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Outlines

Statistical Models: systematic and random components

1. Suppose n observations with XXX = (X1, . . . , Xn)T and

YYY = (Y1, . . . , Yn)T of two variables X and Y.

2. yi = α + βx, i = 1, . . . , n.

3. Approximately linear relationship between y & x

4. makes the ŷ = (ŷ1, . . . , ŷn), (or fitted values µ̂ = (µ̂1, . . . , µ̂n)T ),

close to the observed data.
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Modelling: Science and Art

1. All models are wrong; some, though, are more useful than others

2. Not to fall in love with one model to the excluding of alternatives

3. Checks on the fit of a model to the data

4. Any statistical model has its own statistical assumptions
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General Linear Model (GLM)

ANOVA, ANCOVA, Regression

y = XXXβββ + e (1)

e = y−XXXβββ (2)

yi = xT
i βββ + ei (3)

yi ∼ N(xT
i βββ, σ2), i = 1, 2, . . . , n (4)

Minimizing eTe = ∑i e2
i
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Generalized Linear Model (GLIM)

1. Response variable yi ∼ an exponential family distribution

2. E[Yi] = µi

3. ηηη = g(µµµ) = XXXβββ
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GLIM Terminology

1. Random component:

YYY are i.i.d. with

E[YYY] = µµµ and constant variance Var[YYY] = σ2(θ, φ)

2. Systematic component:

Covariates: x1, x2, . . . , xp.

Linear predictor: ηηη

Relationship: ηηη = ∑
p
1 xjβ j

3. Link function: g(µµµ) = ηηη
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Types of Link Functions

1. logit: η = log
(

µ
1−µ

)
2. probit: η = Φ−1(µ)

3. complementary log-log: η = log
[
− log

(
1− µ

)]
4. power family:

η =


µλ−1

λ ;

log µ; as λ → 0
or η =

µλ; λ 6= 0,

log µ; λ = 0.
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Mean and Variance Functions of Exponential Family

1. YYY has a distribution in the exponential family,

fY(y; θ, φ) = exp
[

yθ − b(θ)
a(φ)

+ c(y, φ)
]

(5)

2. θ: canonical parameter

3. b(θ): cumulant function
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Mean and Variance Functions of Exponential Family

Normal distribution

fY(y; θ, φ) =
1√

2πσ2
exp

[
−(y− µ)2

2σ2

]
(6)

= exp
[
(yµ− µ2/2)

σ2 − 1
2

(y2

σ2 + log(2πσ2)
)]

so θ = µ , φ = σ2, and

a(φ) = φ, b(θ) =
θ2

2
, c(y, φ) = −1

2

(y2

σ2 + log(2πσ2)
)
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Mean and Variance Functions of Exponential Family

MLE and UMVUE

`̀̀(θ, φ; y) = log fY(y; θ, φ) =
[

yθ − b(θ)
a(φ)

+ c(y, φ)
]

,

E
(∂`̀̀

∂θ

)
= 0 (7)

E
(∂2`̀̀

∂θ2

)
+ E

(∂`̀̀

∂θ

)2
= 0 (8)

−E
(∂2`̀̀

∂θ2

)
= E

(∂`̀̀

∂θ

)2
(9)
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Mean and Variance Functions of Exponential Family

`̀̀(θ, φ; y) =
[

yθ − b(θ)
a(φ)

+ c(y, φ)
]

, (10)

∂`̀̀

∂θ
=

y− b′(θ)
a(φ)

≡ 0 (11)

E

(
∂`̀̀

∂θ

)
=

µ− b′(θ)
a(φ)

≡ 0 (12)

∂2`̀̀

∂θ2 =
−b′′(θ)

a(φ)
(13)

E
(∂`̀̀

∂θ

)2
= E

(y− b′(θ)
a(φ)

)2
=

Var[Y]
a2(φ)

(14)
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Mean and Variance Functions of Exponential Family

E[Y] = µ = b′(θ) (15)

−b′′(θ)
a(φ)

+
Var[Y]
a2(φ)

≡ 0 (16)

Var[Y] = b′′(θ)a(φ) = V(µ) (17)

a(φ): common form a(φ) = φ
w = σ2

w
φ = σ2: dispersion parameter

w: prior weight
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Canonical Links

Sufficient statistic equal in dimension of βββ such that θ = η

Normal η = µ

Poisson η = log µ

Binomial η = log[π/(1− π)]
Gamma η = µ−1

For the canonical links, the sufficient statistic is XXXTYYY
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Common Univariate Distribution

