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Analysis of One-Way Table: Chi-square

Goodness-Of-Fit Test

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 2



Example: Medelian Law of Genetics

1. Mendelian theory of genetics

2. Shape and color of a certain pea be classified into four groups

“round and yellow”, “round and green”, “angular and yellow” and

“angular and green”

3. According to the ratio 9/3/3/1
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Example: Medelian Law of Genetics

For an experiment with n = 556 peas, the following Table 1 were

observed. We are interested in that: is there good agreement between

the observed experiment number and the expected ratio 9/3/3/1?

Table 1: Medelian law of genetics: observed data

Shape and Color Observed Expected

Number = Oi Number = Ei = n× π0
i

Round and yellow 315 312.75 = 556× 9/16
Round and green 108 104.25 = 556× 3/16
Angular and yellow 101 104.75 = 556× 3/16
Angular and green 32 34.75 = 556× 1/16
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Example: Medelian Law of Genetics

Assume that these measurements came from an underlying known

discrete probability distribution 9/16, 3/16, 3/16, 1/16. How can the

validity of this assumption be tested?

1. Suppose there are k categories of a discrete random variable.

2. Total n observations

3. Oi: observed numbers of the ith category

4. Ei: expected numbers of the ith category based on the null

hypothesis probability distribution with proportion π0
i in ith

category, for i = 1, 2, . . . , k.
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Notation

Ei = n× π0
i ; (1)

k
∑
i=1

π0
i = 1; i = 1, 2, . . . k. (2)

The null hypothesis and alternative hypothesis are

H0 : πi = π0
i ; i = 1, 2 . . . , k (3)

versus HA : πi 6= π0
i for at least one of i, i = 1, 2, . . . , k. (4)
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Chi-square Goodness-Of-Fit Test for One-Way Table

1. The observed sample statistic, X2, is

X2
GOF =

k
∑
i=1

(Oi − Ei)2

Ei

asym
∼ χχχ2

k−1. (5)

2. X2
GOF asymptotically follows chi-squared distribution with k− 1

degree of freedom.

3. The approximated p-value is

p− value = P(χχχ2
k−1 ≥ X2

GOF). (6)

4. The test is usually used only if n× π0
i ≥ 5, for i = 1, 2, . . . , k.
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Example: Medelian Law of Genetics

1. The observed sample statistics X2
GOF is

X2
GOF =

(315− 312.75)2

312.75
+

(108− 104.25)2

104.25

+
(101− 104.25)2

104.25
+

(32− 34.75)2

34.75
= 0.470. (7)

2. The observed X2
GOF = 0.47 is χχχ2 distributed with 4− 1 = 3 degree

of freedom.

3. p-value is 0.9254. (A “huge” p-value!)

4. There is good agreement with the null hypothesis; that is a good fit

of the data to the null hypothesis probability distribution.

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 8



Example: Medelian Law of Genetics with R

> obs.i<-c(315,108,101,32)

> p.null<-c(9,3,3,1)

> chisq.test(obs.i,p=p.null,rescale.p=TRUE)

Chi-squared test for given probabilities

data: obs.i

X-squared = 0.47, df = 3, p-value = 0.9254

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 9



Example: Medelian Law of Genetics with SAS

data medgen ;

input type n @@ ;

cards;

1 315

2 108

3 101

4 32

run;
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Example: Medelian Law of Genetics with SAS

title1 "FREQ: One-Way Chi-Square Goodness of Fit Test";

title2 "Mendelian genetics data: use

TESTP=(0.5625 0.1875 0.0625)" ;

proc freq data=medgen order=data ;

tables type /

TESTP=(0.5625 0.1875 0.1875 0.0625) chisq ;

weight n ;

run;
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Example: Medelian Law of Genetics with SAS

title1 "FREQ: One-Way Chi-Square Goodness of Fit Test";

title2 "Mendelian genetics data: use

TESTF=(312.75 104.25 104.25 34.75)" ;

proc freq data=medgen order=data ;

tables type /

TESTF=(312.75 104.25 104.25 34.75) chisq ;

weight n ;

run;
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DM-TKA Example

1. In DM-TKR Data, he medications for DM are oral hypoglycemic

agent (OHA), insulin injection (Insulin) and diet control. The

population proportion for these three medication are 50% , 30% and

20% respectively.

2. We are interested in that: is there good agreement between the

observed sample number and the expected ratio 5/3/2 ?
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DM-TKA Example

1. The observed sample statistics is X2 = 37.45, with p-value =0.0001.

2. So we reject the null hypothesis, there is no good agreement with

the null hypothesis; that is not a good fit of the data to the null

hypothesis probability distribution.
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DM-TKA Example with R

> setwd("C://temp//Rdata")

> DMTKRcsv<-read.csv("DMTKRcsv.csv", header=TRUE, sep=",", dec=".")

> attch(DMTKRcsv)

> (obs.i<-table(Med))

Med

0 1 2

66 8 4

> p.null<-c(0.5,0.3,0.2)

> chisq.test(obs.i,p=p.null,rescale.p=FALSE)

Chi-squared test for given probabilities

data: obs.i

X-squared = 37.453, df = 2, p-value = 7.365e-09
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DM-TKA Example with SAS

title1 "FREQ: One-Way Chi-Square

Goodness of Fit Test";

title2 "DM-TKA Medication Examples";

proc sort data=dmtkanew ;

by med ;

run;

proc freq data=dmtkanew order=data ;

tables med /

TESTP=(0.5 0.3 0.2) chisq ;

run;
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Introduction to Contingency Tables
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DM-TKA Example

1. In DM-TKR Data, investigators are interested in the difference of

proportion of infection between two groups: adding antibiotics and

non-adding antibiotics.

2. Table 2, shows 0 infective patient of 41 patients in adding

antibiotics group and 5 infective patients of 37 patients in

non-adding antibiotics group.
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DM-TKA Example

Table 2: Summary of antibiotics

groups and infection

Antibiotics Infection Number

No Yes 5

No No 32

Yes Yes 0

Yes No 41
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DM-TKA Example

Investigators can also summarize the result in different way as so called

2× 2 Contingency Table as in Table 3.

Table 3: Summary of antibiotics

groups and infection as 2 × 2

table

Infection

Antibiotics No Yes Total

No 32 5 37

Yes 41 0 41

Total 73 5 78
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DM-TKA Example

1. For another example, investigators are also interested in the

difference of proportion of male and female between two groups to

evaluate the randomization of subjects.

2. And there are 28 male patients of 41 patients in adding antibiotics

group and 25 of 37 patients in non-adding antibiotics group.

3. Investigators can present the result as in Table 4:
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DM-TKA Example

Table 4: Summary of Sex and

Antibiotics Groups

Sex Antibiotics Number

Male No 25

Female No 12

Male Yes 28

Female Yes 13
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DM-TKA Example

Investigator can also summarize the result in different way as so called

2× 2 Contingency Table as in Table 5.

Table 5: Summary of

antibiotics groups and sex as

2× 2 table

Antibiotics

Sex No Yes Total

Female 12 13 25

Male 25 28 53

Total 37 41 78
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Design and Measures of 2× 2 Table

for Categorical Data
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2× 2 Table

1. A 2× 2 contingency table is a table composed of two rows

cross-classified by two columns.

2. An appropriate way to display data that can be classified by two

different variables, say X and Y, each of which has only two possible

outcomes.

3. One variable is arbitrarily assigned to the rows.

4. The other to the columns.

5. Each of the four cells represents the number of units, with a specific

value for each of the two variables.
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2× 2 Table

1. The cell are sometimes referred to by number, as in Table 6 and 7.

2. (1, 1) cell being the cell in the first row and first column,

3. (1, 2) cell being the cell in the second row and first column,

4. (2, 1) cell being the cell in the second row and first column,

5. (2, 2) cell being the cell in the second row and second column.

6. The observed (expected) number of units in the four cells are

likewise referred to as O11, O12, O21, O22, and E11, E12, E21, E22

respectively.
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2× 2 Table

Table 6: Summary of observed numbers as 2× 2 table

Variable Y
Variable X level 1 level 2 Total

level 1 O11 = a O12 = b a + b = n1. (row 1 margin)

level 2 O21 = c O22 = d c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin
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2× 2 Table

Table 7: Summary of expected numbers as 2× 2 table

Variable Y
Variable X level 1 level 2 Total

level 1 E11 E12 a + b = n1. (row 1 margin)

level 2 E21 E22 c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n..

column 1 column 2 (grand total)

margin margin

Note: Computation of expected values for 2× 2 contingency table as

Eij =
ni. n.j

n..
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2× 2 Table

1. The number of units in each row and display them in the right

margins, which are called row marginal totals or row margins.

2. The number of units in each column and display them in the

bottom margins, which are called column marginal totals or

column margins.

3. The total number of units in the four cells, which is displayed into

lower right-hand corner of the table and is called the grand total.
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2× 2 Table

1. Two different sampling designs, prospective or retrospective, lend

themselves to a contingency-table framework.

2. In both instances, we want to test whether or not the proportions

are the same in the two independent samples.

3. This test is referred to as a test for homogeneity of binomial

proportions.
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Prospective Study
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine

1. Investigators conducted a one-year prospective study to evaluate the

re-injury probability of knee sport injury.

2. Students of the department of physical education in a university

who have a sport injury after the beg inning of the study are

included in the study.

3. These student are followed up at least one year or till the occurrence

of re-injury during participating sport activities.
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine

4. Investigators would like to know whether the first time sport injury

is knee injury will have higher chance of re-injury. The result is

shown in the Table 12.
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine

Table 8: Prospective study:

re-injury of knee sports injury

Re-injury

Knee injury Yes No Total

Yes 27 42 69

No 72 218 290

Total 99 260 359
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Prospective Study

1. A group of disease-free individuals are identified at one point in time

2. Followed over a period of tie until some of them develop of the

disease

3. The development of disease over time is then related to other

variables (i.e., risk exposure) measured at baseline.
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Prospective Study: Initial State

At the initial stage of a prospective study we have the counts or

frequencies of a 2× 2 contingency table as in Table 9.
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Prospective Study: Initial State

Table 9: Summary of the initial stage of a prospective study

as a 2× 2 table

Disease will Disease will Total

develop not develop

Risk factor present

(Exposure: Yes +)
unknown unknown a+b

Risk factor absent

(Exposure: No -)
unknown unknown c+d

Total unknown unknown a+b+c+d
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Prospective Study: Final Stage

At the final stage of a prospective study, we have complete the 2× 2

table as in Table 10.
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Prospective Study: Final Stage

Table 10: Summary of the final stage of a prospective study as a

2× 2 table

Disease will disease will Total

develop not develop

Risk factor present

(Exposure: Yes +)
a b a+b=n1.

