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Analysis of Three-Way Contingency Table

1. An important of any research study is the choice of predictor and

control variables.

2. Unless we include relevant variables in the analysis, result will have

limited usefulness.

3. In study relationship between a response variable and an explanatory

variable, we should control covariates that can influence that

relationship.
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Analysis of Three-Way Contingency Table

1. For instance, we are studying effects of passive smoking-the effects on

non-smoker of living with a smoker. We might compare lung cancer

rates between non-smokers whose spouses smoke and non-smokers

whose spouses do not smoke.

2. In doing so, we should control for age, work environment,

socioeconomic status, or other factors that might relate both to

whether one’s spouse smokers and to whether one has lung cancer.
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Death Penalty Example

1. Table 1 (Table 3.1, page 54, Agresti’s Introduction, 1996) is a

2× 2× 2 contingency table–two rows, two columns, and two

layers–from an article that studied effects of racial characteristics on

whether persons convicted of homicide received the death penalty.

2. The 674 subjects classified in Table 1 were the defendants in

indictments involving cases with multiple murders in Florida between

1976 and 1987.
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Death Penalty Example

3. The variables in Table 1 are Y = death penalty verdict, having the

categories (yes, no), X = race of defendant, and Z = race of victims,

each having the categories (white, black).

4. We study the effect of defendant’s race on the death penalty verdict,

treating victims’ race are a control variable.

5. Table 1 has a 2× 2 partial table relating defendant’s rance and the

death penalty verdict at each category of victims’ race.
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Table 1: Death Penalty Verdict by Defendant’s

Race and Victims’ Race

Victims’ Defendant’s Death Penalty Percent

Race Race Yes No Yes

White White 53 424 11.3

Black 11 37 22.9

Black White 0 16 0.0

Bkack 4 139 2.8

Total White 53 430 11.0

Black 15 176 7.9
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Death Penalty: Partial (Conditional) Table

1. For each combination of defendant’s race and victims’ race,

2. Table 1 lists the percentage of defendants who received the death

penalty.

3. These describe the conditional associations.
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Death Penalty: Partial (Conditional) Table

4. When the victims were white, the death penalty was imposed

22.9%− 11.3% = 11.6% more often for black defendants than for

white defendants.

5. When the victims were black, the death penalty was imposed

2.8%more often for black defendants than for white defendants.

Controlling for victims’ race by keeping it fixed, the death penalty

was imposed more often on black defendants than on white

defendants.
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Death Penalty: Mraginal Table

1. The bottom portion of Table 1 displays the marginal table.

2. It results from summing the cell counts in Table 1 over the two

categories of victims’ race, thus combining the two partial tables

e.g., 11 + 4 = 15.

3. Overall, 11.0% of white defendants and 7.9% of black defendants

received the death penalty.

4. Ignoring victims’ race, the death penalty was imposed less often on

black defendants than on white defendants.

5. The association reverses direction compared to the partial tables.
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Death Penalty: Results

1. Why does the association change so much when we ignore versus

control victims’ race?

2. This relates to the nature of the association between victims’ race and

each of the other variables.

3. First, the association between victims’ race and defendant’s race is

extremely strong. The marginal table relating these variables has odds

ratio (467× 143)/(48× 6) = 87.0.
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Death Penalty: Results

4. Second, Table 1 shows that, regardless of defendant’s race, the death

penalty was much more likely when the victims were white than when

the victims were black.

5. So whites are tending to kill whites, and killing whites is more likely to

result in the death penalty.

6. This suggests that the marginal association should show a greater

tendency than the conditional associations for white defendants to

receive the death penalty.

7. In fact, Table 1 has this pattern.
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Death Penalty: Simpson’s paradox

1. The result that a marginal association can have a different direction

from each conditional association is called Simpson’s paradox

(Simpson 1951, Yule. 1903).

2. It applies to quantitative as well as categorical variables.

3. Statisticians commonly use it to caution against imputing causal

effects from an association of X with Y.
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Death Penalty: Simpson’s paradox

4. For instance, when doctors started to observe strong odds ratios

between smoking and lung cancer, statisticians such as R. A. Fisher

warned that some variable e.g., a genetic factor could exist such that

the association would disappear under the relevant control.

5. However, other statisticians such as J. Cornfield showed that with a

very strong XY association, a very strong association must exist

between the confounding variable Z and both X and Y in order for

the effect to disappear or change under the control (Breslow and Day

1980, Sec. 3.4)
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Three-Way Table

1. Suppose that we have three categorical variables, A, B, C, where A
takes possible value 1, 2, . . . I, B takes possible value 1, 2, . . . , J, C
takes possible values 1, 2, . . . , K.

2. We display the distribution of A× B cell counts without considering

the different levels of C using cross sections of the two-way

contingency table A× B, we called it is a A× B marginal table.

(We ignore the existence of C.)

3. When we display the distribution of A× B cell counts at different

levels of C using cross sections of the three-way contingency table.
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Three-Way Table: Partial Table and Marginal Table

1. The cross sections are called partial tables. In the partial table, C is

controlled; that is, its value is held constant.

2. The two-way contingency table obtained by combing the partial tables

is called the A− B marginal table. That table, rather controlling C,

ignore it.

3. Partial table can exhibit quite different associations than marginal

tables.