Table 1: Common Exponential Family Distribution

Normal Poisson Binomial Gamma

Notation N(µ, σ2) P(µ) Bin(n, π)/n G(µ, v)
Dispersion: φ φ = σ2 1 1/n φ = v−1

Cumulant function: b(θ) θ2/2 exp(θ) log(1 + eθ) − log(−θ)

c(y; φ) −1
2

(
y2

φ + log(2πφ)
)

− log y log ( n
ny) v log(vy)− log y− log Γ(v)

µ(θ) = E(Y) θ exp(θ) eθ/(1 + eθ) −1/θ

Canonical link: θ(µ) identity log logit reciprocal

Variance function: V(µ) 1 µ µ(1− µ) µ2
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Likelihood Equations

f (yi; θi, φ) = exp
[

yiθi − b(θi)
a(φ)

+ c(yi, φ)
]

(18)

`̀̀(βββ) = ∑
i

log f (yi; θi, φ) = ∑
i

`i(βββ) (19)

To obtain the likelihood equations, we calculate

∂`i
∂β j

=
∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂β j

(20)
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Likelihood Equations

Since µi = b′(θ) and Var(Yi) = b′′(θi)a(φ), then

∂`i
∂θi

=
yi − b′(θi)

a(φ)
=

yi − µi
a(φ)

(21)

∂µi
∂θi

= b′′(θi) =
Var(Yi)

a(φ)
(22)

Also , since ηi = ∑j β jxij,

∂ηi
∂β j

= xij (23)
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Likelihood Equations

Finally, ηi = g(µi),
and ∂µi/∂ηi depends on link function

In summary,

∂`i
∂β j

=
(yi − µi)

a(φ)
a(φ)

Var(Yi)
∂µi
∂ηi

xij (24)

Likelihood Equations

C
∑
i=1

(yi − µi) xij

Var(Yi)
∂µi
∂ηi

= 0, j = 1, . . . p. (25)
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Likelihood Equations

Fisher’s information matrix:

III = −E

(
∂2`i

∂βh∂β j

)
= −E

(
∂`i
∂βh

∂`i
∂β j

)
(26)

= −E

[
(Yi − µi)xih

Var(Yi)
∂µi
∂ηi

(Yi − µi)xij

Var(Yi)
∂µi
∂ηi

]
(27)

=
−xihxij

Var(Yi)

(
∂µi
∂ηi

)2
so that (28)

III = E

(
∂2`̀̀(βββ)
∂βh∂β j

)
= −

C
∑
i=1

xihxij

Var(Yi)

(
∂µi
∂ηi

)2
(29)
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Likelihood Equations

The Fisher’s information matrix III, which has elements

III = E

[−∂2`̀̀(βββ)
∂βh∂β j

]
= XXXTWWWXXX (30)

where WWW is the diagonal matrix with elements

wi =

(
∂µi/∂ηi

)2

Var(Yi)
(31)

on the main diagonal.
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Estimation

Newton-Raphson method,

βββ(m+1) = βββ(m) + (III(m))−1UUU(m) (32)

III is the sample information matrix having elements

∂2`̀̀(βββ)/∂βh∂β j, (33)

UUU is the score vector having elements

∂`̀̀(βββ)/∂β j, (34)

III(m) and UUU(m) are III and UUU evaluated at βββ = βββ(m).
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Estimation

Fisher scoring method

βββ(m+1) = βββ(m) + (III(m))−1UUU(m) (35)

or III(m)βββ(m+1) = III(m)βββ(m) +UUU(m) (36)

where III(m) is the mth approximation for the estimated Fisher’s

information matrix.

III(m) has elements - E[∂2`̀̀(βββ)/∂βh∂β j],
evaluated at βββ(m).
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Estimation

Recall: III(m)βββ(m+1) = III(m)βββ(m) +UUU(m) (37)

The right-hand side of (37) is the vector elements

∑
j

[
∑
i

µi
xihxij

Var(Yi)

(
∂µi
∂ηi

)2
β
(m)
j

]
+ ∑

i

(yi − µ
(m)
i )xih

Var(Yi)

(
∂µi
∂ηi

)
where µi and (∂µi/∂ηi) are evaluated at βββ(m).
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Estimation