Risk factor absent

(Exposure: No -)
c d c+d=n2.

Total a+c=n.1 b+d=n.2 a+b+c+d=n..
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Notation

1. π1: probability of developing disease for risk-factor-present

(exposure +) individuals

2. π2: probability of developing disease for risk-factor-absent

(exposure -) individuals

π1 = P[ disease | risk factor present ] (8)

π2 = P[ disease | risk factor absent ] (9)
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Point Estimators of π1 and π2

Table 11: Point Estimation of a Prosiective 2× 2 Table

Disease will disease will Total

develop not develop

Exposure: Yes + a b a+b=n1.

Exposure: No - c d c+d=n2.

Total a+c=n.1 b+d=n.2 a+b+c+d=n..

The point estimates of π1 and π2 are

π̂1 =
a

a + b
=

a
n1.

(10)

π̂2 =
c

c + d
=

c
n2.

(11)
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Point Estimation of Risk Difference

The point estimate of risk difference (RD) is given as

R̂D = ̂Risk Difference = π̂1 − π̂2 (12)
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Testing Hypothesis

H0 : π1 = π2 = π

versus HA : π1 6= π2 (13)

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 43



Approximate Z Test Statistic

Approximated Z test based on the normal distribution

H0 : π1 = π2 = π (14)

under H0 : π̂ =
n1.π̂1 + n2.π̂2

n1. + n2.
=

a + c
n..

; (15)
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Approximate Z Test Statistic

Approximated Z statistic

Z =
(π̂1 − π̂2)√

π̂(1− π̂)
( 1

n1.
+

1
n2.

). (16)

We can also use the binomial continuity correction as

Zc =
| π̂1 − π̂2 | −

( 1
2n1.

+
1

2n2.

)
√

π̂(1− π̂)
( 1

n1.
+

1
n2.

) . (17)
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Approximate Z Test Statistic Sampling Distribution

1. Under H0,

Z(or Zc)
asym
∼ N(0, 1); (18)

Z (or Z
′
) follows approximated standard normal distribution.

2. The p-value is calculated as

p-value = 2 [1−Φ(|Z|)]. (19)
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Approximate Z Test Statistic

The observed sample statistic z is

z =

a
a + b

− c
c + d√

(a + c)(b + d)
(a + b + c + d)2

[ 1
a + b

+
1

c + d

] (20)

z2 =
(a + b + c + d)(|ad− bc|)2[
(a + b)(c + d)(a + c)(b + d)

] (21)
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Confidence Interval of Risk Difference

When we reject the null hypothesis H0 : π1 = π2 = π, we can

calculate the (1− α)× 100% confidence interval. The variance of

estimated risk difference

Var(π̂1 − π̂2) =
π̂1(1− π̂1)

n1.
+

π̂2(1− π̂2)
n2.

(22)

(1− α)× 100% C.I. : of risk difference

π̂1 − π̂2 ± Z1−α/2

√
π̂1(1− π̂1)

n1.
+

π̂2(1− π̂2)
n2.

(23)

Note:

use this statistic and C.I. only if n1π̂(1− π̂) ≥ 5 and n2π̂(1− π̂) ≥ 5

(under H0).
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Point Estimation of Risk Ratio

The risk ratio or relative risk (RR) is defined as

RR =
π1
π2

. (24)

The point estimator is given as

RR(= ρ) =
Pr[disease + | risk-present (exposure +) ]
Pr[disease + | risk-absent (exposure -) ]

(25)
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Confidence Interval of Risk Ratio

1. Risk ratio ranges between (0, ∞)

2. Risk ratio is right skewed

3. Apporximate C.I. should consider these two points
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Confidence Interval of Risk Ratio

Var(log π̂1) ≈ 1
π̂2

1
Var(π̂1) (26)

=
1

π̂2
1

(π̂1(1− π̂1)
n1.

)
=

(1− π̂1)
n1.π̂1

(27)

=
b

a n1.
=

b
a (a + b)

=
1
a
− 1

a + b
(28)
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Confidence Interval of Risk Ratio

Var[log(R̂R)] = Var[log(π̂1)] + Var[log(π̂2)] (29)

V̂ar[log(R̂R)] =
1
a
− 1

a + b
+

1
c
− 1

c + d
(30)

s.e. [log(R̂R)] =
√

1
a
− 1

a + b
+

1
c
− 1

c + d
(31)
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Confidence Interval of Risk Ratio

The approximated (1− α)× 100% C.I. of R̂R:

exp[ log(R̂R)± Z1−α/2 s.e.(log(R̂R)) ] (32)

That is (
exp[ log(R̂R)− Z1−α/2 s.e.(log(R̂R)) ],

exp[ log(R̂R) + Z1−α/2 s.e.(log(R̂R)) ]
)

(33)
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Risk Difference and Risk Ratio

There are several restrictions of risk difference and relative risk. For

examples

1. If π1 = 0.001 and π2 = 0.005, then the risk difference

(RD = 0.004) is very small.

2. If π1 = 0.001 and π2 = 0.005, RD is always less than

RR = 1/5 = 0.2,

3. If π1 = 0.001 and π2 = 0.01, RD is always less than

RR = 1/10 = 0.1.
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine

Investigators would like to know whether the first time sport injury is

knee injury will have higher chance of re-injury.

Table 12: Prospective study:

re-injury of knee sports injury

Re-injury

Knee injury Yes No Total

Yes 27 42 69

No 72 218 290

Total 99 260 359
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine

1. Pearson’s Chi-Square Test X2 is 5.70, p-value is 0.0169.

2. Continuity Adjusted Chi-Square Test X2 is 5.0155 and p-value is

0.0251.

3. Fisher’s Exact Test with two-sided p-value is 0.024.
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine

4. Relative Risk (RR) is 1.579, 95% C.I. (1.10, 2.25).

5. When the first time sports injury is knee injury, it has 1.58 times

higher of re-injury proportion than the others.

6. Odds Ratio (OR) is 1.94, and 95% Wald C.I. is (1.07, 3.49).

7. Odds ratio is not close to risk ratio, why?

8. The risk difference is 0.14 (s.e. 0.064).

9. When the first time sport injury is knee injury, it has 0.14 higher

proportion with 95% Wald C.I. (0.176, 0.268).
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: R

> reinj.tab<-matrix(c(27,42,72,218),nrow=2,byrow=T)

> reinj.tab

[,1] [,2]

[1,] 27 42

[2,] 72 218
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: R

> chisq.test(reinj.tab,correct=F)

Pearson’s Chi-squared test

data: reinj.tab

X-squared = 5.7092, df = 1, p-value = 0.01688
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: R

> chisq.test(reinj.tab)

Pearson’s Chi-squared test with Yates’ continuity correction

data: reinj.tab

X-squared = 5.0155, df = 1, p-value = 0.02512
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: R

> fisher.test(reinj.tab)

Fisher’s Exact Test for Count Data

data: reinj.tab

p-value = 0.02392

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.070824 3.488594

sample estimates:

odds ratio

1.942525
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: R

relative.risk <- function(a, b, c, d)

{

cl <- function(x)

{

exp(log(rr)

+c(1, -1)*qnorm(x)*sqrt(b/a/(a+b)+d/c/(c+d)))

}

rr <- a*(c+d)/c/(a+b)

list(rr=rr, Wald.cl95=cl(0.025))

}
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: R

> relative.risk(27,42,72,218)

$rr

[1] 1.576087

$Wald.cl95

[1] 1.104046 2.249952
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: R

> temp<-prop.test(c(27,72),c(69,290),correct=F)

> temp

2-sample test for equality of proportions without continuity correction

data: c(27, 72) out of c(69, 290)

X-squared = 5.7092, df = 1, p-value = 0.01688

alternative hypothesis: two.sided

95 percent confidence interval:

0.01759800 0.26845897

sample estimates:

prop 1 prop 2

0.3913043 0.2482759

> temp$estimate[[1]]-temp$estimate[[2]]

[1] 0.1430285
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: SAS

title "Prospective study: 2x2 Table of Knee Reinjury Data";

data kneereinj ;

input knee reinj count @@ ;

cards;

1 1 27

1 0 42

0 1 72

0 0 218

run;
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: SAS

proc freq data=kneereinj order=data page ;

tables knee*reinj / exact riskdiff relrisk ;

weight count;

run;
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Example: Re-Injury Probability of Initial Knee Injury
knee reinj

Frequency|

Percent |

Row Pct |

Col Pct | 1| 0| Total

---------+--------+--------+

1 | 27 | 42 | 69

| 7.52 | 11.70 | 19.22

| 39.13 | 60.87 |

| 27.27 | 16.15 |

---------+--------+--------+

0 | 72 | 218 | 290

| 20.06 | 60.72 | 80.78

| 24.83 | 75.17 |

| 72.73 | 83.85 |

---------+--------+--------+

Total 99 260 359

27.58 72.42 100.00
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: SAS

Statistics for Table of knee by reinj

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 5.7092 0.0169

Likelihood Ratio Chi-Square 1 5.4189 0.0199

Continuity Adj. Chi-Square 1 5.0155 0.0251
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: SAS

Fisher’s Exact Test

----------------------------------

Cell (1,1) Frequency (F) 27

Left-sided Pr <= F 0.9935

Right-sided Pr >= F 0.0140

Table Probability (P) 0.0075

Two-sided Pr <= P 0.0239
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: SAS

Statistics for Table of knee by reinj

Column 1 Risk Estimates

(Asymptotic) 95% (Exact) 95%

Risk ASE Confidence Limits Confidence Limits

------------------------------------------------------------

Row 1 0.3913 0.0588 0.2761 0.5065 0.2760 0.5163

Row 2 0.2483 0.0254 0.1986 0.2980 0.1996 0.3021

Total 0.2758 0.0236 0.2295 0.3220 0.2302 0.3251

Difference

0.1430 0.0640 0.0176 0.2685

Difference is (Row 1 - Row 2)
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: SAS

Column 2 Risk Estimates

(Asymptotic) 95% (Exact) 95%

Risk ASE Confidence Limits Confidence Limits

-----------------------------------------------------------------

Row 1 0.6087 0.0588 0.4935 0.7239 0.4837 0.7240

Row 2 0.7517 0.0254 0.7020 0.8014 0.6979 0.8004

Total 0.7242 0.0236 0.6780 0.7705 0.6749 0.7698

Difference -0.1430 0.0640 -0.2685 -0.0176

Difference is (Row 1 - Row 2)
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Example: Re-Injury Probability of Initial Knee Injury

in Sports Medicine: SAS

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

-----------------------------------------------------------------

Case-Control (Odds Ratio) 1.9464 1.1207 3.3804

Cohort (Col1 Risk) 1.5761 1.1040 2.2500

Cohort (Col2 Risk) 0.8097 0.6627 0.9894

Sample Size = 359
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Retrospective Study
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Hip Dislocation and Infection

in Bipolar Hemiarthroplasty

1. Investogators conduct a retrospective study to assess the outcomes

of hip hemiarthroplasty surgery.

