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Introduction

From helping to assess the value of new medical treatments to evaluating the factors
that affect our opinions on various controversial issues, scientists today are finding
myriad uses for methods of analyzing categorical data. It’s primarily for these
scientists and their collaborating statisticians – as well as those training to perform
these roles – that this book was written. The book provides an introduction to methods
for analyzing categorical data. It emphasizes the ideas behind the methods and their
interpretations, rather than the theory behind them.

This first chapter reviews the probability distributions most often used for categor-
ical data, such as the binomial distribution. It also introduces maximum likelihood,
the most popular method for estimating parameters. We use this estimate and a
related likelihood function to conduct statistical inference about proportions. We
begin by discussing the major types of categorical data and summarizing the book’s
outline.

1.1 CATEGORICAL RESPONSE DATA

Let us first define categorical data. A categorical variable has a measurement scale
consisting of a set of categories. For example, political philosophy may be measured
as “liberal,” “moderate,” or “conservative”; choice of accommodation might use
categories “house,” “condominium,” “apartment”; a diagnostic test to detect e-mail
spam might classify an incoming e-mail message as “spam” or “legitimate e-mail.”

Categorical scales are pervasive in the social sciences for measuring attitudes and
opinions. Categorical scales also occur frequently in the health sciences, for measuring
responses such as whether a patient survives an operation (yes, no), severity of an
injury (none, mild, moderate, severe), and stage of a disease (initial, advanced).

Although categorical variables are common in the social and health sciences, they
are by no means restricted to those areas. They frequently occur in the behavioral
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sciences (e.g., categories “schizophrenia,” “depression,” “neurosis” for diagnosis of
type of mental illness), public health (e.g., categories “yes” and “no” for whether
awareness of AIDS has led to increased use of condoms), zoology (e.g., categories
“fish,” “invertebrate,” “reptile” for alligators’ primary food choice), education (e.g.,
categories “correct” and “incorrect” for students’ responses to an exam question),
and marketing (e.g., categories “Brand A,” “Brand B,” and “Brand C” for consumers’
preference among three leading brands of a product). They even occur in highly
quantitative fields such as engineering sciences and industrial quality control, when
items are classified according to whether or not they conform to certain standards.

1.1.1 Response/Explanatory Variable Distinction

Most statistical analyses distinguish between response variables and explanatory
variables. For instance, regression models describe how the distribution of a
continuous response variable, such as annual income, changes according to levels
of explanatory variables, such as number of years of education and number of years
of job experience. The response variable is sometimes called the dependent vari-
able or Y variable, and the explanatory variable is sometimes called the independent
variable or X variable.

The subject of this text is the analysis of categorical response variables. The
categorical variables listed in the previous subsection are response variables. In some
studies, they might also serve as explanatory variables. Statistical models for cate-
gorical response variables analyze how such responses are influenced by explanatory
variables. For example, a model for political philosophy could use predictors such as
annual income, attained education, religious affiliation, age, gender, and race. The
explanatory variables can be categorical or continuous.

1.1.2 Nominal/Ordinal Scale Distinction

Categorical variables have two main types of measurement scales. Many categorical
scales have a natural ordering. Examples are attitude toward legalization of abortion
(disapprove in all cases, approve only in certain cases, approve in all cases), appraisal
of a company’s inventory level (too low, about right, too high), response to a medical
treatment (excellent, good, fair, poor), and frequency of feeling symptoms of anxiety
(never, occasionally, often, always). Categorical variables having ordered scales are
called ordinal variables.

Categorical variables having unordered scales are called nominal variables. Exam-
ples are religious affiliation (categories Catholic, Jewish, Protestant, Muslim, other),
primary mode of transportation to work (automobile, bicycle, bus, subway, walk),
favorite type of music (classical, country, folk, jazz, rock), and favorite place to shop
(local mall, local downtown, Internet, other).

For nominal variables, the order of listing the categories is irrelevant. The statistical
analysis should not depend on that ordering. Methods designed for nominal variables
give the same results no matter how the categories are listed. Methods designed for
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ordinal variables utilize the category ordering. Whether we list the categories from
low to high or from high to low is irrelevant in terms of substantive conclusions,
but results of ordinal analyses would change if the categories were reordered in any
other way.