Thus; III(m)βββ(m) +UUU(m) = XXXTWWW(m)z(m), (38)

where WWW(m) is WWW evaluated at βββ(m) and z(m) has elements

z(m)
i = ∑

j
xijβ

(m)
j + (yi − µ

(m)
i )

(
∂η

(m)
i

∂µ
(m)
i

)
(39)

= η
(m)
i + (yi − µ

(m)
i )

(
∂η

(m)
i

∂µ
(m)
i

)
(40)
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Estimation

Fisher scoring have form(
XXXT WWW(m) XXX

)
βββ(m+1) = XXXT WWW(m) z(m). (41)

The equations have solution

βββ(m+1) =
(

XXXT WWW(m) XXX
)−1

XXXT WWW(m) z(m). (42)

The vector z in this formulation is a linearized form of the link function

a µµµ, evaluated at y,

g(yi) ≈ g(µi) + (yi − µi)g′(µi) + · · · (43)

≈ ηi + (yi − µi)(∂ηi/∂µi) = zi
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ML Estimation:

Iterative Re-Weighted Least Squares (IRWLS)

This zi “adjusted” or “working” dependent variable z has ith element

approximated by z(m)
i for the mth cycle of the iterative scheme.

βββ(m+1) =
(

XXXT WWW(m) XXX
)−1

XXXT WWW(m) z(m). (44)

We regress z(m) on the XXX with weight WWW(m) to obtained a new estimate

βββ(m+1). This estimate yields a new linear predictor value

ηηη(m+1) = XXXβββ(m+1) and a new-adjusted-dependent-variable value

z(m+1) for the next cycle.

c©Jeff Lin, MD., PhD. Intro to GLIM, 25



ML Estimation

The asymptotic covariance matrix of β̂ββ is the inverse of the information

matrix, estimated by

Ĉov(β̂ββ) =
(

XXXT ŴWW XXX
)−1

(45)

where ŴWW is evaluated at β̂ββ. The form of WWW depends on the link chosen

for the model.
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Simplification for Canonical Links

ηi = θi = ∑
j

xijβ j (46)

when a(φ) in the likelihood function is identical for all observations, the

kernel of the log likelihood is ∑ yiθi, which simplifies to

∑
i

yi

(
∑

j
xijβ j

)
= ∑

j
β j

(
∑
i

yixij

)
(47)

Sufficient statistics for estimating βββ in the GLIM are then

∑
i

yixij, j = 1, . . . , p (48)
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Simplification for Canonical Links

For the canonical link,

∂µi
∂ηi

=
∂µi
∂θi

=
∂b′(θi)

∂θi
= b′′(θi) (49)

so we simplify the likelihood equation as

∂`i
∂β j

=
(yi − µi)

a(φ)
a(φ)

Var(Yi)
∂µi
∂ηi

xij (50)

=
(yi − µi)
Var(Yi)

b′′(θi) xij (51)

=
(yi − µi)xij

a(φ)
(52)
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Simplification for Canonical Links

The second derivatives of the log likelihood

∂2`i
∂βh∂β j

= −
xij

a(φ)

(
∂µi
∂βh

)
(53)

These do not depend on the observations yi, so

∂2`̀̀(βββ)
∂βh∂β j

= E

[
∂2`̀̀(βββ)
∂βh∂β j

]
=⇒=⇒=⇒ III = III (54)

The Newton-Raphson and Fisher scoring algorithm are identical.
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Goodness-of-Fit Tests

A saturated GLIM has many parameters as observations, giving a

perfect fit. (vs. nested unsaturated (reduced) model)

• Let θ̃ denote the estimate of θ for all the saturated model

• Let θ̂ denote the estimate of θ for the reduced model

• Then the ratio

− 2 log
(

maximum likelihood under reduced model

maximum likelihood under saturated model

)
describes lack of fit.
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Goodness-of-Fit

When the random component has a(φ) = φ/w, this measure equals

−2 log(likelihood ratio)

= 2 ∑ wi

[
yi(θ̃i − θ̂)− (b(θ̃)− b(θ̂))

φ

]
(55)

=
D(y; µ̂µµ)

φ
(56)(D(y;µ̂µµ)

φ

)
is called the scaled deviance.

D(y; µ̂µµ) is called the deviance.