2. Hip dislocation after surgery is one of the worest outcomes of

hemiarthroplasty.

3. Infection is considered one of important risk factors related to

dislocation.

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 74



Hip Dislocation and Infection

in Bipolar Hemiarthroplasty

1. Subjects who have received hip hemiarthroplasty are included in this

retrospective study.

2. There are total 980 subjects, and these subjects are classified into a

2× 2 table according to two variables: dislocation and infection.

3. Investigators assessed whether infection would have higher chance of

dislocation.

4. The result is shown in the Table 13.

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 75



Hip Dislocation and Infection

in Bipolar Hemiarthroplasty

Table 13: Retrospective study: dislocation and

infection in hip hemiarthroplasty

Dislocation

Infection Yes (cases) No (controls) Total

Yes 10 19 29

No 11 940 951

Total 21 959 980
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Retrospective Study

1. Retrospective study is a study in which two groups of individuals

are identified:

(a) A group that has the disease under study (the cases)

(b) A group that does not have the disease under study (the controls).

2. An attempt is then made to relate theirs health habits to their

current disease status.
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Retrospective Study: Initial Stage

At the initial stage of a prospective study, we have the counts or

frequencies of a 2× 2 contingency table as in Table 14.
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Retrospective Study: Initial Stage

Table 14: Summary of the initial stage of a retrospective study

as a 2× 2 table

Disease will Disease will

develop not develop Total

Risk factor present

(Exposed Yes +)
unknown unknown unknown

Risk factor absent

(Exposed No -)
unknown unknown unknown

Total a+c b+d a+b+c+d
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Retrospective Study: Final Stage

At the final stage of a retrospective study, we have complete the 2× 2

table as in Table 15.
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Retrospective Study: Final Stage

Table 15: Summary of the final stage of a retrospective study as a

2× 2 table

Disease will Disease will Total

develop not develop

Risk factor present

(Exposure: Yes +)
a b a+b=n1.

Risk factor absent

(Exposure: No -)
c d c+d=n2.

Total a+c=n.1 b+d=n.2 a+b+c+d=n..
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Odds and Odds Ratio

1. If the probability of a success is π, then

the odds in favor of success =
π

1− π
(34)

2. If the probability of a success for two conditions are π1 and π2, then

the odds ratio in favor of success for condtion 1 relative to

condition 2 is

Odds Ratio =
π1/(1− π1)
π2/(1− π2)

=
π1 × (1− π2)
π2 × (1− π1)

(35)
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Notatoin

1. π1 : Probability of developing disease for risk-factor-present

(exposure +) individuals

2. π2 : Probability of developing disease for risk-factor-absent

(exposure -) individuals

π1 = P[ disease | risk factor present ] (36)

π2 = P[ disease | risk factor absent ] (37)
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Point Estimation of Odds

The point estimates of odds in favor of risk-factor-present in cases and

controls are

1. OddsD+ : Odds in favor of risk factor being present (exposure +) in

cases

2. OddsD− : Odds in favor of risk factor being present (exposure +) in

controls

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 84



Point Estimation of Odds

OddsD+ =
P[ risk present | cases (disease present) ]
P[ risk absent | cases (disease present) ]

ÔddsD+ =
a
c

(38)

OddsD− =
P[ risk present | controls (disease absent) ]
P[ risk absent | controls (disease absent) ]

ÔddsD− =
b
d

(39)

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 85



Odds Ratio

1. If two proportions π1, π2 are considered, the odds in favor of risk

present relative to risk absent given cases or controls are computed

for each groups, then the ratio of odds, or odds ratio, becomes a

useful measure for relating the two proportions.

2. The Odds Ratio (OR) is defined as

P[disease + | risk-present (exposure +)] /P[disease - | risk-present (exposure +)]
P[disease + | risk-absent (exposure -)] /P[disease - | risk-absent (exposure -)]
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Odds Ratio: Point Estimation

OR =
π1/(1− π1)
π2/(1− π2)

=
π1(1− π2)
π2(1− π1)

(40)

ÔR =
π̂1(1− π̂2)
π̂2(1− π̂1)

=
[a/(a + b)]× [d/(c + d)]
[c/(c + d)]× [b/(a + b)]

(41)

ÔR =
ad
bc

(42)
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Odds Ratio: Confidence

Var[log(ÔR)] ≈ 1
a

+
1
b

+
1
c

+
1
d

(43)

The approximated (1− α)× 100% C.I.:

exp[ log(ÔR)± Z1−α/2s.e.(log(ÔR)) ] (44)

That is(
exp[ log(ÔR)− Z1−α/2s.e.(log(ÔR)) ]

exp[ log(ÔR) + Z1−α/2s.e.(log(ÔR)) ]
)

. (45)
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Variance of log Odds Ratio

Var[log(ÔR)]

≈ Var
[

log[(
π̂1

(1− π̂1)
)/(

π̂2
(1− π̂2)

)]
]

(46)

≈ Var
[

log(
π̂1

(1− π̂1)
)− log(

π̂2
(1− π̂2)

)
]

(47)

≈ Var
[

log(
π̂1

(1− π̂1)
)
]

+ Var
[

log(
π̂2

(1− π̂2)
)
]

(48)
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Variance of log(Odds Ratio)

Var

[
log

( π̂1
(1− π̂1)

)]
≈ 1

[π̂1(1− π̂1)]2
Var(π̂1) (49)

≈ 1
[π̂1(1− π̂1)]2

[π̂1(1− π̂1)
n1.

]
(50)

≈ 1
π̂1(1− π̂1)

1
n1.

=
a + b

ab
(51)

=
1
a

+
1
b

(52)

Var

[
log

π̂2
(1− π̂2)

]
≈ 1

c
+

1
d

(53)

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 90



Disease Odds Ratio

Disease Odds Ratio is the odds in favor of disease for the risk-present

group divided by odds in favor of disease for the risk-absent group.

̂Disease Odds Ratio =
a/b
c/d

(54)
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Risk-present Odds Ratio (Exposure Odds Ratio)

Risk-Present Odds Ratio (Exposure Odds Ratio) is the odds in

favor of being risk-present for disease (cases) subjects divided by odds

in favor of being risk-present for non-disease (controls) subjects.

̂Risk-Present Odds Ratio =
a/c
b/d

(55)
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Disease odds ratio and Exposure Odds Ratio

̂Disease Odds Ratio =
a/b
c/d

̂Risk-Present Odds Ratio =
a/c
b/d

(56)

Actually, risk-present odds ratio is equal to disease odds ratio.

̂Disease Odds Ratio = ̂Risk-Present Odds Ratio (57)
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Odds Ratio and Risk Ratio

1. If the disease is rare, P[ disease ] → 0

2. And if π1 → 0, π2 → 0

3. Then a will be small relative to b and. similarly, c will be small

compared to d.

4. b/(a + b) → 1 and c/(c + d) → 1.
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Odds Ratio and Risk Ratio

So a + b can be replaced by b and c + d can be replaced by d in the
expression for risk ratio (relative risk), and the result is that the odds
ratio is approximate to risk ratio (relative risk).

OR =
π1/π1

π2/π2
=

π1/(1− π1)
π2/(1− π2)

≈ π1

π2
= RR (58)

ÔR =
π̂1(1− π̂2)
π̂2(1− π̂1)

=
[a/(a + b)]× [d/(c + d)]
[c/(c + d)]× [b/(a + b)]

≈ [a/(a + b)]
[c/(c + d)]

= R̂R (59)
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Notes: Odds Ratio and Risk Ratio

1. The odds ratio is often used as an approximation to the relative risk

for rare disease.

2. General Rule of Thumb: OR is a good approximation as long as the

probability of the outcome in the unexposed is less than 10%.
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Notes: Odds Ratio and Risk Ratio

1. If the probability of disease is the same for exposed and unexposed

subjects, then ÔR = 1.

2. Conversely, odds ratios greater than 1 indicate a greater likelihood

of disease among the exposed than among the unexposed, whereas

odds ratios less than 1 indicate a greater likelihood of disease among

the unexposed than among the exposed.

3. There is no restriction on the odds ratio as there was for the risk

ratio. Specifically, as the probability of disease among the exposed

π1 approaches 0, OR approaches 0, whereas as π1 approaches 1,

OR approaches ∞, regardless of value of the probability of disease

among the unexposed π2.

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 97



General Rule of Thumb:
“OR is a good approximation 
as long as the probability of 
the outcome in the unexposed 
is less than 10%”

Figure 1: When is the OR is a good approximation of the RR?
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Hip Dislocation and Infection

in Bipolar Hemiarthroplasty

Table 16: Retrospective study: dislocation and

infection in hip hemiarthroplasty

Dislocation

Infection Yes (cases) No (controls) Total

Yes 10 19 29

No 11 940 951

Total 21 959 980
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Hip Dislocation and Infection

1. Pearson’s Chi-Square Test X2 is 149.05, p-value is less than 0.0001.

2. Continuity Adjusted Chi-Square Test X2 is 133.58, p-value is less

than 0.0001.