4. In fact, it can be misleading to analyze only the marginal tables of a

multi-way table.
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Three-Way Table: Notation

1. If we collect the triplet (A, B, C) for each unit in a sample of n units,

then the data can be summarized as a three-dimensional table.

2. Let yijk be the number of units having A = i, B = j, and C = k.

3. Then the vector of cell counts y = (y111, y112, . . . , yI JK)T can be

arranged into a table whose dimensions are I × J × K When all

variables are categorical, a multidimensional contingency table display

the data.
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Three-Way Table: Notation

4. As before, we will use “+” to indicate summation over a subscript; for

example,

yi+k =
J

∑
j=1

yijk (1)

y++k =
I

∑
i=1

J

∑
j=1

yijk (2)

5. If the n units in the sample are i.i.d. (independent identical

distributed), then the vector of cells counts y has multinomial

distribution as

y ∼ Multin(n, πππ), πππ = (π111, π112, . . . , πI JK)T (3)

c©Jeff Lin, MD., PhD. Three-Way Table, 17



Three-Way Table: Notation

1. The data from a three-way table of three variables, A, B, C, is

yijk, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K, where yijk is the number

of sample units observed with A = i, B = j, and C = k.

2. Under the multinomial assumption without other constraints, the ML
estimated probabilities are

p̂ijk = π̂ijk = yijk/n. (4)

3. The expected counts are equal to the observed counts,

p̂ijk =
yijk

n
, µ̂ijk = np̂ijk = yijk (5)
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Three-Way Table: Notation

1. The observed sample proportion (and observed sample count) of each

cell (we oten call it as the saturated model.) always fits the data

perfectly; yielding X2 = G2 = 0 with zero degrees of freedom (df).

2. The saturated model is denoted as (ABC).

3. Fitting a saturated model might not reveal any special structure that

may exist in the relationships among A, B, an C.

4. To investigate these relationships, we will propose simpler models and

perform tests to see whether these simpler models fit the data.
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Three-Way Table: Types of Independence
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Types of Independence

1. Complete Independence

2. Joint Independent

3. Conditional Independence

4. Homogeneous Association

5. Saturated
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Complete Independence
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Types of Independence: Complete Independence

The simplest model that one night propose is

πijk = P(A = i, B = j, C = k) (6)

= P(A = i)P(B = j)P(C = k), (7)

= πi++π+j+π++k, for all i, j, k. (8)
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Complete Independence

Define

αi = P(A = i), i = 1, 2, . . . , I (9)

β j = P(B = j), j = 1, 2, . . . , J (10)

γk = P(C = k), k = 1, 2, . . . , K (11)

so that πijk = αiβ jγk, for all i, j, k. The unknown parameters are

α = (α1, α2, . . . , αI)
T, β = (β1, β2, . . . , β J)

T, γ = (γ1, γ2, . . . , γK)T(12)
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Complete Independence: Sampling Distribution

1. Because each of these vectors must add up to one, the number of free

parameters in the model is (I − 1) + (J − 1) + (K − 1). Notice that

under the complete independent model,

(y1++, y2++, . . . , yI++) ∼ Multin(n, α) (13)

(y+1+, y+2+, . . . , y+J+) ∼ Multin(n, β) (14)

(y++1, y++2, . . . , y++J) ∼ Multin(n, γ) (15)

2. These three vectors are mutually independent.

3. Thus the three parameter vector ααα, βββ, and γγγ can be estimated

independence of one another.
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Complete Independence: Point Estimation

The ML estimates are given by

α̂i = yi++/n, i = 1, 2, . . . , I (16)

β̂ j = y+j+/n, j = 1, 2, . . . , J (17)

γ̂k = y++k/n, k = 1, 2, . . . , K (18)

(19)

Under complete independence, ML estimates of the expected cell

frequencies are mutually independence as

µ̂0
ijk = nα̂iβ̂iγ̂k =

yi++ y+j+ y++k

n2 (20)

The number of free parameters in this model is

(I − 1) + (J − 1) + (K − 1).
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Complete Independence: Testing Hypothesis

1. To test the null hypothesis of full independence against the alternative

of the saturated model, we calculated the expected counts µ̂0
ijk and

find X2 or G2 in the usual manner,

X2 = ∑
i

∑
j

∑
k

(yijk − µ̂0
ijk)

2

µ̂0
ijk

. (21)

G2 = 2 ∑
i

∑
j

∑
k

yijk log
yijk

µ̂0
ijk

(22)

2. The degree of freedom for this test are

v = (I JK − 1)− [(I − 1) + (J − 1) + (K − 1)] (23)
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Complete Independence: Testing Hypothesis

3. In the graph, the lack of connections between the variables indicates

no relationship exist among A, B, and C.

4. This model is expressed as (A, B, C).

5. In terms of odds ratio, the model (A, B, C) implies that if we look at

the marginal table A× B, B× C, and A× C, that all of the odds

ratios in these marginal table are equal to 1.
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Types of Independence: Joint Independence
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Joint Independence

1. Variable C is joint independent of A and B when

πijk = πij+π++k (24)

2. This model indicates linking A and B indicates that A and B are

possible related, but not necessary so.

3. Therefore, the model of complete independence is a special case of

this one. This model is denoted as (AB, C).
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Joint Independence

1. If the model of complete independence (A, B, C) fits a data set, then

the model (AB, C) will also fit, as will (AC, B) and (BC, A). In that

case, we ill prefer to use (A, B, C) because it is more parsimonious.