The greater the scaled deviance, the poorer the fit.
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Goodness-of-Fit Tests

For two models, when the second is a special case of the first, the

difference

D(y; µ̂µµ
2
)− D(y; µ̂µµ

1
)

= 2 ∑ wi

[
yi(θ̂1i − θ̂2i)−

(
b(θ̂1i − b(θ̂2i)

)]
∼ χχχ2 (57)

also has the form of the deviance.

Under regular conditions, the difference in scaled deviances has

approximately a chi-squared distribution, with degrees of freedom

equal to the difference between the number of parameters in the two

models.
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Testing Hypothesis

βββ = (βββT
1 , βββT

2 )T where βββ1 is the q× 1 vector of coefficients of interest

and βββ2 is the (p− q)× 1 vector of other covariate coefficients.

Also we partition the information matrix into q and (p− q) rows and

columns as follows:

III(βββ)p×p =

(
III11(βββ) III12(βββ)
III21(βββ) III22(βββ)

)
(58)

where [IIIrs(βββ)] =
(
−

∂2`̀̀(βββ)
∂βr∂βs

)
, r, s = 1, . . . p.
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Testing Hypothesis

Let

III−1(βββ) =

(
III11(βββ) III12(βββ)
III21(βββ) III22(βββ)

)
(59)

be the partition of its inverse.

Let β̂ββ(p×1) = (β̂ββ
T
1

, β̂ββ
T
2
)T be the partitioned maximum likelihood

estimate for βββ.
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Testing Hypothesis

H0 : βββ1 = βββ01 vs. HA : βββ1 6= βββ01

1. The Wald test statistic has the form

X2
W = (β̂ββ

1
− βββ01)

T [III11(β̂ββ)]−1 (β̂ββ
1
− βββ01) ∼ χχχ2

q (60)

Note that this statistic depends upon the entire vector β̂ββ in the inverse

information calculation.
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Testing Hypothesis

H0 : βββ1 = βββ01 vs. HA : βββ1 6= βββ01

2. The Likelihood ratio test statistic is

X2
LR = 2 { `̀̀(β̂ββ)− `̀̀(βββ

01
, β̂ββ

2
(βββ01)) } ∼ χχχ2

q (61)

where β̂ββ
2
(βββ01) be the maximum partial likelihood estimate of βββ2 with

βββ1 fixed at βββ
01

.
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Testing Hypothesis

H0 : βββ1 = βββ01 vs. HA : βββ1 6= βββ01

3. The score test statistic is

X2
SC = UUU1[βββ01, β̂ββ

2
(βββ01)]

T [III11[βββ, β̂ββ
2
(βββ01)] UUU1[βββ01, β̂ββ

2
(βββ01)]

∼ χχχ2
q (62)

where UUU1[βββ01, β̂ββ
2
(βββ01)] is the (q× 1) of scores for βββ1, evaluated at the

hypothesized value of βββ01 and at the restricted partial maximum

likelihood estimator for βββ2.
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Testing Hypothesis

Asymptotic, as n → ∞ and m → ∞, all three of these statistics have an

approximate chi-squared distribution with q degree of freedom, when the

null hypothesis is true.
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Processes in Model Fitting of GLIM

1. Model selection

2. Parameter estimation

3. Prediction of future values

We must anticipate that, cluster around the “best” model will be a set

of alternatives almost as good and not statistically distinguishable.
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Model Selection

1. Assume independent (or at least uncorrelated) observations

2. Error structure: a single error term in the model

3. Scale depends on the purpose

4. Additivity effect

5. Choice of independent (XXX) variables (or covariates)
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Estimation in Model Fitting

1. Maximizing the likelihood or log likelihood

2. Minimize the goodness-of-fit criterion

D?(y; µµµ) = 2[`̀̀(y; y)− `̀̀(µµµ, y)] (63)

3. D?(y; µ̂µµ) the scaled deviance

For normal-theory linear regression models with known variance σ2, th

deviance is identical to the residual of sum of squares and minimum

deviance is synonymous with least squares.
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Prediction in Model Fitting

1. Prediction

2. Calibration
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Snoring and Heart Disease Example

1. Table 2 is from an epidemiological survey of 2484 subjects to

investigate snoring as a risk factor for heart disease.

2. Those surveyed were classified according to their spouses’ report how

much they snored.

3. The model states that the probability of heart disease π(x) is how

much they snored related to the level of snoring x.
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Snoring and Heart Disease Example

1. We treat the rows of the table as independent binomial samples with

that probability as the parameter.