Methods designed for ordinal variables cannot be used with nominal variables,
since nominal variables do not have ordered categories. Methods designed for nominal
variables can be used with nominal or ordinal variables, since they only require a
categorical scale. When used with ordinal variables, however, they do not use the
information about that ordering. This can result in serious loss of power. It is usually
best to apply methods appropriate for the actual scale.

Categorical variables are often referred to as qualitative, to distinguish them from
numerical-valued or quantitative variables such as weight, age, income, and num-
ber of children in a family. However, we will see it is often advantageous to treat
ordinal data in a quantitative manner, for instance by assigning ordered scores to the
categories.

1.1.3 Organization of this Book

Chapters 1 and 2 describe some standard methods of categorical data analysis devel-
oped prior to about 1960. These include basic analyses of association between two
categorical variables.

Chapters 3–7 introduce models for categorical responses. These models resemble
regression models for continuous response variables. In fact, Chapter 3 shows they
are special cases of a generalized class of linear models that also contains the usual
normal-distribution-based regression models. The main emphasis in this book is on
logistic regression models. Applying to response variables that have two outcome
categories, they are the focus of Chapters 4 and 5. Chapter 6 presents extensions to
multicategory responses, both nominal and ordinal. Chapter 7 introduces loglinear
models, which analyze associations among multiple categorical response variables.

The methods in Chapters 1–7 assume that observations are independent.
Chapters 8–10 discuss logistic regression models that apply when some observa-
tions are correlated, such as with repeated measurement of subjects in longitudinal
studies. An important special case is matched pairs that result from observing a cat-
egorical response for the same subjects at two separate times. The book concludes
(Chapter 11) with a historical overview of categorical data methods.

Most methods for categorical data analysis require extensive computations. The
Appendix discusses the use of SAS statistical software. A companion website
for the book, http://www.stat.ufl.edu/∼aa/intro-cda/software.html, discusses other
software.

1.2 PROBABILITY DISTRIBUTIONS FOR CATEGORICAL DATA

Inferential statistical analyses require assumptions about the probability distribu-
tion of the response variable. For regression and analysis of variance (ANOVA)



“c01” — 2007/1/29 — page 4 — #4

4 INTRODUCTION

models for continuous data, the normal distribution plays a central role. This sec-
tion presents the key distributions for categorical data: the binomial and multinomial
distributions.

1.2.1 Binomial Distribution

Often, categorical data result from n independent and identical trials with two possible
outcomes for each, referred to as “success” and “failure.” These are generic labels,
and the “success” outcome need not be a preferred result. Identical trials means that
the probability of success is the same for each trial. Independent trials means the
response outcomes are independent random variables. In particular, the outcome of
one trial does not affect the outcome of another. These are often called Bernoulli
trials. Let π denote the probability of success for a given trial. Let Y denote the
number of successes out of the n trials.

Under the assumption of n independent, identical trials, Y has the binomial distri-
bution with index n and parameter π . You are probably familiar with this distribution,
but we review it briefly here. The probability of outcome y for Y equals

P(y) = n!
y!(n − y)!π

y(1 − π)n−y, y = 0, 1, 2, . . . , n (1.1)

To illustrate, suppose a quiz has 10 multiple-choice questions, with five possible
answers for each. A student who is completely unprepared randomly guesses the
answer for each question. Let Y denote the number of correct responses. The proba-
bility of a correct response is 0.20 for a given question, so n = 10 and π = 0.20. The
probability of y = 0 correct responses, and hence n − y = 10 incorrect ones, equals

P(0) = [10!/(0!10!)](0.20)0(0.80)10 = (0.80)10 = 0.107.

The probability of 1 correct response equals

P(1) = [10!/(1!9!)](0.20)1(0.80)9 = 10(0.20)(0.80)9 = 0.268.

Table 1.1 shows the entire distribution. For contrast, it also shows the distributions
when π = 0.50 and when π = 0.80.