2. Our goal is to find the simplest model that fit the data.
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Joint Independence: Point Estimation

1. Under, (AB, C),

πijk = P(A = i, B = j)P(C = k) = (αβ)ijγk (25)

where ∑i ∑j (αβ)ij = 1 and ∑k γk = 1.

2. The number of free parameters is (I J − 1) + (K − 1), and their ML
estimates are

(̂αβ)ij
yij+

n
, γ̂k =

y++k
n

, for i, j, and k. (26)

3. The estimated expected frequencies are

µ̂ijk =
yij+ y++k

n
, for i, j, and k. (27)
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Joint Independence: Point Estimation

1. Notice the similarity between this formula and the one for the model

if independence in a two-way table,

µ̂ij =
yi+ y+j

n
(28)

2. This is ordinary two-way independence for C and a new variable

composed of the I J combinations of levels of A and B.

3. If we view A and B as a single categorical variable with I J levels, the

goodness-of-fit test for (AB, C) is equivalent to the test of

independence between the combined variable (AB) and C.
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Types of Independence: Conditional Independence

1. This model indicates that A and B may be related; A and C may be

related, and that B and C may be related, but only through their

mutual associations with A.

2. In other words, any relationship between B and C can be “full

explained” by A. This model is denoted as (AB, AC). So

πjk | i = πj+ | iπ+k | i, for all J and K. (29)
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Conditional Independence: Simpson’s Paradox

1. In terms of odds ratios, this model implies that if we looks at the

B× C tables at each level of A = 1, . . . , I that the odds ratio in these

tables are not significant different from 1.

2. Notice that the odds ratios in the marginal B× C table, collapsed or

summed over A, are not necessarily 1.

3. The conditional BC odds ratios at the levels of A = 1, . . . , I can be

quite different from the marginal odds ratio.

4. In extreme cases, the marginal relationship between B and C can be

in opposite direction from their conditional relationship given A; this

is known as Simpson’s paradox.
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Conditional Independence: Point Estimation

Under the conditional independence model, the probabilities can be

written as

πijk = P(A = i)P(B = j, C = k | A = i) (30)

= P(A = i)P(B = j | A = i)P(C = k | A = i) (31)

=
πij+πi+k

πi++
, for all i, jk (32)

= αiβ j(i)γk(i) (33)

where ∑i αi = 1, ∑j β j(i) = 1 and ∑k γk(i) = 1 for each i. The number

of free parameters is

(I − 1) + I(J − 1) + I(K − 1). (34)
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Conditional Independence: Point Estimation

1. The ML estimates of these parameters are

α̂i = yi++/n, β̂ j(i) = yij+/yi++, γ̂k(i) = yi+k/yi++; (35)

for all i, j, and k.

2. The estimated expected frequencies are

µ̂ijk =
yij+yi+k

yi++
(36)
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Conditional Independence: Point Estimation

1. Notice, again the similarity to the formula for independence in a

two-way table.

2. The test for conditional independence of B and C given A is

equivalent to separating the table by levels of A = 1, . . . , I and

testing for independence within each level.

3. The overall X2 and G2 statistics are found by summing the individual

test statistics for BC independence given A.

4. The total degrees of freedom for this test must be I(J − 1)(K − 1).
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Types of Independence: Saturated (Full) Model

1. The saturated (full) model is (ABC).

2. This model allows th BC odds ratio at each level of A + 1, . . . , I to be

arbitrary.
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Types of Independence: Homogeneous Association
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Homogeneous Association

1. There is a model that is “intermediate” in complexity between

(AB, AC) and (ABC). Recall that (AB, AC) requires the (BC) odds

ratio at each level of A = 1, . . . .I to be equal to one.

2. Suppose that we require the BC odds ratios at each level of A to be

identical, but not necessary one.

3. This model is called homogeneous association.

4. The notation for homogeneous association model is (AB, BC, AC).
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Homogeneous Association

1. The model of homogeneous association says that the conditional

relationship between any pair of variables given the third one is the

same at each level of the third one.

2. That is, there are no interactions.

3. An interaction means that the relationship between two variables

changes across the levels of a third.
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Homogeneous Association

4. This is similar in spirit to the multivariate normal distribution for

continuous variables, which says that the conditional correlation

between any two variables given a third is the same for all values of

the third.

5. Under the model of homogeneous association, there are no close-form

estimate for the cell probabilities.
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Homogeneous Association: Point Emstimation

ML estimates must be computed by an iterative procedure. The most

popular methods are

1. Iterative Proportional Fitting (IPF),

2. Newton-Raphson (NR).
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Marginal versus Conditional Independence

1. Partial associations can be quite different from marginal associations.

The association between B and C at any level of A (given A), is 1, B
and C are conditionally independent, given A.

2. However, this does not imply that B and C are independent when we

ignore A.

3. We can look at the conditional odds ratio of A/B given C and A/C
given B.

c©Jeff Lin, MD., PhD. Three-Way Table, 45



Marginal versus Conditional Independence

1. Conditional independence and marginal independence both hold when

one of the stronger types of independence studied in the previous

subsections.

2. Suppose C is jointly independent of A and B, that is

πijk = πij+π++k. (37)

3. We have seen that this implies conditional independence of A and C.
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Marginal versus Conditional Independence

4. Summing over B on both sides, we obtain

πi+k = πi++π++k (38)

Thus, A and C also exhibit marginal independence.