2. We use score (0, 2, 4, 5) for the snoring categories, treating the last

two levels as closer than the other adjacent.
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Snoring and Heart Disease Example

Table 2: Relationship between

Snoring and Heart Disease

Heart Disease

Snoring yes No

Never 24 1355

Occasionally 35 603

nearly every night 21 192

Every night 30 224
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Linear Probability Model

1. One approach to modelling the effect of X uses the form of ordinary

regression, by which the expected value of Y is a linear function of X.

The model

π(x) = α + βx (64)

is called a linear probability model, because the probability of

success changes linearly in x.

2. The parameter β represents the change in the probability per unit

change in x.

3. This is a GLIM with binomial random component and identity link

function.
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Linear Probability Model: Disadvantages

1. Unfortunately, this model has a major structural defect.

2. Probabilities fall between 0 and 1, whereas linear functions take values

over the entire real line.

3. This model can be valid over a finite range of x values.
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Linear Probability Model: Disadvantages

1. It looks like an ordinary regression, least squares estimators of the

model parameters are not optimal.

2. The variance of the binary outcome for each subject,

Var(Y) = π(x)[1− π(x)], is not constant for all x, but rather

depends on x through its influence on π(x).

3. Because of the non-constant variance, maximum likelihood (ML)

estimators for this model, like most GLIM, can have smaller standard

errors than least squares estimators.
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Linear Probability Model: Snoring Data

1. For the snoring data the linear probability model is

π̂(x) = 0.0172 + 0.0198x. (65)

2. The estimated probability of heart disease is about 0.02 for

nonsnorers, it increases 2(0.0198) = 0.04 for occasional snores.

3. The standard error of the slope estimate of 0.0198equals 0.0028.

c©Jeff Lin, MD., PhD. Intro to GLIM, 49



Logistic Regression Model

1. In practice, nonlinear relationships between π(x) and x are often

monotonic, with π(x) increasing continuously as x increases, or π(x)
decreasing continuously as x increases.

2. The S-shaped curves displayed are often realistic shapes for the

relationship.
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Figure 1: Logistic Regression Function
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Logistic Regression Model

1. The most important function having this shape has the model form

log
( π(x)

1− π(x)

)
= α + βx. (66)
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Logistic Regression Model

1. This is called the logistic regression function, and is often called

logit model.

2. In GLIM ,the random component for the (success, failure)

determinations is binomial.

3. The link function is the logit transformation log[π/(1− π)],
symbolized by logit (π).

4. The logit is the natural parameter of the binomial distribution, so the

logit link is its canonical link.
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Logistic Regression Model: Snoring Data

1. For the snoring data the logistic regression model is

logit [π̂(x)] = −3.87 + 0.397x. (67)

2. This gives a model of

logit[π(x)] = log
( π(x)

1− π(x)

)
= α + βx, (68)

where x = snore with ML estimates α = .3.87 and β = 0.397.
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Logistic Regression Model: Snoring Data

1. The positive value of β̂ = 0.40 reflects the increased chance of heart

disease at higher levels of snoring.

2. Since π(x) = exp(α+βx)
1 exp(α+βx), the estimated probability of heart disease

is about 0.02 for nonsnorers, it increases 2(0.0198) = 0.04 for

occasional snores.
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Tolerance Regression Model

1. Let X denote random variable, and let x denote a potential value for

X.

2. The cumulative distribution function (cdf) F(x) for X is defined as

F(x) = P(X ≤ x), −∞ < x < ∞. (69)

3. Such a function, plotted as a function of x, has appearance, like

S-shaped.
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Tolerance Regression Model

1. As x increases, F(x) increases gradually from 0 to 1, since P(X ≤ x)
increases as x increases.

2. This subsets a class of models for binary responses whereby the

dependence of π(x) on x has form

π(x) = F(x), (70)

where F is a cdf for some distribution.
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Tolerance Regression Model

1. The logistic regression curve has this form.

2. When β > 0, F(x) is the cdf of a two-parameter logistic distribution.

3. When β < 0, the formula for 1−π(x) has the logistic cdf appearance.

4. Each choice of α and of β > 0 corresponds distribution with a

symmetric,bell shape.

5. In fact, it looks similar to a normal distribution but with slightly

thicker tail. Model from (70) occurs naturally when a tolerance

distribution applies to subjects’ response.
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Tolerance Regression Model

1. For instance, in a toxicology study, suppose that researchers spray an

insectide at various dosage levels on batches of mosquitoes.

