Yi1, Yi2, . . . , YiC)T represents a multinomial trial, with

∑j Yij = 1; for instance, (0, 0, 1, 0) denotes outcomes in category 3

of four possible categories.

6. Note that YiC is redundant, being linearly dependent on the others.
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Multinomial Distribution

7. Let nj = ∑i Yij denote the umber of trials having outcome in

category j.

8. The counts (n1, n2, . . . , nC)T have multinomial distribution.

9. Let πj = P(Yij = 1) denote the probability of outcome in categories

j for each trial.
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Multinomial Distribution

10. The multinomial probability mass function is

P(n1, n2, . . . , nC) =
n!

n1!n2! · · · nC!
πn1πn2 · · ·πnC

C . (17)

11. Since ∑j nj = n, this is (C− 1)-dimensional, with

nC = n− (n1 + n2 + · · ·+ nC−1).

12. The binomial distribution is the special case with C = 2 and the

trinomial distribution is another special case with C = 3.
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Overdispersion

1. In practice, count observations often exhibit variability exceeding the

predicted by the binomial or Poisson.

2. This phenomenon is called overdispersion.

3. We assumed above that each person has the same probability of

dying in a fatal accident in the next week.

4. More realistically, these probabilities vary, due to factors such as

amount of time spent driving, whether the person wears a seat belt,

and geographical location.

5. Such variation causes fatality counts to display more variation than

predicted by the Poisson model.
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Overdispersion

6. Suppose that Y is random variable with variance Var(Y | µ) for

given µ but µ itself varies because of unmeasured factors such as

those just described.

7. Let θ = E(µ).
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Overdispersion

8. Then unconditionally,

E(Y) = E[E(Y | µ)], (18)

Var(Y) = E[Var(Y | µ)] + Var[E(Y | µ)]. (19)

9. When Y is conditional Poisson (give µ), for instance, then

E(Y) = E(µ) + θ, (20)

and Var(Y) = E(µ) + Var(µ) = θ + Var(µ) > θ. (21)
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Overdispersion

10. Assuming a Poisson distribution for a count variable is often too

simplistic, because of factors has the cause overdispersion.

11. The negative binomial is a related distribution for count data that

permit the variance to exceed the mean.
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Overdispersion

12. Analyzes assuming binomial (or multinomial) distributions are also

sometimes invalid because of overdispersion.

13. This might happen because the true distribution is a mixture of

different binomial distributions, with the parameter varying because

of unmeasured variables.
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Overdispersion

14. To illustrate, suppose that an experiment exposes pregnant mice to

a toxin and then after a week observes the number of fetuses in

each mouse’s litter that show signs of malformation.

15. Let ni denote the number of fetuses in the litter for mouse i.

16. The mice also vary according to other factors that may not be

measured, such as their weight, overall health, and genetic makeup.

17. Extra variation then occurs because of the variability from liter to

liter in the probability π of malformations might cluster near 0 and

near ni, showing more dispersion than expected for binomial

sampling with a single value of π.
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Overdispersion

18. Overdispersion could also occur when π varies among featuses in a

litter according to some distribution.

19. Use beta-binomial distribution to adjust overdispersion for

binomial distribution.

20. Use negative binomial distribution to adjust overdispersion for

Poisson distribution.
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Connection Between

Poisson and Multinomial Distributions

1. Suppose Y1, Y2, . . . , YC are independent Poisson distribution with

mean µi.

2. The joint probability mass function for YYY = (Y1, Y2, . . . , YC)T is the

product of the n mass functions of Poisson distribution.

3. The total n = X = ∑i Yi also has a Poisson distribution (9), with

parameter ∑ µi. Such as,

f (X = ∑
i

yi = n; µi) =


e−∑i µi(∑i µi)n

n! , for X = ∑i Yi = n,

0, otherwise.
(22)
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Connection Between

Poisson and Multinomial Distributions

4. An unusual feature of Poisson sampling is that the total sample size

n = ∑ Yi is random, rather than fixed.