The binomial distribution for n trials with parameter π has mean and standard
deviation

E(Y ) = μ = nπ, σ = √
nπ(1 − π)

The binomial distribution in Table 1.1 has μ = 10(0.20) = 2.0 and σ =√[10(0.20)(0.80)] = 1.26.
The binomial distribution is always symmetric when π = 0.50. For fixed n, it

becomes more skewed as π moves toward 0 or 1. For fixed π , it becomes more
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Table 1.1. Binomial Distribution with n = 10 and π = 0.20, 0.50, and 0.80. The
Distribution is Symmetric when π = 0.50

y P (y) when π = 0.20 P(y) when π = 0.50 P(y) when π = 0.80

0 0.107 0.001 0.000
1 0.268 0.010 0.000
2 0.302 0.044 0.000
3 0.201 0.117 0.001
4 0.088 0.205 0.005
5 0.027 0.246 0.027
6 0.005 0.205 0.088
7 0.001 0.117 0.201
8 0.000 0.044 0.302
9 0.000 0.010 0.268
10 0.000 0.001 0.107

bell-shaped as n increases. When n is large, it can be approximated by a normal
distribution with μ = nπ and σ = √[nπ(1 − π)]. A guideline is that the expected
number of outcomes of the two types, nπ and n(1 − π), should both be at least about
5. For π = 0.50 this requires only n ≥ 10, whereas π = 0.10 (or π = 0.90) requires
n ≥ 50. When π gets nearer to 0 or 1, larger samples are needed before a symmetric,
bell shape occurs.

1.2.2 Multinomial Distribution

Some trials have more than two possible outcomes. For example, the outcome for a
driver in an auto accident might be recorded using the categories “uninjured,” “injury
not requiring hospitalization,” “injury requiring hospitalization,” “fatality.” When
the trials are independent with the same category probabilities for each trial, the
distribution of counts in the various categories is the multinomial.

Let c denote the number of outcome categories. We denote their probabilities by
{π1, π2, . . . , πc}, where

∑
j πj = 1. Forn independent observations, the multinomial

probability that n1 fall in category 1, n2 fall in category 2, . . . , nc fall in category c,
where

∑
j nj = n, equals

P(n1, n2, . . . , nc) =
(

n!
n1!n2! · · · nc!

)
π

n1
1 π

n2
2 · · · πnc

c

The binomial distribution is the special case with c = 2 categories. We will not need
to use this formula, as we will focus instead on sampling distributions of useful statis-
tics computed from data assumed to have the multinomial distribution. We present
it here merely to show how the binomial formula generalizes to several outcome
categories.
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The multinomial is a multivariate distribution. The marginal distribution of the
count in any particular category is binomial. For category j , the count nj has mean
nπj and standard deviation

√[nπj (1 − πj )]. Most methods for categorical data
assume the binomial distribution for a count in a single category and the multinomial
distribution for a set of counts in several categories.

1.3 STATISTICAL INFERENCE FOR A PROPORTION

In practice, the parameter values for the binomial and multinomial distributions are
unknown. Using sample data, we estimate the parameters. This section introduces
the estimation method used in this text, called maximum likelihood. We illustrate this
method for the binomial parameter.

1.3.1 Likelihood Function and Maximum Likelihood Estimation

The parametric approach to statistical modeling assumes a family of probability dis-
tributions, such as the binomial, for the response variable. For a particular family, we
can substitute the observed data into the formula for the probability function and then
view how that probability depends on the unknown parameter value. For example,
in n = 10 trials, suppose a binomial count equals y = 0. From the binomial formula
(1.1) with parameter π , the probability of this outcome equals

P(0) = [10!/(0!)(10!)]π0(1 − π)10 = (1 − π)10

This probability is defined for all the potential values of π between 0 and 1.
The probability of the observed data, expressed as a function of the parameter,

is called the likelihood function. With y = 0 successes in n = 10 trials, the bino-
mial likelihood function is �(π) = (1 − π)10. It is defined for π between 0 and
1. From the likelihood function, if π = 0.40 for instance, the probability that
Y = 0 is �(0.40) = (1 − 0.40)10 = 0.006. Likewise, if π = 0.20 then �(0.20) =
(1 − 0.20)10 = 0.107, and if π = 0.0 then �(0.0) = (1 − 0.0)10 = 1.0. Figure 1.1
plots this likelihood function.