5. Joint independence of C from A and B (or of A from B and C)

implies A and C are both marginally and conditionally independent.

6. Mutual independence of A, B, and C also implies that A and C are

both marginally and conditionally independent.
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Marginal versus Conditional Independence

7. However, when we know only that B and C are conditionally

independent given A,

πijk = πij+πi+k/πi++ (39)

8. Summing over i on both sides, we obtain

π+jk = ∑
i

(
πij+πi+k/πi++

)
(40)

9. All three terms in the summation involve i, and this does not simplify

to π+j+π++k, marginal independence.
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Three-Way Table: Modeling Strategy
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Modeling Strategy

With three variables, there are nine possible models that we have

discussed.

1. complete independence: (A, B, C)

2. joint independent (two variables independent of a third): (AB, C),
(AC, B), (BC, A).

3. conditional independence: (AB, BC), (AC, BC), (AB, AC)

4. homogeneous association: (AB, BC, AC)

5. saturated: (ABC)
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Modeling Strategy

1. With real data, we may not want to fit all of these models but focus

only those that makes sense.

2. For example, suppose that C can be regarded as a response variable,

an A and B are predictors.

3. In regression, we do not model the relationships among them.

4. Therefore, the simplest model that we may wish to fit is a null model

(AB, C) which says that neither predictor is related to the response.
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Modeling Strategy

1. If the null model does not fit, the we should try (AB, AC), which says

that A is related to C. but B is not.

2. This equivalent to a logistic regression for C with a main effect for A
but no effect for B.

3. We may also try (AB, BC), which is equivalent to a logistic regression

for C with main effect for B but no effect for A.
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Modeling Strategy

1. If neither of those models fit, we may try the model of homogeneous

association (AB, BC, AC), which is equivalent to a logistic regression

for C within main effects for A and for B but no interaction.

2. The saturated model (ABC) is equivalent to a logistic regression for

C with a main effect for A, as a main effect for B and AB interaction.
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Partitioning Chi-Squared Tests
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Partitioning Chi-Squared Tests

1. Let Z denote a standard normal random variable.

2. Z2 has a chi-squared distribution with df = 1.

3. A chi-squared random variable with df = v has representation

Z1
1 + · · ·+ Z2

v, where Z1, . . . , Zv are independent standard normal

variables.
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Partitioning Chi-Squared Tests

4. A chi-squared statistic having df = v has partitionings into

independent chi-squared components—for example, into v
components each having df = 1

5. Conversely, if X2
1 and X2

2 are independent chi-squared random

variables having degrees of freedom v1 and v2, then X2 = X2
1 + X2

2
has a chi-squared distribution with df = v1 + v2.
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Partitioning Chi-Squared Tests

1. Another supplement to a chi-squared test partitions its test statistic

so that the components represent certain aspects of the effects.

2. A partitioning may show that an association reflects primary

differences between certain categories or groupings of categories.
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Partitioning Chi-Squared Tests

1. We begin with a partitioning for the test of independence in a 2× J
tables.

2. We partition G2, which has df = (J − 1), into J − 1 components.

3. The jth component is G2 for a 2× 2 table where the first column

combines columns 1

4. through j of the full table and the second column is column j + 1.
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Partitioning Chi-Squared Tests

5. That is, G2 for testing independence in a 2× J table equals a statistic

that compares the first two columns, plus a statistic that combines

the first two columns and compares them to the third column, and so

on, up to a statistic that combines the first J − 1 columns and

compares them to the last column.

6. Each component statistic has df = 1.
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Partitioning Chi-Squared Tests

1. It might seem more natural to compute G2 for the (j− 1) separate

2× 2 tables that pair each column with a particular one, say the last.

2. However, these component statistics are not independent and do not

sum G2 for the full table.
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Partitioning Chi-Squared Tests: Lancaster (1949)

1. For an I × J table, independent chi-squared components result from

comparing column 1 and 2 and then combing them and comparing

them to column 3, and so on.

2. Each of the J − 1 statistics has df = I − 1.

3. More refined partitions contain (I − 1)(J − 1) statistics, each having

df = 1.

4. One such partitioning (Lancaster 1949) applies to the (I − 1)(J − 1)
separate 2× 2 tables is in Table 2.
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Partitioning Chi-Squared Tests: Lancaster (1949)

Table 2: Lancaster (1949) χχχ2

Partition

∑a<i ∑b<j nab ∑a<i aaj

∑b<j nib nij

for i = 2, . . . , I, and j = 2, . . . , J.
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Partitioning Chi-Squared Tests

Goodman (1968, 1969a, 1971b) and Lancaster (1949, 1969) gave rules

for determining independent components of chi-squared. For forming

subtables, aiming the necessary conditions are the following:

1. The df for the subtables must sum to df for the full table.

2. Each cell count in the full table must be a cell count in one and only

one subtable.

3. Each marginal total of the full table must be a marginal total for one

and only one subtable.
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Partitioning Chi-Squared Tests

1. For a certain partitioning, when the subtable df values sum properly

but G2 values do not, the components are not independent.

2. For the G2 statistic, exact partitioning occur. the Pearson X2 need

not equal the sum of the X2 values for the subtables.