5. If we start with the Poisson model but condition on the total sample

size n, n no longer have Poisson distribution, since each Yi cannot

exceed n, condition on n, Yi are no longer independent, since the

value of one affects the possible range for the others.
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Connection Between

Poisson and Multinomial Distributions

6. Given that n = ∑ Yi, the conditional probability of a set Yi
satisfying this condition is multinomial distribution as
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Connection Between

Poisson and Multinomial Distributions
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P
[

Yi = yi, i = 1, . . . , c | n = ∑ yi

]

=
P[ yi, i = 1, . . . , c ]

P[ n = ∑ yi ]

=
∏i

[
exp(−µi) µ

yi
i /yi!

]
exp

(
∑i−µi

)(
∑i µi

)n/n!
(23)

=
(

n!
∏i yi!

)
∏

i
π

yi
i , where πi =

µi
∑i µi

. (24)
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Connection Between

Poisson and Multinomial Distributions

7. We denote the vector, y = (y1, y2, . . . , yc)T, and mean vector,

πππ = (πi, . . . , πc)T with the multinomial distribution as

y ∼ Multin(n, πππ) (25)

characterized by the sample size n and the cell probability πi.
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Connection Between

Poisson and Multinomial Distributions

8. Many categorical data analyses assume a multinomial distribution.

9. Such analyses usually have the same parameter estimates as those

of analyses assumption Poisson distribution, because in the

likelihood functions.

10. Note: this statement will be more clear when we discuss the

sampling distributions.

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 40



Basic Statistical Inference

for Categorical Data
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Basic Statistical Inference

Likelihood Functions and

Maximum Likelihood Estimation
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Likelihood Functions and

Maximum Likelihood Estimation

1. We often use maximum likelihood for parameter estimation in

categorical data analysis.
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Likelihood Functions and

Maximum Likelihood Estimation

2. Under weak regularity conditions, such as the parameter space

having fixed dimension with true value falling in its interior,

maximum likelihood estimators have desirable properties:

(a) They have large-sample normal distributions.

(b) They are asymptotically consistent.

(c) They Converge to the parameter as n increases.

(d) They are asymptotically efficient, producing large-sample standard

errors no greater than those form other estimation methods.
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Likelihood Functions and

Maximum Likelihood Estimation

3. The method of maximum likelihood (ML) was developed by R. A.

Fisher (1922, 1925) and largely replaced more ad hoc method (such

as least squares and method of moments) as the standard

estimation method.
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Likelihood Functions and

Maximum Likelihood Estimation

4. The strength of ML is its inherent logic, its extremely widely scope,

and its high efficiency under wide conditions.

5. The main weakness of ML is that the entire distribution of the data

must be modeled.

6. This involves extra assumptions whose failure might have adverse

effects on estimation precision.
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Likelihood Functions and

Maximum Likelihood Estimation

7. Given the data, for a chosen probability distribution the likelihood

function is the probability of those data, treated as a function of

the unknown parameter.

8. The maximum likelihood (ML) estimate is the parameter value that

maximizes this function.

9. This is the parameter value under which the data observed have the

highest probability of occurrence.

10. The parameter value that maximizes the likelihood function also

maximizes the log of that function.
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Likelihood Functions and

Maximum Likelihood Estimation

11. It is simpler to maximize the log likelihood since it is a sum rather

than a product of terms.

12. we denote a parameter for a generic problem by β and its ML
estimate by β̂.
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Likelihood Functions and

Maximum Likelihood Estimation

13. The likelihood function is L(β) and the log-likelihood function is

`(β) = log[L(β)].

14. For many models, `(β) has concave shape and β̂ is the point at

which the derivative equals 0.

15. The ML estimate is then the solution of the likelihood equation,

∂`(β)/∂β.

16. Often, β is multidimensional, denoted by βββ, and β̂ββ is the solution of

a set of likelihood equations.
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Likelihood Functions and

Maximum Likelihood Estimation

17. Let SE(β̂) denote the standard error of β̂, and let Cov(β̂ββ) denote

the asymptotic covariance matrix of β̂ββ. Under regularity conditions

(Rao, 1973, p.364) is the inverse of the Fisher’s information

matrix.