3. Fisher’s Exact Test two-sided p-value is 2.69× 10−11.
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Hip Dislocation and Infection

4. Odds Ratio (OR) is 44.97, with 95% C.I. (17.06, 118.56).

5. The odds for dislocation in infection subjects is 44.9 times higher

than that of others,

6. That is the risk for dislocation in infection subjects is approximated

44.9 times higher than those without infection.
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Hip Dislocation and Infection

> hip.dis.tab<-matrix(c(10,19,11,940),nrow=2,byrow=T)

> hip.dis.tab

[,1] [,2]

[1,] 10 19

[2,] 11 940
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Hip Dislocation and Infection

> chisq.test(hip.dis.tab,correct=F)

Pearson’s Chi-squared test

data: hip.dis.tab

X-squared = 149.0511, df = 1, p-value < 2.2e-16

Warning message:

Chi-squared approximation may be incorrect in:

chisq.test(hip.dis.tab, correct = F)
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Hip Dislocation and Infection

> chisq.test(hip.dis.tab)

Pearson’s Chi-squared test with Yates’ continuity correction

data: hip.dis.tab

X-squared = 133.582, df = 1, p-value < 2.2e-16

Warning message:

Chi-squared approximation may be incorrect in:

chisq.test(hip.dis.tab)
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Hip Dislocation and Infection

> fisher.test(hip.dis.tab)

Fisher’s Exact Test for Count Data

data: hip.dis.tab

p-value = 2.694e-11

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

14.90394 131.06932

sample estimates:

odds ratio

44.12354
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Hip Dislocation and Infection

odds.ratio <- function(a, b, c, d, correct=FALSE)

{

cl <- function(x)

{

or*exp(c(1, -1)*qnorm(x)*sqrt(1/a+1/b+1/c+1/d))

}

if (correct || a*b*c*d == 0) {

a <- a+0.5

b <- b+0.5

c <- c+0.5

d <- d+0.5

}

or <- a*d/(b*c)

list(or=or, cl90=cl(0.05), cl95=cl(0.025))

}
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Hip Dislocation and Infection

> odds.ratio(10, 19, 11, 940)

$or

[1] 44.97608

$cl90

[1] 19.93799 101.45692

$cl95

[1] 17.06077 118.56722
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Hip Dislocation and Infection

> odds.ratio(10, 19, 11, 940,correct=TRUE)

$or

[1] 44.03679

$cl90

[1] 19.85456 97.67219

$cl95

[1] 17.04451 113.77499
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Hip Dislocation and Infection

title "Retrospective study: 2 x 2 Table

of Dislocation and Infection Data";

data disinf ;

input infection dislocation count @@ ;

cards;

1 1 10

1 0 19

0 1 11

0 0 940

run;
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Hip Dislocation and Infection

proc freq data=disinf order=data page ;

tables infection*dislocation / exact relrisk ;

weight count;

run;
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Hip Dislocation and Infection
infection dislocation

Frequency|

Percent |

Row Pct |

Col Pct | 1| 0| Total

---------+--------+--------+

1 | 10 | 19 | 29

| 1.02 | 1.94 | 2.96

| 34.48 | 65.52 |

| 47.62 | 1.98 |

---------+--------+--------+

0 | 11 | 940 | 951

| 1.12 | 95.92 | 97.04

| 1.16 | 98.84 |

| 52.38 | 98.02 |

---------+--------+--------+

Total 21 959 980

2.14 97.86 100.00
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Hip Dislocation and Infection

Statistics for Table of infection by dislocation

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 149.0511 <.0001

Likelihood Ratio Chi-Square 1 45.6074 <.0001

Continuity Adj. Chi-Square 1 133.5820 <.0001

Mantel-Haenszel Chi-Square 1 148.8990 <.0001

WARNING: 25% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.
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Hip Dislocation and Infection

Fisher’s Exact Test

----------------------------------

Cell (1,1) Frequency (F) 10

Left-sided Pr <= F 1.0000

Right-sided Pr >= F 2.694E-11

Table Probability (P) 2.640E-11

Two-sided Pr <= P 2.694E-11
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Hip Dislocation and Infection

STATISTICS for Table of infection by dislocation

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

---------------------------------------------------------

Case-Control (Odds Ratio) 44.9761 17.0608 118.5672

Cohort (Col1 Risk) 29.8119 13.7679 64.5525

Cohort (Col2 Risk) 0.6628 0.5090 0.8632

Sample Size = 980
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Pearson’s Chi-square Test

for Association of 2× 2 Table
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Pearson’s Chi-square Test for 2× 2 Table

1. A 2× 2 contingency table is a table composed of two rows

cross-classified by two columns.

2. 2× 2 Table displays data that can be classified by two different

variables, each of which has only two possible outcomes.

3. One variable is arbitrarily assigned to the rows and the other to the

columns.

4. Each of the four cells represents the number of units, with a specific

value for each of the two variables.
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Pearson’s Chi-square Test for 2× 2 Table

1. The cell are sometimes referred to by number, as in Table 17, with

the (i, j) cell being the cell in the ith row and jth column.

2. The observed (expected) number of units in the four cells are

likewise referred to as O11, O12, O21, O22, and E11, E12, E21, E22

respectively.
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Pearson’s Chi-square Test for 2× 2 Table

Table 17: Pearson’s chi-square test: observed 2× 2 table

Variable Y
Variable X level 1 level 2 Total

level 1 O11 = a O12 = b a + b = n1. (row 1 margin)

level 2 O21 = c O22 = d c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin

Note: Computation of expected values for 2× 2 contingency table as

Eij =
ni. n.j

n..

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 118



Notation

π1 = P[Y = 1 | X = 1] (60)

= P[ variable Y, level one | variable X, level one ] (61)

π2 = P[Y = 1 | X = 2] (62)

= P[ variable Y, level one | variable X, level two ] (63)

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 119



Testing Hypothesis

H0 : RR = 1 (64)

or H0 : OR = 1, (65)

or H0 : 4 cells are independent, (66)

or H0 : no association of 2× 2 contingency table, (67)

such as H0 : π1 = π2. (68)
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Point Estimation

π̂1 =
a

a + b
=

a
n1.

(69)

π̂2 =
c

c + d
=

c
n2.

(70)
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Pearson’s Chi-square Test for 2× 2 Table

If the corresponding cells of observed and expected values in these

two (observed and expected) tables are close, then H0 will be

approximate. If they are sufficiently different, then H0 will be rejected.

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 122



Pearson’s Chi-square Test for 2× 2 Table

1. Pearson’s chi-square test is

X2
p = ∑

i,j

(Oij − Eij)2

Eij

asym
∼ χχχ2

1 (71)

2. X2 asymptotically follows chi-squared distribution with 1 degree of

freedom under H0.
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Pearson’s Chi-square Test for 2× 2 Table

X2
p = ∑

i,j

(Oij − Eij)2

Eij
(72)

1. For a level α test, reject H0 if X2
p > χχχ2

1,1−α.

2. The p-value is that

p-value = Pr[χχχ2
1 > X2

p] (73)

3. Use this test only if none of the four expected values (or observed ?)

is less than 5.
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Yates-Corrected (Continuity Adjusted) Chi-Square

Test

for 2× 2 Table

X2
p,? = ∑

i,j

(
| Oij − Eij | − 0.5

)2

Eij
(74)

=
n..

(
| ad− bc | − n

2

)2

[
(a + b)(c + d)(a + c)(b + d)

] (75)

p-value = Pr[χχχ2
1 > X2

p,?] (76)
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Likelihood-Ratio Statistic for

2× 2 Contingency Table
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Likelihood-Ratio Statistic for

2× 2 Contingency Table

1. An alternative statistic for testing H0 results from the

likelihood-ratio method for significance tests.

2. The test is based on the ratio of the maximized likelihoods,

Λ =
maximum likelihood when parameters satisfy H0

maximum likelihood when parameters are unstriated
. (77)

3. This ratio cannot exceed 1.

4. If the maximized likelihood has much larger when the parameters

are not forced to satisfy H0, then the ratio Λ is far below 1 and

there is strong evidence against H0.
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Likelihood-Ratio Statistic for

2× 2 Contingency Table

5. The test statistic for a likelihood ratio test equals −2 log(Λ).

6. This value is “nonnegative”, and “small” values yields “large” value

of −2 log(Λ).

7. The reason for the log transform is to yield an approximate

chi-squared sampling distribution.
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Likelihood-Ratio Statistic for

2× 2 Contingency Table

8. For two-way contingency tables, this statistic simplifies to the

formula

G2 = 2 ∑ nij log
(nij

µij

)
. (78)

9. The statistic G2 is called the likelihood-ratio chi-squared statistic.

10. Like the Pearson statistic, G2 takes its minimum values of 0 when

all nij = µij, and larger values provide stronger evidence against H0.
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Fisher’s Exact Test
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Fisher’s Exact Test

In a 2× 2 contingency table, the exact probability of observing a table

with cells a, b, c, d in Table 18 is hypergeometric distribution.

Table 18: Fisher’s exact test: observed 2× 2 table

Variable Y
Variable X level 1 level 2 Total

level 1 O11 = a O12 = b a + b = n1. (row 1 margin)

level 2 O21 = c O22 = d c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin
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Notation

π1 = P[Y = 1 | X = 1] (79)

= P[ variable Y, level one | variable X, level one ] (80)

π2 = P[Y = 1 | X = 2] (81)

= P[ variable Y, level one | variable X, level two ] (82)
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Point Estimation

The point estimates of π1 and π2 are

π̂1 =
a

a + b
=

a
n1.

(83)

π̂2 =
c

c + d
=

c
n2.

(84)
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Fisher’s Exact Test

To test the hypothesis H0 : π1 = π2 = π by using exact probability

distribution.
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Fisher’s Exact Test

The exact probability of observing a table with cells a, b, c, d is

hypergeometric distribution as

Pr(a, b, c, d) =
(a+b

a )(c+d
c )

( n
a+c)

=
(a + b)! (c + d)! (a + c)! (b + d)!

n! a! b! c! d!

(85)
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Fisher’s Exact Test

1. Rearrange the row and columns of the observed table

2. the smaller row total is in he first row and the smaller column total

is in the first column.

3. Assume the smallest is a.
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Fisher’s Exact Test

Start with the table 19 with 0 in the (1,1) cell, the other cells in the
table are then determined from the row and column margins.

Table 19: Fisher’s exact test: assume (1, 1) = 0 in 2× 2 table

1st Table Variable Y
Variable X level 1 level 2 Total

level 1 0 a + b = n1. a + b (row 1 margin)

level 2 a + c d− a = n2. − (a + c) c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin
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Fisher’s Exact Test

Construct the next table 20 by increasing the (1,1) cell by 1, decreasing
the (1,2) and (2,1) cell by 1, and increasing the (2,2) cell by 1.

Table 20: Fisher’s exact test: assume (1, 1) = 1 in 2× 2 table

2nd Table Variable Y
Variable X level 1 level 2 Total

level 1 1 a + b− 1 = n1. − 1 n1. = a + b (row 1 margin)

level 2 a + c− 1 d− a + 1 = n2. − (a + c− 1) c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin
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Fisher’s Exact Test

Table 21: Fisher’s exact test: observed 2× 2 table

ath Table Variable Y
Variable X level 1 level 2 Total

level 1 O11 = a O12 = b a + b = n1. (row 1 margin)

level 2 O21 = c O22 = d c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin
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Fisher’s Exact Test

Continue increasing and decreasing the cells by 1, · · · , as in table 21,
· · · , as in table 22 until one of the cells is 0.