3. It is valid to use X2 statistics for the separate subtables; they simply

need not provide an exact algebraic partitioning of X2 for the full

table.
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Partitioning Chi-Squared Tests

4. When the null hypothesis all hold, X2 does have an asymptotic

equivalence with G2.

5. In addition, when the table has a small counts, in largue-sample

chi-squared tests it is safer to use X2 to study the subtables.
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Limitations of Chi-Squared Tests

1. Chi-squared tests of independence merely indicate the degree of

evidence of association.

2. They are rarely adequate for answering all questions about a data set.

Rather then relying solely on the results of the tests, investigate the

mature of the association:

3. Study residuals, decomposed chi-squared into components, and

estimate parameters such as odds ratios that describe the strength of

association.
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Limitations of Chi-Squared Tests

4. The chi-squared tests also have limitations in the types of data to

which they apply.

5. For instance, they require large samples.

6. Also, the µ̂ij = ni+n+j/n used in X2 and G2 depend on he marginal

totals but not on the order of listing the rows and columns.

7. Thus, X2 and G2 do not change value with arbitrary re-orderings of

rows or of columns.
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Limitations of Chi-Squared Tests

8. This implies that they treat both classifications as nominal .

9. When at least one variable is ordinal, test statistics that utilize the

ordinality are usually more appropriate.
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Why Consider Independence?
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Why Consider Independence?

1. Any idealized structure such as independence is unlikely to hold in any

given particular situation.

2. With large samples it is not surprising to obtain a small p-value.

3. Given this and the limitations just mentioned, why even bother to

consider independence as a possible representation for a joint

distribution?
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Why Consider Independence?

1. One reason refers to the benefits of model parsimony.

2. If the independence model approximates the true probabilities well,

then unless n is very large, the model-based estimates

π̂ij = ni+n+j/n of cell probability tend to be better than the sample

proportions pij = nij/n.

3. The independence ML estimates smooth the sample counts,

somewhat damping the random sampling fluctuations.
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Why Consider Independence?

4. The mean-squared error (MSE) formula

MSE = variance + (bias)2

explains why the independence estimators can have smaller MSE.

5. Although they may be biased, they have smaller variance because they

are based on estimating fewer parameters πi and π+j instead of πij.

6. Hence, MSE can be smaller unless n is so large that the bias term

dominates the variance.
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Stratified Categorical Data:

The (Cochran) Mantel-Haenszel Test
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Example: Coronary Artery Disease

Table 3 are based on a study on coronary artery disease (Koch, Imrery et

al. 1985). The sample is one of convenience since the patients studied

were people who came to clinic and requested an evaluation.
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Example: Coronary Artery Disease

Table 3: Retrospective study: gender, ECG and disease

Disease No Disease

Gender ECG Condition (Cases) (Controls) Total

Female > 0.1 ST depression 8 10 18

Female ≤ 0.1 ST depression 4 11 15

Male > 0.1 ST depression 21 6 27

Male ≤ 0.1 ST depression 9 9 18

Total 42 36 78
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Example: Coronary Artery Disease: ECG vs. Gender

Table 4: Retrospective study: EKG and Gender

Gender

ECG Condition Female Male Total

> 0.1 ST depression 18 27 45

≤ 0.1 ST depression 15 18 33

Total 33 45 78
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Example: ECG and Gender

> # EKG vs. Gender

> EKG.Gender<-matrix(c(18,27,15,18),nrow=2,byrow=T)

> fisher.test(EKG.Gender)

Fisher’s Exact Test for Count Data

data: EKG.Gender

p-value = 0.6502

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.2932842 2.1906132

sample estimates:

odds ratio

0.8023104
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Example: ECG Condition and Coronary Artery Disease

Investigators were interested in whether (electrocardiogram) ECG

measurement was associated with disease status.

Table 5: Retrospective study: ECG and coronary heart

disease

Coronary Artery Disease

ECG Condition Yes (cases) No (controls) Total

> 0.1 ST depression 29 16 45

≤ 0.1 ST depression 13 20 33

Total 42 36 78
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Example: ECG and Coronary Artery Disease

> EKG.CAD<-matrix(c(29,16,13,20),nrow=2,byrow=T)

> fisher.test(EKG.CAD)

Fisher’s Exact Test for Count Data

data: EKG.CAD

p-value = 0.03894

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.003021 7.828855

sample estimates:

odds ratio

2.750314
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Example: Gender and Coronary Artery Disease

Investigators were interested in whether gender was associated with

disease status.

Table 6: Retrospective study: gender and

Coronary Heart Disease

Coronary Artery Disease

Gender Yes (cases) No (controls) Total

Female 12 21 33

Male 30 15 45

Total 42 36 78
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Example: Gender and Coronary Artery Disease

> gender.CAD<-matrix(c(12,21,30,15),nrow=2,byrow=T)

> fisher.test(gender.CAD)

Fisher’s Exact Test for Count Data

data: gender.CAD

p-value = 0.01142

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.09986503 0.80674974

sample estimates:

odds ratio

0.290676
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Example: Coronary Artery Disease: Stratification

Gender was though to be associated with disease status, so investigators

stratified the data into female and male groups.
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Example: Coronary Artery Disease: Female

Table 7: Retrospective study: ECG and Coronary Heart

Disease for Female

Female Coronary Artery Disease

ECG Condition Yes (cases) No (controls) Total

> 0.1 ST depression 8 10 18

≤ 0.1 ST depression 4 11 15

Total 12 21 33
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Example: Female and Coronary Artery Disease