The maximum likelihood estimate of a parameter is the parameter value for which
the probability of the observed data takes its greatest value. It is the parameter value at
which the likelihood function takes its maximum. Figure 1.1 shows that the likelihood
function �(π) = (1 − π)10 has its maximum at π = 0.0. Thus, when n = 10 trials
have y = 0 successes, the maximum likelihood estimate of π equals 0.0. This means
that the result y = 0 in n = 10 trials is more likely to occur when π = 0.00 than when
π equals any other value.

In general, for the binomial outcome of y successes in n trials, the maximum like-
lihood estimate of π equals p = y/n. This is the sample proportion of successes
for the n trials. If we observe y = 6 successes in n = 10 trials, then the maxi-
mum likelihood estimate of π equals p = 6/10 = 0.60. Figure 1.1 also plots the
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Figure 1.1. Binomial likelihood functions for y = 0 successes and for y = 6 successes in n = 10 trials.

likelihood function when n = 10 with y = 6, which from formula (1.1) equals �(π) =
[10!/(6!)(4!)]π6(1 − π)4. The maximum value occurs when π = 0.60. The result
y = 6 in n = 10 trials is more likely to occur when π = 0.60 than when π equals
any other value.

Denote each success by a 1 and each failure by a 0. Then the sample proportion
equals the sample mean of the results of the individual trials. For instance, for four
failures followed by six successes in 10 trials, the data are 0,0,0,0,1,1,1,1,1,1, and the
sample mean is

p = (0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 1)/10 = 0.60.

Thus, results that apply to sample means with random sampling, such as the Central
Limit Theorem (large-sample normality of its sampling distribution) and the Law of
Large Numbers (convergence to the population mean as n increases) apply also to
sample proportions.

The abbreviation ML symbolizes the term maximum likelihood. The ML estimate
is often denoted by the parameter symbol with a ˆ(a “hat”) over it. The ML estimate
of the binomial parameter π , for instance, is often denoted by π̂ , called pi-hat.

Before we observe the data, the value of the ML estimate is unknown. The estimate
is then a variate having some sampling distribution. We refer to this variate as an
estimator and its value for observed data as an estimate. Estimators based on the
method of maximum likelihood are popular because they have good large-sample
behavior. Most importantly, it is not possible to find good estimators that are more
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precise, in terms of having smaller large-sample standard errors. Also, large-sample
distributions of ML estimators are usually approximately normal. The estimators
reported in this text use this method.

1.3.2 Significance Test About a Binomial Proportion

For the binomial distribution, we now use the ML estimator in statistical inference
for the parameter π . The ML estimator is the sample proportion, p. The sampling
distribution of the sample proportion p has mean and standard error

E(p) = π, σ(p) =
√

π(1 − π)

n

As the number of trials n increases, the standard error of p decreases toward zero; that
is, the sample proportion tends to be closer to the parameter value π . The sampling
distribution of p is approximately normal for large n. This suggests large-sample
inferential methods for π .

Consider the null hypothesis H0: π = π0 that the parameter equals some fixed
value, π0. The test statistic

z = p − π0√
π0(1 − π0)

n

(1.2)

divides the difference between the sample proportion p and the null hypothesis value
π0 by the null standard error of p. The null standard error is the one that holds under
the assumption that the null hypothesis is true. For large samples, the null sampling
distribution of the z test statistic is the standard normal – the normal distribution
having a mean of 0 and standard deviation of 1. The z test statistic measures the
number of standard errors that the sample proportion falls from the null hypothesized
proportion.

1.3.3 Example: Survey Results on Legalizing Abortion

Do a majority, or minority, of adults in the United States believe that a pregnant woman
should be able to obtain an abortion? Let π denote the proportion of the American
adult population that responds “yes” to the question, “Please tell me whether or not
you think it should be possible for a pregnant woman to obtain a legal abortion if she
is married and does not want any more children.” We test H0: π = 0.50 against the
two-sided alternative hypothesis, Ha : π �= 0.50.