Table 22: Fisher’s exact test: assume (1, 1) = k− 1 in 2× 2 table

(k− 1)th Table Variable Y
Variable X level 1 level 2 Total

level 1 a + c− 1 b− c + 1 = n1. − (a + c− 1) a + b = n1. (row 1 margin)

level 2 1 c + d− 1 = n2. − 1 c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin
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Fisher’s Exact Test

Table 23: Fisher’s exact test: assume (1, 1) = k in 2× 2 table

kth Table Variable Y
Variable X level 1 level 2 Total

level 1 a + c b− c = n1. − (a + c) a + b = n1. (row 1 margin)

level 2 0 c + d = n2. c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin
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Fisher’s Exact Test

1. Start with the table 19 with 0 in the (1,1) cell, the other cells in the

table are then determined from the row and column margins.

2. Construct the next table 20 by increasing the (1,1) cell by 1,

decreasing the (1,2) and (2,1) cell by 1, and increasing the (2,2) cell

by 1.

3. Continue increasing and decreasing the cells by 1, · · · , as in table

21, · · · , as in table 22 until one of the cells is 0.

4. Let the total number of tables is k as in table 23.
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Fisher’s Exact Test

Table 24: Fisher’s exact test: observed 2× 2 table

ath Table Variable Y
Variable X level 1 level 2 Total

level 1 O11 = a O12 = b a + b = n1. (row 1 margin)

level 2 O21 = c O22 = d c + d = n2. (row 2 margin)

Total a + c = n.1 b + d = n.2 a + b + c + d = n.. = n
column 1 column 2 (grand total)

margin margin

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 143



Fisher’s Exact Test

1. Suppose that the observed ath table is Table (24). (The first table

enumerated is the 1st table, Table 19, and the last table enumerated

is the kth table, Table 23.)

π1 = P[Y = 1 | X = 1]

π2 = P[Y = 1 | X = 2] (86)

2. We wish to test the hypothesis

H0 : π1 = π2

versus Ha : π1 6= π2. (87)
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Fisher’s Exact Test: p-Value

1. The two-sided p-value is calculated as

p− value (two tails) = (88)

2×min[Pr(0) + Pr(1) + · · ·+ Pr(a),

Pr(a) + Pr(a + 1) + · · ·+ Pr(k),

0.5] (89)
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Fisher’s Exact Test: p-Value

2. Test one-sided alternative hypothesis, Ha : π1 < π2

p− value (one tail) = Pr(0) + Pr(1) + · · ·+ Pr(a) (90)

3. Test another one-sided alternative hypothesis, Ha : π1 > π2

p− value (one tail) = Pr(a) + Pr(a + 1) + · · ·+ Pr(k) (91)
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Fisher’s Exact Test: p-Value

SAS uses the sum of the probability of all tables whose probability is

less than or equal to the observed table probability as two-tailed

p-value.

SAS: p− value (two tail) = ∑
i:Pr(i)≤Pr(a)

Pr(i) (92)

Note: Fisher’s exact test is more conservative, in generally, I use

Fisher’s exact test in all reports of medical studies.
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

Example 1: Pain relief for arthritis with four treatments

1. Suppose we conducted a study about pain relief for arthritis with

four treatments: 1) control, 2) topic medication, 3) oral medication,

4) combined oral and topic medication. The outcome is measured

by the pain with four levels as 1) severe 2) moderate 3) mild and 4)

none.

2. We can construct a 4× 4 table as in Table 25.
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

Table 25: R× C Table: pain relief and four treatments

data

Pain Level

Treatment Severe Moderate Mild None Total

Control 20 24 80 82 206

Topic 22 38 104 125 289

Oral 13 28 81 113 235

Combined 7 18 54 92 171

Total 62 108 319 412 901
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

1. In general, a categorical variable under study have more than two

categories.

2. Methods of analyzing data with 2× 2 table can be extend to or

than only two categories of each variables.

3. An R× C contingency table is a table with R rows and C columns.

4. It displays the relationship between two variables, where the variable

depicted in the rows has R categories and the variable depicted in

the column has C categories.
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

1. Let two variables, A with i = 1, 2, · · · , R categories, and B with

j = 1, 2, · · · , C categories.

2. The observed number of the cell (i, j) is Oij, and the expected

number is Eij. Let πi. be the marginal probability of ith category of

variable A, and π.j be the marginal probability of jth category of

variable B.
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

3. Let πij be the joint probability of ith category of variable A and jth

category of variable B.

4. Under the null hypothesis, H0, there is no association of variable A
and B, or there is the homogeneity of two variables.
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

5. So the two variables are independent under null hypothesis, then

H0 : πij = πi. × π.j, i = 1, 2, · · · , R, j = 1, 2, · · · , C,

versus HA : at least one (i, j) cell such that πij 6= πi. × π.j
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

Let Eij =
ni+× n+j

n
, where ni+ = ∑

j
Oij, n+j = ∑

i
Oij

X2
p = ∑

ij

(Oij − Eij)2

Eij

asym
∼ χχχ2

(R−1)(C−1). (93)

6. That is, X2
p asymptotically follows chi-squared distribution with

(R− 1)(C− 1) degrees of freedom.
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

7. The p-value is calculated as

p− value = P(χχχ2
(R−1)(C−1) > X2

p) (94)

8. For a level α test, if X2
p > χχχ2

(R−1)(C−1),1−α
, reject H0.

9. Use this test only if the following two conditions are satisfied:

(a) No more than 1/5 of the cells should have expected values less than

5,

(b) No cell should have expected value less than 1.
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

For the above example of 4 treatments of arthritis, X2 = 11.9886,

p-value is 0.214, we do not reject the hypothesis.
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

title "RxC Table: Pain relief of arthritis and four treatments data";

data pain ;

do treat= "Control", "Topic", "Oral", "Combined";

do pain= "Severe", "Moderate", "Mild", "None" ;

input count @@;

output;

end;

end;

cards;

20 24 80 82

22 38 104 125

13 28 81 113

7 18 54 92

run;
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Chi-square Test for Association (Homogeneity)

of R× C Contingency Table

proc freq data=pain order=data page;

tables treat*pain / chisq ;

weight count;

run;
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Partitioning Chi-Squared Tests
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Partitioning Chi-Squared Tests

1. Let Z denote a standard normal random variable.

2. Z2 has a chi-squared distribution with df = 1.

3. A chi-squared random variable with df = v has representation

Z1
1 + · · ·+ Z2

v, where Z1, . . . , Zv are independent standard normal

variables.

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 161



Partitioning Chi-Squared Tests

4. A chi-squared statistic having df = v has partitionings into

independent chi-squared components—for example, into v
components each having df = 1

5. Conversely, if X2
1 and X2

2 are independent chi-squared random

variables having degrees of freedom v1 and v2, then X2 = X2
1 + X2

2
has a chi-squared distribution with df = v1 + v2.
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Partitioning Chi-Squared Tests

1. Another supplement to a chi-squared test partitions its test statistic

so that the components represent certain aspects of the effects.

2. A partitioning may show that an association reflects primary

differences between certain categories or groupings of categories.
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Partitioning Chi-Squared Tests

1. We begin with a partitioning for the test of independence in a 2× J
tables.

2. We partition G2, which has df = (J − 1), into J − 1 components.

3. The jth component is G2 for a 2× 2 table where the first column

combines columns 1

4. through j of the full table and the second column is column j + 1.
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Partitioning Chi-Squared Tests

5. That is, G2 for testing independence in a 2× J table equals a

statistic that compares the first two columns, plus a statistic that

combines the first two columns and compares them to the third

column, and so on, up to a statistic that combines the first J − 1

columns and compares them to the last column.

6. Each component statistic has df = 1.
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Partitioning Chi-Squared Tests

1. It might seem more natural to compute G2 for the (j− 1) separate

2× 2 tables that pair each column with a particular one, say the last.

2. However, these component statistics are not independent and do

not sum G2 for the full table.
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Partitioning Chi-Squared Tests: Lancaster (1949)

1. For an I × J table, independent chi-squared components result from

comparing column 1 and 2 and then combing them and comparing

them to column 3, and so on.

2. Each of the J − 1 statistics has df = I − 1.

3. More refined partitions contain (I − 1)(J − 1) statistics, each

having df = 1.

4. One such partitioning (Lancaster 1949) applies to the

(I − 1)(J − 1) separate 2× 2 tables is in Table 26.
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Partitioning Chi-Squared Tests: Lancaster (1949)

Table 26: Lancaster (1949) χχχ2

Partition

∑a<i ∑b<j nab ∑a<i aaj

∑b<j nib nij

for i = 2, . . . , I, and j = 2, . . . , J.
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Partitioning Chi-Squared Tests

Goodman (1968, 1969a, 1971b) and Lancaster (1949, 1969) gave rules

for determining independent components of chi-squared. For forming

subtables, aiming the necessary conditions are the following:

1. The df for the subtables must sum to df for the full table.

2. Each cell count in the full table must be a cell count in one and only

one subtable.

3. Each marginal total of the full table must be a marginal total for

one and only one subtable.
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Partitioning Chi-Squared Tests

1. For a certain partitioning, when the subtable df values sum properly

but G2 values do not, the components are not independent.

2. For the G2 statistic, exact partitioning occur. the Pearson X2 need

not equal the sum of the X2 values for the subtables.
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Partitioning Chi-Squared Tests: Lancaster (1949)

3. It is valid to use X2 statistics for the separate subtables; they simply

need not provide an exact algebraic partitioning of X2 for the full

table.

4. When the null hypothesis all hold, X2 does have an asymptotic

equivalence with G2, however.

5. In addition, when the table has a small counts, in argue-sample

chi-squared tests it is safer to use X2 to study the subtables.
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Limitations of Chi-Squared Tests

1. Chi-squared tests of independence merely indicate the degree of

evidence of association.

2. They are rarely adequate for answering all questions about a data

set.

3. Rather then relying solely on the results of the tests, investigate the

mature of the association:

4. Study residuals, decomposed chi-squared into components, and

estimate parameters such as odds ratios that describe the strength

of association.
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Limitations of Chi-Squared Tests: Residuals

Discuss in later.
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Limitations of Chi-Squared Tests

5. The chi-squared tests also have limitations in the types of data to

which they apply.

6. For instance, they require large samples.

7. Also, the µ̂ij = ni+n+j/n used in X2 and G2 depend on he

marginal totals but not on the order of listing the rows and columns.

8. Thus, X2 and G2 do not change value with arbitrary re-orderings of

rows or of columns.
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Limitations of Chi-Squared Tests

9. This implies that they treat both classifications as nominal .

10. When at least one variable is ordinal, test statistics that utilize the

ordinality are usually more appropriate.
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Why Consider Independence?
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Why Consider Independence?

1. Any idealized structure such as independence is unlikely to hold in

any given particular situation.

2. With large samples it is not surprising to obtain a small p-value.

3. Given this and the limitations just mentioned, why even bother to

consider independence as a possible representation for a joint

distribution?
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Why Consider Independence?