18. The (j, k) element of the Fisher’s information matrix is

− E

(
∂2`(βββ)

∂β j∂βk

)
. (26)

19. The standard errors (SE) are the square roots of the diagonal

elements for the inverse information matrix.
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Likelihood Functions and

Maximum Likelihood Estimation

20. The greater the curvature of the log likelihood, the smaller the

standard errors.

21. This is the reasonable, since large curvature implies that the log

likelihood drops quickly as βββ moves away from β̂ββ; hence, the data

would have been much more likely to occur if βββ took a value near β̂ββ

rather than a value far from β̂ββ.
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Likelihood Function and ML Estimate

for Binomial Parameter
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Likelihood Function and ML Estimate

for Binomial Parameter

1. The part of a likelihood function involving the parameter is called he

kernel.

2. Since he maximization of the likelihood is with respect to the

parameters, the rest is irrelevant. Consider the binomial distribution.

3. The binomial coefficient
(n

y
)

has no influence on where the

maximum occurs with respect to π.

4. Thus, we ignore it and treat the kernel as the likelihood function.

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 53



Likelihood Function and ML Estimate

for Binomial Parameter

5. The binomial log likelihood is then

`(π) = log[πy(1− π)n−y] = y log(π) + (n− y) log(1− π). (27)

6. Differentiating with respect to π yields

∂`(π)
∂π

=
y
π
− (n− y)

(1− π)
=

y− nπ

π(1− π)
(28)

7. Equating this to 0 gives the likelihood equation, which has solution

π̂ = y/n, the sample proportion of successes for the n trials.
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Likelihood Function and ML Estimate

for Binomial Parameter

8. Calculating ∂2`(π)/∂π2, taking the expectation, and combining

terms, we get

− E

[
∂2`(π)

∂π2

]
= E

[
y

π2 +
(n− y)
(1− π)2

]
=

n
π(1− π)

. (29)

9. Thus, the asymptotic variance of π̂ is π(1− π)/n. This is no

surprise.
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Likelihood Function and ML Estimate

for Binomial Parameter

10. Since E(Y) = nπ and Var(Y) = nπ(1− π), the distribution of

π̂ = y/n has mean and standard error as

E(π̂) = π, σ(π̂) =

√
π(1− π)

n
. (30)
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Wald, Likelihood Ratio, and Score Tests
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Wald, Likelihood Ratio, and Score Tests

1. Three standard ways exist to use the likelihood function to perform

large-sample inference.

2. We introduce these for a significance test of a null hypothesis

H0 : β = β0 and then discuss their relation to interval estimation.

3. They all exploit the large-sample normality of ML estimators.
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Wald Test

1. The first method is Wald statistic (Wald test).

2. With non-null standard error SE of β̂, the test statistic

ZW =
β̂− β0
SE(β̂)

(31)

has an approximate standard normal distribution when β = β0. one

refers ZW to the standard normal table to obtain one- or two-sided

p-value.

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 59



Wald Test

3. Equivalently, for the two-sided alternative, Z2
W has a chi-squared

null distribution with 1 degree of freedom (df).

4. The p-value is then the right-tailed chi-squared probability above

the observed value.

5. This type statistic, using the non-null standard error, is called a

Wald statistic (Wald, 1943).
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Wald Test

6. The multivariate extension for the Wald test of H0 : βββ = βββ0 has test

statistic

X2
W = (β̂ββ− βββ0)

T[Cov(β̂ββ)]−1(β̂ββ− βββ0). (32)

(The prime (T) on a vector or matrix denotes the transpose.)

7. The non-null covariance is based on the curvature (26) of the log

likelihood at β̂ββ.
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Wald Test

8. The asymptotic multivariate normal distribution for β̂ββ implies an

asymptotic chi-squared distribution for X2
W.