> Female.CAD<-matrix(c(8,10,4,11),nrow=2,byrow=T)

> fisher.test(Female.CAD)

Fisher’s Exact Test for Count Data

data: Female.CAD

p-value = 0.4688

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.4113675 12.9927377

sample estimates:

odds ratio

2.147678

c©Jeff Lin, MD., PhD. Three-Way Table, 84



Example: Coronary Artery Disease: Male

Table 8: Retrospective study: ECG and Coronary Heart

Disease for Male

Male Coronary Artery Disease

ECG Condition Yes (cases) No (controls) Total

> 0.1 ST depression 21 6 27

≤ 0.1 ST depression 9 9 18

Total 30 15 45
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Example: Male and Coronary Artery Disease

> Male.CAD<-matrix(c(21,6,9,9),nrow=2,byrow=T)

> fisher.test(Male.CAD)

Fisher’s Exact Test for Count Data

data: Male.CAD

p-value = 0.1049

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.8034904 15.6456384

sample estimates:

odds ratio

3.395449
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Example: Coronary Artery Disease

1. What’s Wrong?

2. Is ECG associated with CAD?

3. Is Gender associated with CAD?

4. Do female and male have the same odds ratio?

5. Wha’t the “common odds ratio”?
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Stratified Categorical Data:

The (Cochran) Mantel-Haenszel Test
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Confounding Variable

1. A confounding variable is a variable that is associated with both the

disease and the exposure variable.

2. Such a variable must usually be controlled for before disease-exposure

relationship.
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Confounding Variables and Stratification

1. The analysis of disease-exposure relationships in separate sub-groups

of the data, where the sub-groups are defined by one or more

potential confounders, referred to as stratification.

2. The sub-groups themselves are referred to as strata.

3. In general the data will be stratified into k sub-groups according to

one or more confounding variables to make the units within a stratum

as homogeneous as possible.

4. The data for each stratum consist of a 2× 2 contingency table, as in

Table 9, relating exposure to disease.
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Confounding Variables and Stratification

Stratified 2× 2 Table

Table 9: 2× 2 Table of disease and exposure in the ith stratum,

i = 1, 2, . . . , k.

Disease will Disease will Total

develop not develop

Risk factor present

(Exposure: Yes +)
Oi = ai bi ai + bi = n1.i

Risk factor absent

(Exposure: No -)
ci di ci + di = n2.i

Total ai + ci = n.1i bi + di = n.2i ai + bi + ci + di = ni
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Stratified 2× 2 Table

1. Based on Fisher’s exact test within each stratum, the distribution of

ai follows a hypergeometric distribution.

2. The test procedure will be based on a comparison of the observed

number of units in the (1, 1) cell of each stratum (denoted by

Oi = ai) with the expected number of units in that cell (denoted by

Ei).

3. The test procedure is the same regardless of the order of the rows and

columns, that is, which row (or column) is designated as first row (or

column) is arbitrary.
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Mantel-Haenszel Test

The expected value of Oi and variance of Oi is

Ei = E(Oi) =
(ai + bi)(ai + ci)

ni
(41)

Vi = Var(Oi) =
(ai + bi)(ci + di)(ai + ci)(bi + di)

n2
i (ni − 1)

(42)
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Mantel-Haenszel Test for Association

over Different Strata

Mantel-Haenszel Test is used to assess the association between a

dichotomous disease and a dichotomous exposure variable after

controlling for one or more confounding variables.
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Mantel-Haenszel Test for Association

over Different Strata

Under H0, there is no association between disease and exposure, then let

O =
k
∑
i=1

Oi =
k
∑
i=1

ai (43)

E =
k
∑
i=1

Ei =
k
∑
i=1

(ai + bi)(ai + ci)
ni

(44)

V =
k
∑
i=1

Vi =
k
∑
i=1

(ai + bi)(ci + di)(ai + ci)(bi + di)
n2

i (ni − 1)
(45)

X2
MH =

( | O− E | − 0.5)2

V
asym
∼ χχχ2

1 (46)
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Mantel-Haenszel Test for Association

over Different Strata

1. Under H0 X2
MH asymptotically follows chi-squared distribution with 1

degree of freedom.

2. For two-sided test with significance level α, we reject H0 if

X2
MH > χχχ2

1,1−α.

3. p-value = Pr(χχχ2
1 ≥ X2

MH)
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Interaction Effect: Confounder and Effect Modifier

1. We stratify the study population into k strata according to the

confounding variable, confounder C.

2. If the underling (true) odds ratio is different across the k strata, then

there is said to be interaction or effect modification between risk

factor and confounder.

3. Then the confounder C is referred to as an effect modifier.
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Mantel-Haenszel Test:

Chi-square Test for Homogeneity of Odds Ratios over

Different Strata (Woolf’s Method)

1. The Mantel-Haenszel test provides a test of significance of the

relationship between disease and exposure.