1. One reason refers to the benefits of model parsimony.

2. If the independence model approximates the true probabilities well,

then unless n is very large, the model-based estimates

π̂ij = ni+n+j/n of cell probability tend to be better than the

sample proportions pij = nij/n.

3. The independence ML estimates smooth the sample counts,

somewhat damping the random sampling fluctuations.
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Why Consider Independence?

4. The mean-squared error (MSE) formula

MSE = variance + (bias)2

explains why the independence estimators can have smaller MSE.

5. Although they may be biased, they have smaller variance because

they are based on estimating fewer parameters πi and π+j instead

of πij.

6. Hence, MSE can be smaller unless n is so large that the bias term

dominates the variance.
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Chi-square Test for Trend

in 2× K Table:

Cochran-Armitage Trend Test
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Chi-square Test for Trend

in 2× K Table:

Cochran-Armitage Trend Test

Sometimes we investigate relationship in categorical data when one of

the two variables has only two categories, and the second variable can

be categorized into K categories that are ordered in some sense.
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Cochran-Armitage Trend Test

for 2× K Table

1. For example, a cross-sectioned study was carried out among the

elder population with the objective of measuring the association of

sport injuries and year of class major in the department of physical

education.

2. A total 267 individuals were grouped into 4 year of class group as 1,

2, 3, 4 at the time of interview whether individual had sport injury

in class or not.

3. The result are shown as 2× K table 27.
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Cochran-Armitage Trend Test

for 2× K Table

Table 27: 2× K Table: sports injury and

year of class data

Year of class

Sport injury 1 2 3 4 Total

Yes 32 41 54 62 189

No 30 23 17 8 78

Total 62 64 71 70 267
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Cochran-Armitage Trend Test

for 2× K Table

1. The Pearson chi-square test for the association of two variables is

X2 = 24.08 and the p-value is 0.001.

2. We reject the hypothesis and conclude that there exist association

between sport injuries and year of class.
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Cochran-Armitage Trend Test

for 2× K Table

3. However, this result shows some relationship exists between sport

injury and year of class.

4. It does not tell us specifically about the nature of the relationship.

5. We notice an increasing trend in the proportion of sport injury in

each succeeding column (year of class).

6. We would like to employ a specific test to detect such trend.
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Cochran-Armitage Trend Test

for 2× K Table

1. For this purpose, a score variable Sj is introduced to correspond the

jth category, for j = 1, 2, · · · , K.

2. Suppose we wish to test if there is an increasing (or decreasing)

trend in the proportion of “success” πj, the proportion of units in

the first row (the first category of two categories of the row

variable) of the jth category as j increase.

3. We set up the data in the form of a 2× K table 28, where success

or failure is listed along the rows and the K categories are list along

the column.
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Cochran-Armitage Trend Test

for 2× K Table

Table 28: Binomial Trend Test: 2× 2 table

Variable B: K categories

ith category with score Si
Variable A: 1 2 ... j ... K Total

2 categories S1 S2 ... Sj ... SK

1 x1 x2 ... xj ... xK x

2 ... ... ... ... ... ... ...

Total n1 n2 ... nj ... nK n

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 187



Cochran-Armitage Trend Test

for 2× K Table

1. Let xj be the number of successes in the jth category, the total

number units in the jth group by nj.

2. Denote total number of success over all k categories by x and the

total number by n.

3. Assign score variable Sj to correspond the jth category.

4. This variable will usually either be 1, 2, · · · , K for the K categories

or be defined to correspond to some other numerical attribute of the

group.
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Cochran-Armitage Trend Test

for 2× K Table

H0 : there is no trend (95)

versus HA : πj = α + βSi, (96)

for some constant α and β. (97)

Then, p̂j =
xj

nj
; (98)

the proportion of success in jth category
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Cochran-Armitage Trend Test

for 2× K Table

p̄ =
x
n

; overall proportion of success (99)

q̄ = 1− p̄ (100)

S̄ =
∑K

j=1 njSj

n
(101)
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Cochran-Armitage Trend Test

for 2× K Table

A =
K
∑
j=1

nj( p̂j − p̄)(Sj − S̄) (102)

B = p̄ q̄
[( K

∑
j=1

njS
2
j
)
−

(∑K
j=1 njSj)2

n

]
(103)

X2 =
A2

B
asym ∼ χχχ2

1. (104)

5. That is, X2 is approximated chi-squared distributed with 1 degree of

freedom.

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 191



Cochran-Armitage Trend Test

for 2× K Table

6. The p-value is calculated as

p− value = P(χχχ2
1 > X2) (105)

7. For a two sided test with significant level α, we rejected H0, if

X2 > χχχ2
1,1−α then reject H0.
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Cochran-Armitage Trend Test

for 2× K Table

8. The direction of the trend in proportions is indicated by the sign of

A.

9. If A > 0, then the proportions increase with increasing score.

10. We use this test only if np̄q̄ > 5.
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Cochran-Armitage Trend Test

for 2× K Table

1. For most data sets, the choice of scores as little effect on the results.

2. Different choices of monotone scores usually give similar results.

3. This may not happen, however, when the data are very unbalanced,

such as when some categories have many more observations than

other categories.
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Cochran-Armitage Trend Test

for 2× K Table

4. It is usually to better use one’s judgement by selecting scores than

reflect distances between categories.

5. When uncertain about this choice, perform a sensitivity analysis.

Select two or three “sensible” scores and check that results are

similar for each.

6. Equally-spaced scores often provide a reasonable compromise when

the category labels do not suggest any obvious choices
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Cochran-Armitage Trend Test

for 2× K Table

The above example, we choice the equally-spaced scores, 1, 2, 3, and 4,

the test statistic is X2 = 24.7 with p-value 0.0001.
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Cochran-Armitage Trend Test

for 2× K Table

data trend ;

do injury=1 to 0 by -1 ;

do year=1 to 4 ;

input count @@;

output;

end;

end;

cards;

32 41 54 62

30 23 17 8

run;
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Cochran-Armitage Trend Test

for 2× K Table

proc freq data=trend order=data page;

tables injury*year / chisq trend ;

weight count;

run;
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injury year

Frequency|

Percent |

Row Pct |

Col Pct | 1| 2| 3| 4| Total

---------+--------+--------+--------+--------+

1 | 32 | 41 | 54 | 62 | 189

| 11.99 | 15.36 | 20.22 | 23.22 | 70.79

| 16.93 | 21.69 | 28.57 | 32.80 |

| 51.61 | 64.06 | 76.06 | 88.57 |

---------+--------+--------+--------+--------+

0 | 30 | 23 | 17 | 8 | 78

| 11.24 | 8.61 | 6.37 | 3.00 | 29.21

| 38.46 | 29.49 | 21.79 | 10.26 |

| 48.39 | 35.94 | 23.94 | 11.43 |

---------+--------+--------+--------+--------+

Total 62 64 71 70 267

23.22 23.97 26.59 26.22 100.00
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Cochran-Armitage Trend Test

for 2× K Table

Statistics for Table of injury by year

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 3 24.0819 <.0001

Likelihood Ratio Chi-Square 3 25.1721 <.0001

Mantel-Haenszel Chi-Square 1 23.9901 <.0001

Phi Coefficient 0.3003

Contingency Coefficient 0.2876

Cramer’s V 0.3003
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Cochran-Armitage Trend Test

for 2× K Table

Cochran-Armitage Trend Test

--------------------------

Statistic (Z) 4.9072

One-sided Pr > Z <.0001

Two-sided Pr > |Z| <.0001

Sample Size = 267
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USE FOR BIOSTATISTICS
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Measures of Impact

1. Measures of association providing information about absolute effects

of exposure

2. Two concepts

(a) Attributable risk among exposed

(b) Population attributable risk
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Attributable Risk (AR)

Quantifies disease burden in exposed group attributable to exposure

Provides answers to

1. What is the risk which can be attributed to the exposure?

2. What is the excess risk due to the exposure?

Calculated as risk difference (RD)
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Absolute Measures of Risk

1. Absolute implies that we are interested in the difference between

two incidences.

2. There are four types of absolute measures of risk:

(a) Risk difference (or attributable risk, AR)

(b) Attributable risk percent (AR%)

(c) Population attributable risk (PAR)

(d) Population attributable risk percent (PAR%)
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Attributable Risk (AR)

1. Attributable risk is the difference in risk between exposed and

unexposed

AR = RR = π1 − π2 = πRisk+− πRisk- (106)

ÂR = π̂1 − π̂2 =
a

a + b
− c

c + d
(107)

2. This corresponds to the absolute added risk due to exposure
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RR and AR

1. The main use of RR is to guide inferences of cause and effect when

an association is observed between exposure and disease

2. The main use of AR is to quantify the potential importance of an

association

(a) Over a given time, how many additional ill or injured persons

would there be out of the total number who were exposed?

(b) Which measure is more useful for an etiologic study? For a health

department allocating funds for different prevention measures?
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Attributable Risk Percent (AR%)

1. AR expressed as a percentage of risk in exposed Provides answers to

What is the proportion of disease among the exposed which

(a) can be attributed to the exposure?

(b) could be avoided by eliminating the exposure?

2. Synonyms

(a) Attributable proportion

(b) Etiologic fraction (EF)
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Attributable Risk Percent (AR%)

AR% =
πRisk+− πRisk-

πRisk+
× 100% =

RR− 1
RR

× 100% (108)
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Attributable Risk Percent (AR%)

AR% is often used to determine efficacy of vaccines in prevention

trials. The unvaccinated population is the exposed group, and the

vaccinated are unexposed.
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Example: Attributable Risk Percent (AR%)

1. For the polio vaccine, the cumulative incidence of polio among

unvaccinated was 57 per 100,000, while among the vaccinated it

was 16 per 100,000.