9. The df equal the rank of Cov(β̂ββ), which is the number of

non-redundant parameters in βββ.
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Likelihood Ratio Test (LRT)

1. A second general-purpose method uses the likelihood function

through the ratio of two maximizations as likelihood ratio test

(likelihood ratio statistic):

(a) The maximum over the possible parameter values under H0.

(b) The maximum over the possible parameter value permitting H0 or

an alternative HA to be true.
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Likelihood Ratio Test (LRT)

2. Let L0 denote the maximized value of the likelihood function under

H0

3. Let L1 denote the maximized value generally (i.e. under H0 ∪ H1).

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 64



Likelihood Ratio Test (LRT)

4. For instance, for parameter βββ = (βββ1, βββ0), and H0 : βββ0 = 0,

• L1 is the likelihood function calculated at the βββ for which the data

would have been most likely.

• L0 is the likelihood function calculated at the βββ1 value for which the

data would be most likely, when βββ0 = 0.
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Likelihood Ratio Test (LRT)

5. Then L1 is always at least as large as L0, since L0 results from

maximizing over a restricted set of parameter values.

6. The ratio Λ = L0/L1 of the maximized likelihood cannot exceed 1.

7. Wilks (1935, 1938) showed that −2 log Λ has a limiting null

chi-squared distribution, as n → ∞.

8. The degrees of freedom (df) equal the difference in the dimensions

of the parameter spaces under H0 ∪ H1 and under H0.
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Likelihood Ratio Test (LRT)

9. The likelihood-ratio test statistic equals

X2
LR = −2 log Λ = −2log(L0/L1) = −2(`0 − `1) (33)

where `0 and `1 denote the maximized log-likelihood functions.
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Score Test

1. The third method is the score statistic, due to R.A. Fisher and

C.R. Rao.

2. The score test is based on the slope and expected curvature of the

log-likelihood function `(β) at the null value β0.

3. It uterizes the size of the score function

U(β) = ∂`(β)/∂(β), (34)

evaluated at β0.

4. The (β) tends to be larger in absolute value when β̂ is farther from

β0.
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Score Test

5. Denote −E[∂2`(β)/∂β2] (i.e., the Fisher’s information) evaluated at

β0 by III(β0).

6. The score statistic is the ratio of U(β0) to its null SE, which is

[III(β0)]1/2.

7. This has an approximate standard normal null distribution.
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Score Test

8. The chi-squared form of the score statistic is

X2
SC =

[U(β0]2

III(β0)
=

[∂`(β)/∂(β)]2

−E[∂2`(β)/∂β2]
, (35)

where the partial derivative notation reflects derivatives with respect

to β that are evaluated at β0.
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Score Test

9. In the multiparameter case, the score statistic is a quadratic form

based on the vector of partial derivatives of the log likelihood with

respect to βββ and the inverse information matrix, both evaluated at

the H0 estimates (i.e., assuming that βββ = βββ0).
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Wald, Likelihood Ratio, and Score Tests

1. We consider the three tests H0 : β = β0 for the univariate case for

β0 = 0.

2. The Wald test uses the behavior of `(β) at the ML estimate β̂,

having chi-squared form (β̂/SE)2.

3. The SE of β̂ depends on the curvature of `(β) at β̂.
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Wald, Likelihood Ratio, and Score Tests

4. The score test is based on the slope and curvature of `(β) at β0.

5. The likelihood-ratio test combines information about `(β) at both β

and β0 = 0.

6. In a sense, this statistic uses the most information of the three types

of test statistic and is the most versatile.
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Wald, Likelihood Ratio, and Score Tests

7. As n → ∞, the Wald test, likelihood ratio test, and score test have

certain asymptotic equivalences (Cox and Hinkley, 1974, sec, 9.3).

8. For small to moderate sample sizes, the likelihood ratio test is

usually more reliable than the Wald test.
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Constructing Confidence Intervals
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Constructing Confidence Intervals

1. In practice, it is more informative to construct confidence intervals

for parameters than to test hypothesis about their values.

2. For any of the three test methods, a confidence interval results form

inverting the test.