2. For each mosquito, the response is whether it dies.

3. Each mosquito may have a certain tolerance to the insecticide, such

that it dies if the dosage level exceeds its tolerance and survives if the

dosage level is less than its tolerance
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Tolerance Regression Model

1. Tolerance would vary among mosquitoes.

2. If a cdf F describes the distribution of tolerances, then the model for

the probability π(x) of death at dosage level x necessarily has form

(70).

c©Jeff Lin, MD., PhD. Intro to GLIM, 60



Probit Regression Model

1. When F is the cdf of a normal distribution, model type (70) is called

the probit model.

2. The link function for the model is then called the probit link.

3. The probit model has alternative expression

probit [π(x)] = α + βx. (71)

4. The probit link applied to a probability π(x) transforms it to the

standard normal z-score at which the left-tail probability equal to

π(x).

c©Jeff Lin, MD., PhD. Intro to GLIM, 61



Probit Regression Model

1. For instance, probit (0.05) = −1.645, probit (0.5) = 0,

probit (0.95) = 1.645, and probit (0.975) = 1.96.

2. The probit model is a GLM with binomial random component and

probit link.
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Probit Regression Model

1. For the snoring data the probit regression model is

probit [π̂(x)] = −2.061 + 0.188x. (72)

2. At snoring level x = 0, the fitted probit equals

−2.061 + 0188(0) = −2.061.

3. The fitted probability π̂(x) is the left-tail probability for the standard

normal distribution at −2.061, which equals 0.02.

4. At snoring level x = 5, the fitted probability equals

−2.061 + 0188(5) = −1.12, which corresponding to a fitted

probability 0.131.
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Probit Regression Model

1. For practical purposes, probit and logistic regression curves Look the

same.

2. It is rare, and requires enormous sample sizes, to find data for which a

logistic regression model fits well but the probit model fits poorly, or

conversely.

3. When both model fit well, slope estimates in logistic regression

models are roughly about 1.6− 2.0 times those in probit model.
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Probit Regression Model

1. The probit transform maps π(x) so that the regression curve for π(x)
(or 1− π(x)), when β < 0 has appearance of the normal cdf with

mean −α
β and standard deviation σ = 1

|β|.

2. For the snoring data, the probit fit corresponds to a normal cdf having

mean of − α̂
β̂

= 2.061
0.188 = 11.0 and standard deviation of

1
|β| = 1

0.188 = 5.3.
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Probit Regression Model

1. The predicted probability of heart disease equals 1
2 at snoring level

x = 11.0; that is x = 11.0 has a fitted probit

−2.061 + 0.188(11) = 0, which is the z-score corresponding to a

left-tail probability of 1
2.

2. The fitted probit value of −2.061 at x = 0 means that 0 is 2.06

standard deviations below the mean of a normal distribution with

mean 11.0 and standard deviation 5.3.

3. Since snoring level is restricted to the range 0− 5, for these data, well

below 11.0, then fitted probability over this range are quite small.
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Figure 2: Predicted probabilities for logistic, probit and linear regression

models.
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Poisson Regression Model

1. The Poission distribution has a ppositive mean, it is more common to

model the log of the mean.

2. Like the linear predictor α + βx, the log of the mean can take any real

value.

3. The log mean is the natural parameter for the poisson distribution,

and the log link is the canonical link with a Poisson random

component.

4. A Poisson loglinear model is a GLIM that assume a Poisson

distribution for Y and uses the log link.
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Poisson Regression Model

1. Let µ denote the expected value for a Poisson variate, Y, and let X
denote an explanatory variable.

2. The Poisson loglinear model has form

log(µ) = α + βx. (73)

3. For this model, the man satisfies the exponential relationship

µ = exp(α + βx) = eα(eβ)x. (74)
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Poisson Regression Model

1. A one-unit increase in X has a multiplicative impact of eβ on µ.

2. The mean of Y at x = 1 equals the mean of Y at x multiplied by eβ.

3. If β = 0, then eβ = e0 = 1 and the multiplicative factor is 1; that is,

the mean of Y does not changes as X changes.

4. If β > o, then eβ > 1, and the mean of Y increases as X increases.

5. If β < o, then eβ < 1, and the mean of Y decreases as X increases.
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Horseshoe Crab Data

1. Table 3 (in file crab.txt) is a study of nesting horseshoe crabs is that

each female horseshoe crab had a male crab resident in her nest.