57− 16
57

= 71.9 (109)

2. The vaccine efficacy was 71.9%.
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AR and AR% in Case-Control Studies

1. No direct risk estimates in case-control study

2. No calculation of AR (risk difference) and AR% possible
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Prevented Fraction (PF)

1. Calculate if relative risk < 1 (Exposure to some “Risk” factor)

2. Proportion of potential new cases which would have occurred if the

exposure had been absent

3. Proportion of potential cases prevented by the exposure

PF =
πRisk-− πRisk+

πRisk-
= 1− RR (110)
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Prevented Fraction (PF)

Table 29: Vaccine Efficacy with 2× 2 Table

Disease will Disease will Total

develop not develop

Vaccinated 150 301,395 301,545

Unvaccinated 515 298,140 298,655

Total 665 602,790 600200
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Prevented Fraction (PF)

150
301545

= 0.0497% (111)

515
298655

= 0.0172% (112)

RR = 0.28 (113)

PF =
0.0172− 0.049

0.0172
= 1− 0.28 = 0.72 (114)
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Prevented Fraction (PF)

1. Expected number of cases among vaccinated if unvaccinated

301545× 0.0172% = 519 (115)

2. Observed number of cases: 150

3. Estimated number of cases prevented: 369

519− 150
519

= 71% (116)
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Population Attributable Risk (PAR)

1. Excess risk of disease in total population attributable to exposure

2. Reduction in risk which would be achieved if population entirely

unexposed

3. Helps determining which exposures relevant to public health in

community

PAR = πPolulation− πRisk- = AR× Pr(Risk-) (117)
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Population Attributable Risk Percent (PAR%)

PAR expressed as a precentage of total risk in population

PAR =
πPolulation− πRisk-

πPolulation
× 100% (118)
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Measures of Population Impact and Infectiousness

1. Population attributable risk (PAR): is the absolute difference

between the risk in the whole population and the risk in the

unexposed group.

2. If π0 is the risk in the total study population and π2 is the risk in

the unexposed group then

PAR = π0 − π2 (119)
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Measures of Population Impact and Infectiousness

3. Alternatively, if π1 is the risk in the exposed and π2 is the risk in

the unexposed and the proportion of exposed in the population is P

PAR = P× (π1 − π2) (120)
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Measures of Population Impact and Infectiousness

4. Population attributable risk fraction (PAF): The proportion of all

cases in the whole study population (exposed and unexposed) that

may be attributable to the exposure, on the assumption of a causal

association.

PAF =
PAR

π0
=

π0 − π2
π0

(121)
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Notes on PAR and PAR%

1. PAR is very useful for allocating resources for prevention.

2. Efforts can be made to prevent or modify exposures that have a

large burden of disease (i.e. smoking vs. cosmic rays from air travel)

3. PAR% can be used to identify the primary exposure that causes a

given disease, and allocate resources towards it.
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Issues in the Use of Measures of Impact

In interpreting the results of measures of impact several assumptions

are made

1. All of the association between the risk factor and the disease is

causal (complete control of confounding has been achieved).

2. Both the risk factor and frequency of outcome were accurately

measured

3. Removal of the risk factor actually removes the risk

4. The risk factor is actually removable
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Measures of Impact and Public Health

1. Measures of impact are important in public health as they assist

health planners to prioritize policy decisions

2. If the primary prevention focus is on the whole population then

measures of impact allow us to evaluate the intervention’s effects at

the level of the (general) population

3. If the strategy is to focus on high-risk individuals then measures of

effect allow us to evaluate the program
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Stratified Categorical Data:

The (Cochran) Mantel-Haenszel Test
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Example: Coronary Artery Disease

Table 30 are based on a study on coronary artery disease (Koch, Imrery

et al. 1985). The sample is one of convenience since the patients

studied were people who came to clinic and requested an evaluation.

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 226



Example: Coronary Artery Disease

Table 30: Retrospective study: gender, ECG and disease

Disease No Disease

Gender ECG Condition (Cases) (Controls) Total

Female > 0.1 ST depression 8 10 18

Female ≤ 0.1 ST depression 4 11 15

Male > 0.1 ST depression 21 6 27

Male ≤ 0.1 ST depression 9 9 18

Total 42 36 78
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Example: Coronary Artery Disease: ECG vs. Gender

Table 31: Retrospective study: EKG and

Gender

Gender

ECG Condition Female Male Total

> 0.1 ST depression 18 27 45

≤ 0.1 ST depression 15 18 33

Total 33 45 78
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Example: ECG and Gender

> # EKG vs. Gender

> EKG.Gender<-matrix(c(18,27,15,18),nrow=2,byrow=T)

> fisher.test(EKG.Gender)

Fisher’s Exact Test for Count Data

data: EKG.Gender

p-value = 0.6502

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.2932842 2.1906132

sample estimates:

odds ratio

0.8023104
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Example: ECG Condition and Coronary Artery

Disease

Investigators were interested in whether (electrocardiogram) ECG

measurement was associated with disease status.

Table 32: Retrospective study: ECG and coronary heart

disease

Coronary Artery Disease

ECG Condition Yes (cases) No (controls) Total

> 0.1 ST depression 29 16 45

≤ 0.1 ST depression 13 20 33

Total 42 36 78

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 230



Example: ECG and Coronary Artery Disease

> EKG.CAD<-matrix(c(29,16,13,20),nrow=2,byrow=T)

> fisher.test(EKG.CAD)

Fisher’s Exact Test for Count Data

data: EKG.CAD

p-value = 0.03894

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

1.003021 7.828855

sample estimates:

odds ratio

2.750314
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Example: Gender and Coronary Artery Disease

Investigators were interested in whether gender was associated with

disease status.

Table 33: Retrospective study: gender and

coronary heart disease

Coronary Artery Disease

Gender Yes (cases) No (controls) Total

Female 12 21 33

Male 30 15 45

Total 42 36 78
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Example: Gender and Coronary Artery Disease

> gender.CAD<-matrix(c(12,21,30,15),nrow=2,byrow=T)

> fisher.test(gender.CAD)

Fisher’s Exact Test for Count Data

data: gender.CAD

p-value = 0.01142

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.09986503 0.80674974

sample estimates:

odds ratio

0.290676
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Example: Coronary Artery Disease: Stratification

Gender was though to be associated with disease status, so

investigators stratified the data into female and male groups.
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Example: Coronary Artery Disease: Female

Table 34: Retrospective study: ECG and coronary heart

disease for female

Female Coronary Artery Disease

ECG Condition Yes (cases) No (controls) Total

> 0.1 ST depression 8 10 18

≤ 0.1 ST depression 4 11 15

Total 12 21 33
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Example: Female and Coronary Artery Disease

> Female.CAD<-matrix(c(8,10,4,11),nrow=2,byrow=T)

> fisher.test(Female.CAD)

Fisher’s Exact Test for Count Data

data: Female.CAD

p-value = 0.4688

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.4113675 12.9927377

sample estimates:

odds ratio

2.147678
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Example: Coronary Artery Disease: Male

Table 35: Retrospective study: ECG and coronary heart

disease for male

Male Coronary Artery Disease

ECG Condition Yes (cases) No (controls) Total

> 0.1 ST depression 21 6 27

≤ 0.1 ST depression 9 9 18

Total 30 15 45
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Example: Male and Coronary Artery Disease

> Male.CAD<-matrix(c(21,6,9,9),nrow=2,byrow=T)

> fisher.test(Male.CAD)

Fisher’s Exact Test for Count Data

data: Male.CAD

p-value = 0.1049

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.8034904 15.6456384

sample estimates:

odds ratio

3.395449
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Example: Coronary Artery Disease: Male

1. What’s Wrong?

2. Is ECG associated with CAD?

3. Is Gender associated with CAD?

4. Do female and male have the same odds ratio?

5. Wha’t the “common odds ratio”?
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Stratified Categorical Data:

The (Cochran) Mantel-Haenszel Test
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Confounding Variable

1. A confounding variable is a variable that is associated with both

the disease and the exposure variable.

2. Such a variable must usually be controlled for before

disease-exposure relationship.
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Confounding Variables and stratification

1. The analysis of disease-exposure relationships in separate

sub-groups of the data, where the sub-groups are defined by one or

more potential confounders, referred to as stratification.

2. The sub-groups themselves are referred to as strata.

3. In general the data will be stratified into k sub-groups according to

one or more confounding variables to make the units within a

stratum as homogeneous as possible.

4. The data for each stratum consist of a 2× 2 contingency table, as

in Table 36, relating exposure to disease.
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Confounding Variables and Stratification

Stratified 2× 2 Table

Table 36: 2× 2 Table of disease and exposure in the ith stratum,

i = 1, 2, . . . , k.

Disease will Disease will Total

develop not develop

Risk factor present

(Exposure: Yes +)
Oi = ai bi ai + bi = n1.i

Risk factor absent

(Exposure: No -)
ci di ci + di = n2.i

Total ai + ci = n.1i bi + di = n.2i ai + bi + ci + di = ni
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Stratified 2× 2 Table

1. Based on Fisher’s exact test within each stratum, the distribution of

ai follows a hypergeometric distribution.

2. The test procedure will be based on a comparison of the observed

number of units in the (1, 1) cell of each stratum (denoted by

Oi = ai) with the expected number of units in that cell (denoted by

Ei).

3. The test procedure is the same regardless of the order of the rows

and columns, that is, which row (or column) is designated as first

row (or column) is arbitrary.
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Mantel-Haenszel Test

The expected value of Oi and variance of Oi is

Ei = E(Oi) =
(ai + bi)(ai + ci)

ni
(122)

Vi = Var(Oi) =
(ai + bi)(ci + di)(ai + ci)(bi + di)

n2
i (ni − 1)

(123)
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Mantel-Haenszel Test for Association

over Different Strata

Mantel-Haenszel Test is used to assess the association between a

dichotomous disease and a dichotomous exposure variable after

controlling for one or more confounding variables.
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Mantel-Haenszel Test for Association

over Different Strata

Under H0, there is no association between disease and exposure, then

let

O =
k
∑
i=1

Oi =
k
∑
i=1

ai (124)

E =
k
∑
i=1

Ei =
k
∑
i=1

(ai + bi)(ai + ci)
ni

(125)

V =
k
∑
i=1

Vi =
k
∑
i=1

(ai + bi)(ci + di)(ai + ci)(bi + di)
n2

i (ni − 1)
(126)

X2
MH =

( | O− E | − 0.5)2

V
asym
∼ χχχ2

1 (127)
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Mantel-Haenszel Test for Association

over Different Strata

1. Under H0 X2
MH asymptotically follows chi-squared distribution with

1 degree of freedom.

2. For two-sided test with significance level α, we reject H0 if

X2
MH > χχχ2

1,1−α.

3. p-value = Pr(χχχ2
1 ≥ X2

MH)
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Interaction Effect: Confounder and Effect Modifier

1. We stratify the study population into k strata according to the

confounding variable, confounder C.

2. If the underling (true) odds ratio is different across the k strata,

then there is said to be interaction or effect modification between

risk factor and confounder.

3. Then the confounder C is referred to as an effect modifier.
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Mantel-Haenszel Test:

Chi-square Test for Homogeneity of Odds Ratios over

Different Strata (Woolf’s Method)

1. The Mantel-Haenszel test provides a test of significance of the

relationship between disease and exposure.