3. For instance, a 95% confidence interval for β is the set of β0 for

which the test of H0 : β = β0 has a p-value exceeding 0.05.
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Constructing Confidence Intervals

4. Let Z1−α denote the Z-score form the standard normal distribution

having right-tailed probability α; this is the 100(1− α) percentile of

that distribution.

5. Let χχχ2
df,(1−α) denote the 100(1− α) percentile of the chi-squared

distribution with degrees of freedom df. 100(1− α)% confidence

intervals based on asymptotic normality use Z1−α/2, for instance

Z1−0.05/2 = 1.96 for 95% confidence.
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Wald Confidence Intervals

6. The Wald confidence interval is the set of β0 for which

| β̂− β0 | /SE < Z1−α/2. (36)

7. This gives the interval β̂± Z1−α/2(SE(β̂)).
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Likelihood Ratio Confidence Intervals

8. The likelihood ratio based confidence interval is the set of β0 for

which

X2
LR = −2[`(β0)− `(β)] < χχχ2

1,(1−α). (37)

[Recall that χχχ2
1,(1−α) = Z2

1−α/2.]
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Likelihood Ratio Confidence Intervals

9. When β̂ has a normal distribution, the log-likelihood function has a

parabolic shape (i.e., a second-degree polynomial).

10. For small samples with categorical data, β̂ may be far from

normality and the log-likelihood function can be far from as

symmetric, parabolic shape curve.

11. This can also happen with moderate to large samples

12. when a model contains many parameters.

13. In such case, inference based on asymptotic normality of β̂ may

have inadequate performance.
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Constructing Confidence Intervals

14. A marked divergence in results of Wald and likelihood ratio inference

indicates that the distribution of β̂ may not be close to normality.

15. In may such cases, inference can instead utilize an exact

small-sample distribution or “higher-order” asymptotic methods that

improve on simple normality. (e.g., Pierce and Peters 1992).
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Constructing Confidence Intervals

16. The Wald confidence interval is most common in practice because it

is simple to construct using ML estimates and standard errors

reported by statistical software.

17. The likelihood ratio based intervals becoming more widely available

in software and is preferable for categorical data with small to

moderate n.

18. For the best known statistical model, regression for a normal

response, the three types of inference necessarily provide identical

results.

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 82



Statistical Inference for Binomial Parameters
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Statistical Inference for Binomial Parameters

1. For binomial parameter π, we obtain the likelihood function and ML
estimator π̂ = y/n. Consider H0 : π = π0.

2. Since H0 has a single parameter, we use the normal rather than

chi-squared forms of Wald and score test statistics.

3. They permit tests against one-side as well as two-sided alternatives.

4. The Wald statistic is

ZW =
π̂ − π0
SE(π̂)

=
π̂ − π0√

π̂(1− π̂)/n
(38)
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Statistical Inference for Binomial Parameters

5. Evaluation the binomial score (28) and information (29) at π0 yields

U(π0) =
y

π0
− n− y

1− π0
, III =

n
π0(1− π0)

. (39)

6. The normal form of the score statistic simplifies to

ZSC =
U(π0)

[III(π0)]1/2 =
y− nπ0√

nπ0(1− π0)
=

π̂ − π0√
π0(1− π0)/n

. (40)
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Statistical Inference for Binomial Parameters

7. Whereas the Wald statistic ZW uses the standard error evaluate at

π̂, the score statistic ZSC uses it evaluated at π0.

8. The score statistic is preferable, as it uses the actual SE rather than

an estimate.

9. Its null sampling distribution is closer to standard normal than that

of the Wald statistic.
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Statistical Inference for Binomial Parameters

10. The binomial log-likelihood function (27) equals

`0 = y log π0 + (n− y) log(1− π0) under H0 and

`1 = y log π̂ + (n− y) log(1− π̂) more generally.