This item was one of many included in the 2002 General Social Survey. This
survey, conducted every other year by the National Opinion Research Center (NORC)
at the University of Chicago, asks a sample of adult American subjects their opinions
about a wide variety of issues. (It is a multistage sample, but has characteristics
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similar to a simple random sample.) You can view responses to surveys since 1972
at http://sda.berkeley.edu/GSS. Of 893 respondents to this question in 2002, 400
replied “yes” and 493 replied “no”.

The sample proportion of “yes” responses was p = 400/893 = 0.448. For a sam-
ple of size n = 893, the null standard error of p equals

√[(0.50)(0.50)/893] =
0.0167. The test statistic is

z = (0.448 − 0.50)/0.0167 = −3.1

The two-sided P -value is the probability that the absolute value of a standard normal
variate exceeds 3.1, which is P = 0.002. There is strong evidence that, in 2002,
π < 0.50, that is, that fewer than half of Americans favored legal abortion in this
situation. In some other situations, such as when the mother’s health was endangered,
an overwhelming majority favored legalized abortion. Responses depended strongly
on the question wording.

1.3.4 Confidence Intervals for a Binomial Proportion

A significance test merely indicates whether a particular value for a parameter (such
as 0.50) is plausible. We learn more by constructing a confidence interval to determine
the range of plausible values. Let SE denote the estimated standard error of p. A large-
sample 100(1 − α)% confidence interval for π has the formula

p ± zα/2(SE), with SE = √
p(1 − p)/n (1.3)

where zα/2 denotes the standard normal percentile having right-tail probability
equal to α/2; for example, for 95% confidence, α = 0.05, zα/2 = z0.025 = 1.96.
This formula substitutes the sample proportion p for the unknown parameter π in
σ(p) = √[π(1 − π)/n].

For the attitudes about abortion example just discussed, p = 0.448 for n = 893
observations. The 95% confidence interval equals

0.448 ± 1.96
√

(0.448)(0.552)/893, which is 0.448 ± 0.033, or (0.415, 0.481)

We can be 95% confident that the population proportion of Americans in 2002 who
favored legalized abortion for married pregnant women who do not want more children
is between 0.415 and 0.481.

Formula (1.3) is simple. Unless π is close to 0.50, however, it does not work well
unless n is very large. Consider its actual coverage probability, that is, the probability
that the method produces an interval that captures the true parameter value. This may
be quite a bit less than the nominal value (such as 95%). It is especially poor when π

is near 0 or 1.
A better way to construct confidence intervals uses a duality with significance tests.

This confidence interval consists of all values π0 for the null hypothesis parameter
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that are judged plausible in the z test of the previous subsection. A 95% confidence
interval contains all values π0 for which the two-sided P -value exceeds 0.05. That is,
it contains all values that are “not rejected” at the 0.05 significance level. These are the
null values that have test statistic z less than 1.96 in absolute value. This alternative
method does not require estimation of π in the standard error, since the standard error
in the test statistic uses the null value π0.

To illustrate, suppose a clinical trial to evaluate a new treatment has nine successes
in the first 10 trials. For a sample proportion of p = 0.90 based on n = 10, the value
π0 = 0.596 for the null hypothesis parameter leads to the test statistic value

z = (0.90 − 0.596)/
√

(0.596)(0.404)/10 = 1.96

and a two-sided P -value of P = 0.05. The value π0 = 0.982 leads to

z = (0.90 − 0.982)/
√

(0.982)(0.018)/100 = −1.96

and also a two-sided P -value of P = 0.05. (We explain in the following paragraph
how to find 0.596 and 0.982.) All π0 values between 0.596 and 0.982 have |z| < 1.96
and P > 0.05. So, the 95% confidence interval for π equals (0.596, 0.982). By
contrast, the method (1.3) using the estimated standard error gives confidence interval
0.90 ± 1.96

√[(0.90)(0.10)/10], which is (0.714, 1.086). However, it works poorly
to use the sample proportion as the midpoint of the confidence interval when the
parameter may fall near the boundary values of 0 or 1.