2. If we reject the null hypothesis in Mantel-Haenszel test, there exist

association of disease and risk factor.
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Mantel-Haenszel Test:

Chi-square Test for Homogeneity of Odds Ratios over

Different Strata (Woolf’s Method)

1. Let ORi is underling odds ratio in the ith stratum.

2. To test the hypothesis

H0 : OR1 = OR2 = · · · = ORk; (128)

vs. HA : at least two of the ORi are significant different (129)

3. This is to test whether a common odds ratio (homogeneity) exist

when there is association of disease and risk factor given controlling

the confounding factor with stratification.
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Mantel-Haenszel Test:

Chi-square Test for Homogeneity of Odds Ratios

over Different Strata (Woolf’s Method)

The chi-square test for homogeneity is calculated as following:
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Chi-square Test for Homogeneity of Odds Ratios

over Different Strata (Woolf’s Method)

log(ÔRi) = log
(aidi

bici

)
(130)[

Var
(
log(ÔRi)

)]−1
= wi =

(
1
ai

+
1
bi

+
1
ci

+
1
di

)−1
(131)

log OR =
∑k

i=1 wi log(ÔRi)

∑k
i=1 wi

(132)

X2
HOM =

k
∑
i=1

wi (log ÔRi − log OR)2 (133)

X2
HOM

asym
∼ χχχ2

k−1 (134)
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Chi-square Test for Homogeneity of Odds Ratios

over Different Strata (Breslow-Day Method in SAS)

Similar to Woolf’s method
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Mantel-Haenszel Test:

Chi-square Test for Homogeneity of Odds Ratios

over Different Strata (Woolf’s Method)

That is, X2
MOH asymptotically follows chi-squared distribution with

(k− 1) degree of freedom under H0. For two-sided test with

significance level α, we reject H0 : homogeneity of common odds ratio,

if X2
MH > χχχ2

k−1,1−α.
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Mantel-Haenszel Estimator of

the Common Odds Ratio for Stratified Data

1. The Mantel-Haenszel test provides a test of significance of the

relationship between disease and exposure. If we reject the null

hypothesis in Mantel-Haenszel test, there exist association of disease

and risk factor.

2. Then we use chi-square test for homogeneity of odds ratios. If we

do not reject the null hypothesis of common odds ratio across

stratum, we would like to know the common odds ratio.

3. However, chi-square test for homogeneity of odds ratios does not

given a measure of the strength of the association.
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Mantel-Haenszel Estimator of

the Common Odds Ratio for Stratified Data

In general, it is important to test for homogeneity of the

stratum-specific odds ratio. If the true odds ratios are different, then it

makes no sense to obtain a pooled-odds ratio estimate.
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Mantel-Haenszel Estimator of

the Common Odds Ratio for Stratified Data

In a collection of k× 2× 2 contingency tables, where the ith table,

Table 37, corresponding to the ith stratum.

Table 37: Mantel-Haenszel Test: The ith Observed 2× 2 Table

ith Stratum Variable Y
Variable X level 1 level 2 Total

level 1 ai bi ai + bi = n1.i
level 2 ci di ci + di = n2.i
Total a + c = n.1i b + d = n.2i a + b + c + d = n..i = ni
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Common Odds Ratio for Stratified Data

ÔRMH = ∑i(aidi)/ni
∑i(bici)/ni

(135)

Var(log ÔRMH) = ∑ πiRi
2(∑i Ri)2 + ∑(πiSi + QiRi)

2(∑ Ri)(∑ Si)
+ ∑ QiSi

2(∑ Si)2

(136)

where πi =
ai + di

ni
, Qi =

bi + ci
ni

, (137)

Ri =
ai di
ni

, Si =
bi ci
ni

(138)

(1− α)× 100%C.I. :

exp
[

log ÔRMH ± Z1−α/2

√
Var(log ÔRMH)

]
(139)
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Mantel-Haenszel Estimator of the Common Odds

Ratio for Stratified Data

Alternatively, we can use the equation (132) as the common odds ratio

estimator.

log(ÔRi) = log
(aidi

bici

)
(140)[

Var
(
log(ÔRi)

)]−1
= wi =

(
1
ai

+
1
bi

+
1
ci

+
1
di

)−1
(141)

log OR =
∑k

i=1 wi log(ÔRi)

∑k
i=1 wi

(142)
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Example: Coronary Artery Disease

1. For the Table of “Gender and Disease”, Pearson’s Chi-Square Test

X2 is 7.035, p-value is 0.008.

2. For female, ECG > 0.1 ST depression and Disease, X2 is 1.117,

p-value is 0.290. OR is 2.2.

3. For male: ECG > 0.1 ST depression and Disease, X2 is 3.750,

p-value is 0.053. OR is 3.5.
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Example: Coronary Artery Disease

4. X2
MH is 4.503 (1 df) and p-value is 0.034.

5. There is association between ECG and disease after controlling

gender.

6. X2
HOM is 0.215 (1 df) and p-value is 0.643.

7. A common odds ratio exists between ECG and disease.

8. The common odds ration, ÔRMH, is 2.847, and 95% C.I. is (1.083,

7.482).
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Notes: Stratification

1. The fact that a marginal table (i.e. pool over gender) may exhibit

an association completed different from a partial tables (individual

tables for male and female) is known as Simpson’s Paradox

(Simpson 1951).

2. We should analyze the data following the design of original study.
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Example: Coronary Artery Disease

> CAD <-array(c(8, 4, 10, 11,

21, 6, 9, 9,),

dim = c(2, 2, 2),

dimnames = list(

EKG = c(">=0.1 ST Dep", "< 0.1 ST Dep"),

Response = c("Case", "Control"),

Penicillin.Level = c("Female", "Male")))
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Example: Coronary Artery Disease

> CAD

, , Penicillin.Level = Female

Response

EKG Case Control

>=0.1 ST Dep 8 10

< 0.1 ST Dep 4 11

, , Penicillin.Level = Male

Response

EKG Case Control

>=0.1 ST Dep 21 9

< 0.1 ST Dep 6 9
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Example: Coronary Artery Disease

> mantelhaen.test(CAD,correct=FALSE)

Mantel-Haenszel chi-squared test without continuity correction

data: CAD

Mantel-Haenszel X-squared = 4.5026, df = 1, p-value = 0.03384

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.076514 7.527901

sample estimates:

common odds ratio

2.846734
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Example: Coronary Artery Disease

> mantelhaen.test(CAD)

Mantel-Haenszel chi-squared test with continuity correction

data: CAD

Mantel-Haenszel X-squared = 3.5485, df = 1, p-value = 0.0596

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

1.076514 7.527901

sample estimates:

common odds ratio

2.846734
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Example: Coronary Artery Disease

> mantelhaen.test(CAD, exact=TRUE)

Exact conditional test of independence in 2 x 2 x k tables

data: CAD

S = 29, p-value = 0.05418

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

0.9711574 8.4256184

sample estimates:

common odds ratio

2.790832
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Example: Coronary Artery Disease

> woolf <- function(x) {

x <- x + 1 / 2

k <- dim(x)[3]

or <- apply(x, 3,

function(x)(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

w <- apply(x, 3,

function(x) 1 / sum(1 / x))

1 - pchisq(sum(w * (log(or)

- weighted.mean(log(or), w)) ^ 2), k - 1)

}
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Example: Coronary Artery Disease

> woolf(CAD)

[1] 0.6270651 # p-value
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Example: Coronary Artery Disease

title "Stratified Retrospective Study: kx2x2 Table";

data ca;

input gender $ ECG $ disease $ count ;

cards;

female <0.1 yes 4

female <0.1 no 11

female >=0.1 yes 8

female >=0.1 no 10

male <0.1 yes 9

male <0.1 no 9

male >=0.1 yes 21

male >=0.1 no 6;
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Example: Coronary Artery Disease

proc freq;

weight count;

tables gender*disease / nocol nopct chisq relrisk ;

tables gender*ECG*disease / nocol nopct cmh chisq relrisk;

tables ecg*disease / exact relrisk ;

run;
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Example: Coronary Artery Disease

Table of gender by disease

gender disease

Frequency|

Row Pct |no |yes | Total

---------+--------+--------+

female | 21 | 12 | 33

| 63.64 | 36.36 |

---------+--------+--------+

male | 15 | 30 | 45

| 33.33 | 66.67 |

---------+--------+--------+

Total 36 42 78

c©Jeff Lin, MD., PhD. Analysis of Contingency Table, 273



Example: Coronary Artery Disease

Statistics for Table of gender by disease

Statistic DF Value Prob

-------------------------------------------------------

Chi-Square 1 7.0346 0.0080

Likelihood Ratio Chi-Square 1 7.1209 0.0076

Continuity Adj. Chi-Square 1 5.8681 0.0154

Fisher’s Exact Test

----------------------------------

Two-sided Pr <= P 0.0114

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

--------------------------------------------------------

Case-Control (Odds Ratio) 3.5000 1.3646 8.9771
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Example: Coronary Artery Disease

Controlling for gender=female

ECG disease

Frequency|

Row Pct |no |yes | Total

---------+--------+--------+

<0.1 | 11 | 4 | 15

| 73.33 | 26.67 |

---------+--------+--------+

>=0.1 | 10 | 8 | 18

| 55.56 | 44.44 |

---------+--------+--------+

Total 21 12 33
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Example: Coronary Artery Disease

Controlling for gender=female

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 1.1175 0.2905

Fisher’s Exact Test

----------------------------------

Two-sided Pr <= P 0.4688

Type of Study Value 95% Confidence Limits

-------------------------------------------------------

Case-Control (Odds Ratio) 2.2000 0.5036 9.6107
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Example: Coronary Artery Disease

Controlling for gender=male

ECG disease

fREQUENCY|

Row Pct |no |yes | Total

---------+--------+--------+

<0.1 | 9 | 9 | 18

| 50.00 | 50.00 |

---------+--------+--------+

>=0.1 | 6 | 21 | 27

| 22.22 | 77.78 |

---------+--------+--------+

Total 15 30 45
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Example: Coronary Artery Disease

Controlling for gender=male

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 3.7500 0.0528

Fisher’s Exact Test

----------------------------------

Two-sided Pr <= P 0.1049

Type of Study Value 95% Confidence Limits

-------------------------------------------------------

Case-Control (Odds Ratio) 3.5000 0.9587 12.7775
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Example: Coronary Artery Disease

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

---------------------------------------------------------

3 General Association 1 4.5026 0.0338
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Example: Coronary Artery Disease

Type of Study Method Value 95% Confidence Limits

-----------------------------------------------------------

Case-Control Mantel-Haenszel 2.8467 1.0765 7.5279
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Example: Coronary Artery Disease

Breslow-Day Test for

Homogeneity of the Odds Ratios

------------------------------

Chi-Square 0.2155

DF 1

Pr > ChiSq 0.6425

Total Sample Size = 78
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