11. The likelihood ratio test statistic simplifies to

X2
LR = −2(`0 − `1) = 2

(
y log

π̂

π0
+ (n− y) log

1− π̂

1− π0

)
. (41)
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Statistical Inference for Binomial Parameters

12. Expressed as

X2
LR = −2(`0 − `1) = 2

(
y log

y
nπ0

+ (n− y) log
n− y

n− nπ0

)
. (42)

13. It compares observed success and failure counts to fitted (i.e. null)

counts by

2 ∑ observed log
observed

fitted
. (43)
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Statistical Inference for Binomial Parameters

14. We’ll see that this formula also holds for tests about Poisson and

multinomial parameters.

15. Since no unknown parameters occur under H0 and one occurs under

HA, (43) has an asymptotic chi-squared distribution with df = 1.

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 89



Intervals for a Binomial Parameter

1. A significance test merely indicates whether a particular π value

(such as π = 0.5) is plausible.

2. We learn more by using a confidence interval to determine the range

of plausible values.
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Intervals for a Binomial Parameter

3. Inverting the Wald test statistic gives the interval of π0 values for

which | ZW | < Z1−α/2, or

π̂ ± Z1−α/2

√
π̂(1− π̂)

n
. (44)

4. Historically, this was one of the first confidence interval used for any

parameter (Laplace 1812, p.283).
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Intervals for a Binomial Parameter

5. Unfortunately, it performs poorly unless n is very large (e.g., Brown

et al., 2001).

6. The actual coverage probability usually falls below the nominal

confidence coefficient, much below when π is near 0 or 1.

7. A simple adjustment that adds 1
2(Z1−α/2)

2 observations of each

type to the sample before using this formula contains π0 values for

which | zs | < Z1−α/2.
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Intervals for a Binomial Parameter

8. The score confidence interval contains π0 values for which

|zSC| < Z1−α/2.

9. Its endpoints are the π0 solutions to the equations

(π̂ − π0)/
√

π0(1− π0)/n = ±Z1−α/2. (45)

10. These are quadratic in π0.
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Intervals for a Binomial Parameter

11. First discussed by E. B. Wilson (1927), this score interval

π̂

(
n

n + Z2
1−α/2

)
+

1
2

(
Z2

1−α/2

n + Z2
1−α/2

)

±Z1−α/2

√
1

n + Z2
1−α/2

[
π̂(1− π̂)

(
n

n + Z2
1−α/2

)
+

(
1
2

)(
1
2

)( Z2
1−α/2

n + Z2
1−α/2

)]
.

(46)
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Intervals for a Binomial Parameter

12. The midpoint π̃ of the interval is a weighted average of π̂ and 1
2,

where the weight n/(n + Z2
1−α/2)

13. given π̂ increases as n increases. Combining terms, this midpoint

equals π̃ = (y + Z2
1−α/2)/(n + Z2

1−α/2).

14. This is the sample proportion for an adjusted sample that add

Z2
1−α/2 observations, half of each type.
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Intervals for a Binomial Parameter

15. The square of the coefficient of Z2
1−α/2 in this formula is a weighted

average of the variance of a ample proportion when π = π̂ and the

variance of a sample proportion when π = 1/2, using the adjusted

sample size n = Z2
1−α/2in place of n.

16. This interval has much better performance than the Wald interval.
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Intervals for a Binomial Parameter

17. The likelihood ratio based confidence interval is more complex

computationally, but simple in principle.

18. It is the set of π0 for which the likelihood ratio test has a p-value

exceeding α.

19. Equivalent, it is the set of π0 for which double the log likelihood

drops by less than χχχ2
1,(1−α) from its value at the ML estimate

π̂ = y/n.

20. That is

X2
LR = −2(`0 − `1)− 2[`(π0)− `(π̂)] ≤ χχχ2

1,1−α = 3.94. (47)
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Exact Small-Sample Inference
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Exact Small-Sample Inference

1. With modern computational power, it is not necessary to rely on

large-sample approximation for the distribution of statistics such as

π̂.

2. Tests and confidence intervals can use the binomial distribution

directly rather than its normal approximation.