2. If we reject the null hypothesis in Mantel-Haenszel test, there exist

association of disease and risk factor.
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Mantel-Haenszel Test:

Chi-square Test for Homogeneity of Odds Ratios over

Different Strata (Woolf’s Method)

1. Let ORi is underling odds ratio in the ith stratum.

2. To test the hypothesis

H0 : OR1 = OR2 = · · · = ORk; (47)

vs. HA : at least two of the ORi are significant different (48)

3. This is to test whether a common odds ratio (homogeneity) exist

when there is association of disease and risk factor given controlling

the confounding factor with stratification.
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Mantel-Haenszel Test:

Chi-square Test for Homogeneity of Odds Ratios

over Different Strata (Woolf’s Method)

The chi-square test for homogeneity is calculated as following:
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Chi-square Test for Homogeneity of Odds Ratios

over Different Strata (Woolf’s Method)

log(ÔRi) = log
(aidi

bici

)
(49)[

Var
(
log(ÔRi)

)]−1
= wi =

(
1
ai

+
1
bi

+
1
ci

+
1
di

)−1
(50)

log OR =
∑k

i=1 wi log(ÔRi)

∑k
i=1 wi

(51)

X2
HOM =

k
∑
i=1

wi (log ÔRi − log OR)2 (52)

X2
HOM

asym
∼ χχχ2

k−1 (53)
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Chi-square Test for Homogeneity of Odds Ratios

over Different Strata (Breslow-Day Method in SAS)

Similar to Woolf’s method
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Mantel-Haenszel Test:

Chi-square Test for Homogeneity of Odds Ratios

over Different Strata (Woolf’s Method)

That is, X2
MOH asymptotically follows chi-squared distribution with

(k− 1) degree of freedom under H0. For two-sided test with

significance level α, we reject H0 : homogeneity of common odds ratio,

if X2
MH > χχχ2

k−1,1−α.
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Mantel-Haenszel Estimator of

the Common Odds Ratio for Stratified Data

1. The Mantel-Haenszel test provides a test of significance of the

relationship between disease and exposure. If we reject the null

hypothesis in Mantel-Haenszel test, there exist association of disease

and risk factor.

2. Then we use chi-square test for homogeneity of odds ratios. If we do

not reject the null hypothesis of common odds ratio across stratum,

we would like to know the common odds ratio.

3. However, chi-square test for homogeneity of odds ratios does not

given a measure of the strength of the association.
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Mantel-Haenszel Estimator of

the Common Odds Ratio for Stratified Data

In general, it is important to test for homogeneity of the stratum-specific

odds ratio. If the true odds ratios are different, then it makes no sense

to obtain a pooled-odds ratio estimate.
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Mantel-Haenszel Estimator of

the Common Odds Ratio for Stratified Data

In a collection of k× 2× 2 contingency tables, where the ith table,

Table 10, corresponding to the ith stratum.

Table 10: Mantel-Haenszel Test: The ith Observed 2× 2 Table

ith Stratum Variable Y
Variable X level 1 level 2 Total

level 1 ai bi ai + bi = n1.i
level 2 ci di ci + di = n2.i
Total a + c = n.1i b + d = n.2i a + b + c + d = n..i = ni
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Common Odds Ratio for Stratified Data

ÔRMH = ∑i(aidi)/ni
∑i(bici)/ni

(54)

Var(log ÔRMH) = ∑ πiRi
2(∑i Ri)2 + ∑(πiSi + QiRi)

2(∑ Ri)(∑ Si)
+ ∑ QiSi

2(∑ Si)2

(55)

where πi =
ai + di

ni
, Qi =

bi + ci
ni

, (56)

Ri =
ai di
ni

, Si =
bi ci
ni

(57)

(1− α)× 100%C.I. :

exp
[

log ÔRMH ± Z1−α/2

√
Var(log ÔRMH)

]
(58)
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Mantel-Haenszel Estimator of the Common Odds

Ratio for Stratified Data

Alternatively, we can use the equation (51) as the common odds ratio

estimator.

log(ÔRi) = log
(aidi

bici

)
(59)[

Var
(
log(ÔRi)

)]−1
= wi =

(
1
ai

+
1
bi

+
1
ci

+
1
di

)−1
(60)

log OR =
∑k

i=1 wi log(ÔRi)

∑k
i=1 wi

(61)

c©Jeff Lin, MD., PhD. Three-Way Table, 108



Example: Coronary Artery Disease

1. For the Table of “Gender and Disease”, Pearson’s Chi-Square Test X2

is 7.035, p-value is 0.008.

2. For female, ECG > 0.1 ST depression and Disease, X2 is 1.117,

p-value is 0.290. OR is 2.2.

3. For male: ECG > 0.1 ST depression and Disease, X2 is 3.750, p-value

is 0.053. OR is 3.5.
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Example: Coronary Artery Disease

4. X2
MH is 4.503 (1 df) and p-value is 0.034.

5. There is association between ECG and disease after controlling gender.

6. X2
HOM is 0.215 (1 df) and p-value is 0.643.

7. A common odds ratio exists between ECG and disease.

8. The common odds ration, ÔRMH, is 2.847, and 95% C.I. is (1.083,

7.482).

c©Jeff Lin, MD., PhD. Three-Way Table, 110



Notes: Stratification

1. The fact that a marginal table (i.e. pool over gender) may exhibit an

association completed different from a partial tables (individual tables

for male and female) is known as Simpson’s Paradox (Simpson

1951).