2. The study investigated factors affecting whether the female crab had

any other males, called satellites, residing nearby.

3. The response outcome for each female crab is her number of satellites.

4. Explanatory variables are the female crab’s color, spine condition,

carapace width, and weight.

5. This data set comes from a study on 173 female horseshoe crabs.

c©Jeff Lin, MD., PhD. Intro to GLIM, 71



Horseshoe Crab Data

Table 3: Variables descriptions of Crab Data

Variable Description

C = color (light-medium, medium, dark-medium)

S = spine condition (both good, one worn or broken, both broken)

W = width of carapace in cm

Wt = weight in kg

Sa = number of satellites (male residing nearby)
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Horseshoe Crab Data

1. Figure 3 plots the response counts of satellites against width, with

numbered symbols indicating the number of observations at each

point.

2. The substantial variability makes it difficult to discern a clear trend.
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Crab Data: satellites by width of female crab
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Figure 3: Number of satellites by width of female crab.
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Horseshoe Crab Data

1. To get a clear picture, we grouped the female crabs into width

categories (≤ 23.25, 23.25− 24.25, 24.25− 25.25, 25.25−
26.25, 26.25− 27.25, 27.25− 28.25, 28.25− 29.25, > 29.25) and

calculated the sample mean number of satellites for female crabs in

each category.

2. Figure 4 plots these sample mean against the sample mean width in

each category.
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Smoothings of crab counts
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Figure 4: Number of satellites by width of female crab.
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Poisson Model: Horseshoe Crab Data

1. The Goal of this study was to find a model for the number of

satellites.

2. Let µ denote the expected number of satellites for a female crab, and

let x denote her width.

3. Assuming that the number of satellites has a Poisson distribution, we

get a model (73) (using the log link) of

log(µ) = α + βx, (75)

where α = −3.305 and β = 0.164.
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Poisson Model: Horseshoe Crab Data

1. The effect β̂ = 0.164 of width has an asymptotic (large-sample)

standard error [s.e. = 0.020.

2. Since β̂ > 0, width has a positive estimated effect on the number of

satellites.
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Poisson Model: Horseshoe Crab Data

1. The model fitted value at any width level is an estimated mean

number of satellites, µ̂.

2. The fitted value, µ̂ from µ̂ = exp(α̂ + β̂x), at the mean width of

x = 26.3 is

µ̂ = exp(α̂ + β̂x) = exp[−3.305 + 0.164(26.3)] = 2.74. (76)
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Poisson Model: Horseshoe Crab Data

1. For this model, exp[β̂] = exp[0.164] = 1.18 represents the

multiplicative effect on the fitted value for each 1-unit increases in x.

2. For instance, the fitted value at x = 27.3 = 26.3 + 1 is

exp[−3.305 + 0.164(27.3)] = 3.23, which equals 1.18× 2.74 = 3.23.

3. A 1-cm increase in width yields an 18% increase in the estimated

mean number of satellites.
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Poisson Model: Horseshoe Crab Data

1. Figure 4 shows that E(Y) may grow approximately linearly with width.

2. This suggests the Poisson GLIM identity link.

3. It has ML fit

µ = α + βx, (77)

where α = −11.525 and β = 0.55(s.e. = 0.058).
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Poisson Model: Horseshoe Crab Data

1. The effect of X on µ in this model is additive, rather than

multiplicative.

2. A 1-cm increase in width has a predicted increase of β̂ = 0.55 in the

expected number of satellites.

3. For instance, the fitted value at the mean width of x = 26.3 is

µ̂ = −11.53 + 0.55(26.3) = 2.93; at x = 27.3, it is

2.93 + 0.55 = 3.48.
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Poisson Model: Horseshoe Crab Data

1. The fitted value are positive at all widths observed in the sample, and

the model provides a simple description of the effect of width on the

number of satellites:

2. Approximately 2 cm increase in width give an additional satellite male.

c©Jeff Lin, MD., PhD. Intro to GLIM, 83



Poisson Model: Horseshoe Crab Data

1. A comparison of the two models’ predictions, Figure 5 plots µ̂ against

width for the models with log link and identity link.

2. Although they diverge somewhat for relatively small and large widths,

they provide similar predictions over the width range in which most

observations occur.
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Compare log and identity link for Crab Data
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Figure 5: Estimated mean number of satellites for log and identity links

for Crab Data.
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