3. Such inferences occur naturally for small samples, but apply for any

n.
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Exact Small-Sample Inference

4. We illustrate by testing H0 : π = 0.5 against HA : π 6= 0.5 for the

survey results, y = 0, with n = 25.

5. We noted that the score statistic equals z = −5.0.

6. The exact p-value for this statistic, based on the null Bin(25, 0.5)

distribution, is

P( | z | ≥ 5.0) = P(Y = 0 or Y = 25) = 0.525 + 0.525 = 0.00000006.

100(1− α)% confidence intervals consists of all π0 for which

p-values exceed α in exact binomial tests.
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Exact Small-Sample Inference

7. The best known interval (Clopper and Person, 1934) uses the tail

method for forming confidence intervals.

8. It requires each one-sided p-value to exceed α/2.
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Exact Small-Sample Inference

9. The lower and upper endpoints are the solutions in π0 to the

equations

n
∑
k=y

(
n
k

)
πk

0(1− π0)
n−k = α/2

and
y

∑
k=0

(
n
k

)
πk

0(1− π0)
n−k = α/2, (48)

except that the lower bound is 0 when y = 0 and he upper bound is

1 when y = n.
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Exact Small-Sample Inference

10. When y = 1, 2, . . . , n− 1 for connections between binomial sums
and the incomplete beta function and related cumulative
distribution functions (cdf’s) of beta and F distribution, the
confidence interval equals

[
1 +

n− y + 1
y F2y,2(n−y+1),α/2

]−1

< π <

[
1 +

n− y + 1
(y + 1) F2(y+1),2(n−y),(1−α/2)

]−1

, (49)

where Fa,b,c denotes the c quantile form the F distribution with

degrees of freedom a and b.

11. When y = 0 with n = 25, the Clopper-Pearson 95% confidence

interval for π is (0, 0.137).
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Exact Small-Sample Inference

12. In principle this approach seems ideal.

13. However, there is a serious complication.

14. Because of discreteness, the actual coverage probability for any π is

at least as large as the nominal confidence level (Casella and Berger,

2001, p.434; Neyman, 1935) and it can be much greater.

15. Similarly, for a test of H0 : π = π0 at a fixed desired size α such as

0.05, it is not usually possible to achieve that size.

16. There is a finite number of possible samples, and hence a finite

number of possible p-values, of which 0.05 may not be one.

c©Jeff Lin, MD., PhD. Discrete Distribution & Inference, 104



Exact Small-Sample Inference

17. In testing H0 with fixed π0, one can pick a particular α that can

occur as a p-value.

18. For interval estimation, however, this is not a option.

19. This is because constructing the interval corresponds to inverting an

entire range of π0 values in H0 : π = π0 and each distinct π0 value

can have its own set of possible p-value; that is, there is not a single

null parameter value π0 as in one test.
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Exact Small-Sample Inference

20. For any fixed parameter value, the actual coverage probability

coverage probability can be much more larger than the nominal

confidence level.

21. The coverage probabilities are too low for the Wald method,

whereas he Clopper-Pearson method errs in the opposite direction.

22. The score method behaves well, except for some π values close to 0

and 1.

23. Its coverage probabilities tend to be near the nominal level, not

being consistently conservative or liberal. this a good method unless

is very close o0 or 1.
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Exact Small-Sample Inference

24. In discrete problems using small-sample distributions, shorter

confidence intervals usually result from inverting a single two-sided

test rather than two one-sided tests.

25. The interval is then the set of parameter values for which the

p-value of a two-sided test exceeds α.
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Exact Small-Sample Inference

26. For the binomial parameter, see Blaker (2000).

27. For observed outcome y0, with Blaker’s approach the p-value is the

minimum of the two one-sided binomial probabilities P(Y ≥ y0) and

P(Y ≤ y0) plus an attainable probability in the other tail that is as

close as possible to, but not greater than, that one-tailed probability.

28. The interval is computationally more complex, although available in

software (Blaker gave S-Plus functions).

29. The result is still conservative, but less than the Clopper-Pearson

interval.
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