2. We should analyze the data following the design of original study.
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Example: Coronary Artery Disease

> CAD <-array(c(8, 4, 10, 11,

21, 6, 9, 9,),

dim = c(2, 2, 2),

dimnames = list(

EKG = c(">=0.1 ST Dep", "< 0.1 ST Dep"),

Response = c("Case", "Control"),

Penicillin.Level = c("Female", "Male")))
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Example: Coronary Artery Disease

> CAD

, , Penicillin.Level = Female

Response

EKG Case Control

>=0.1 ST Dep 8 10

< 0.1 ST Dep 4 11

, , Penicillin.Level = Male

Response

EKG Case Control

>=0.1 ST Dep 21 9

< 0.1 ST Dep 6 9
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Example: Coronary Artery Disease

> mantelhaen.test(CAD,correct=FALSE)

Mantel-Haenszel chi-squared test without continuity correction

data: CAD

Mantel-Haenszel X-squared = 4.5026, df = 1, p-value = 0.03384

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.076514 7.527901

sample estimates:

common odds ratio

2.846734
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Example: Coronary Artery Disease

> mantelhaen.test(CAD)

Mantel-Haenszel chi-squared test with continuity correction

data: CAD

Mantel-Haenszel X-squared = 3.5485, df = 1, p-value = 0.0596

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.076514 7.527901

sample estimates:

common odds ratio

2.846734
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Example: Coronary Artery Disease

> mantelhaen.test(CAD, exact=TRUE)

Exact conditional test of independence in 2 x 2 x k tables

data: CAD

S = 29, p-value = 0.05418

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

0.9711574 8.4256184

sample estimates:

common odds ratio

2.790832
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Example: Coronary Artery Disease

> woolf <- function(x) {

x <- x + 1 / 2

k <- dim(x)[3]

or <- apply(x, 3,

function(x)(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

w <- apply(x, 3,

function(x) 1 / sum(1 / x))

1 - pchisq(sum(w * (log(or)

- weighted.mean(log(or), w)) ^ 2), k - 1)

}
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Example: Coronary Artery Disease

> woolf(CAD)

[1] 0.6270651 # p-value
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Example: Coronary Artery Disease

title "Stratified Retrospective Study: kx2x2 Table";

data ca;

input gender $ ECG $ disease $ count ;

cards;

female <0.1 yes 4

female <0.1 no 11

female >=0.1 yes 8

female >=0.1 no 10

male <0.1 yes 9

male <0.1 no 9

male >=0.1 yes 21

male >=0.1 no 6;
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Example: Coronary Artery Disease

proc freq;

weight count;

tables gender*disease / nocol nopct chisq relrisk ;

tables gender*ECG*disease / nocol nopct cmh chisq relrisk;

tables ecg*disease / exact relrisk ;

run;
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Example: Coronary Artery Disease

Table of gender by disease

gender disease

Frequency|

Row Pct |no |yes | Total

---------+--------+--------+

female | 21 | 12 | 33

| 63.64 | 36.36 |

---------+--------+--------+

male | 15 | 30 | 45

| 33.33 | 66.67 |

---------+--------+--------+

Total 36 42 78
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Example: Coronary Artery Disease

Statistics for Table of gender by disease

Statistic DF Value Prob

-------------------------------------------------------

Chi-Square 1 7.0346 0.0080

Likelihood Ratio Chi-Square 1 7.1209 0.0076

Continuity Adj. Chi-Square 1 5.8681 0.0154

Fisher’s Exact Test

----------------------------------

Two-sided Pr <= P 0.0114

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

--------------------------------------------------------

Case-Control (Odds Ratio) 3.5000 1.3646 8.9771
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Example: Coronary Artery Disease

Controlling for gender=female

ECG disease

Frequency|

Row Pct |no |yes | Total

---------+--------+--------+

<0.1 | 11 | 4 | 15

| 73.33 | 26.67 |

---------+--------+--------+

>=0.1 | 10 | 8 | 18

| 55.56 | 44.44 |

---------+--------+--------+

Total 21 12 33
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Example: Coronary Artery Disease

Controlling for gender=female

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 1.1175 0.2905

Fisher’s Exact Test

----------------------------------

Two-sided Pr <= P 0.4688

Type of Study Value 95% Confidence Limits

-------------------------------------------------------

Case-Control (Odds Ratio) 2.2000 0.5036 9.6107
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Example: Coronary Artery Disease

Controlling for gender=male

ECG disease

fREQUENCY|

Row Pct |no |yes | Total

---------+--------+--------+

<0.1 | 9 | 9 | 18

| 50.00 | 50.00 |

---------+--------+--------+

>=0.1 | 6 | 21 | 27

| 22.22 | 77.78 |

---------+--------+--------+

Total 15 30 45
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Example: Coronary Artery Disease

Controlling for gender=male

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 3.7500 0.0528

Fisher’s Exact Test

----------------------------------

Two-sided Pr <= P 0.1049

Type of Study Value 95% Confidence Limits

-------------------------------------------------------

Case-Control (Odds Ratio) 3.5000 0.9587 12.7775
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Example: Coronary Artery Disease

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

---------------------------------------------------------

3 General Association 1 4.5026 0.0338
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Example: Coronary Artery Disease

Type of Study Method Value 95% Confidence Limits

-----------------------------------------------------------

Case-Control Mantel-Haenszel 2.8467 1.0765 7.5279
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Example: Coronary Artery Disease

Breslow-Day Test for

Homogeneity of the Odds Ratios

------------------------------

Chi-Square 0.2155

DF 1

Pr > ChiSq 0.6425

Total Sample Size = 78
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