For given p and n, the π0 values that have test statistic value z = ±1.96 are the
solutions to the equation

| p − π0 |√
π0(1 − π0)/n

= 1.96

for π0. To solve this for π0, squaring both sides gives an equation that is quadratic
in π0 (see Exercise 1.18). The results are available with some software, such as an R

function available at http://www.stat.ufl.edu/∼aa/cda/software.html.
Here is a simple alternative interval that approximates this one, having a similar

midpoint in the 95% case but being a bit wider: Add 2 to the number of successes
and 2 to the number of failures (and thus 4 to n) and then use the ordinary formula
(1.3) with the estimated standard error. For example, with nine successes in 10 trials,
you find p = (9 + 2)/(10 + 4) = 0.786, SE = √[0.786(0.214)/14] = 0.110, and
obtain confidence interval (0.57, 1.00). This simple method, sometimes called the
Agresti–Coull confidence interval, works well even for small samples.1

1A. Agresti and B. Coull, Am. Statist., 52: 119–126, 1998.
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1.4 MORE ON STATISTICAL INFERENCE FOR DISCRETE DATA

We have just seen how to construct a confidence interval for a proportion using an
estimated standard error or by inverting results of a significance test using the null
standard error. In fact, there are three ways of using the likelihood function to conduct
inference (confidence intervals and significance tests) about parameters. We finish the
chapter by summarizing these methods. They apply to any parameter in a statistical
model, but we will illustrate using the binomial parameter.

1.4.1 Wald, Likelihood-Ratio, and Score Inference

Let β denote an arbitrary parameter. Consider a significance test of H0: β = β0 (such
as H0: β = 0, for which β0 = 0).

The simplest test statistic uses the large-sample normality of the ML estimator β̂.
Let SE denote the standard error of β̂, evaluated by substituting the ML estimate for
the unknown parameter in the expression for the true standard error. (For example, for
the binomial parameter π , SE = √[p(1 − p)/n].) When H0 is true, the test statistic

z = (β̂ − β0)/SE

has approximately a standard normal distribution. Equivalently, z2 has approximately
a chi-squared distribution with df = 1. This type of statistic, which uses the standard
error evaluated at the ML estimate, is called a Wald statistic. The z or chi-squared test
using this test statistic is called a Wald test.

You can refer z to the standard normal table to get one-sided or two-sided P -
values. Equivalently, for the two-sided alternative H0: β �= β0 , z2 has a chi-squared
distribution with df = 1. The P -value is then the right-tail chi-squared probability
above the observed value. The two-tail probability beyond ±z for the standard normal
distribution equals the right-tail probability above z2 for the chi-squared distribution
with df = 1. For example, the two-tail standard normal probability of 0.05 that
falls below −1.96 and above 1.96 equals the right-tail chi-squared probability above
(1.96)2 = 3.84 when df = 1.

An alternative test uses the likelihood function through the ratio of two maximiza-
tions of it: (1) the maximum over the possible parameter values that assume the null
hypothesis, (2) the maximum over the larger set of possible parameter values, per-
mitting the null or the alternative hypothesis to be true. Let �0 denote the maximized
value of the likelihood function under the null hypothesis, and let �1 denote the max-
imized value more generally. For instance, when there is a single parameter β, �0 is
the likelihood function calculated at β0, and �1 is the likelihood function calculated
at the ML estimate β̂. Then �1 is always at least as large as �0, because �1 refers to
maximizing over a larger set of possible parameter values.

The likelihood-ratio test statistic equals

−2 log(�0/�1)
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In this text, we use the natural log, often abbreviated on calculators by LN. If the maxi-
mized likelihood is much larger when the parameters are not forced to satisfy H0, then
the ratio �0/�1 is far below 1. The test statistic −2 log(�0/�1) must be nonnegative,
and relatively small values of �0/�1 yield large values of −2 log(�0/�1) and strong evi-
dence against H0. The reason for taking the log transform and doubling is that it yields
an approximate chi-squared sampling distribution. Under H0: β = β0, the likelihood-
ratio test statistic has a large-sample chi-squared distribution with df = 1. Software
can find the maximized likelihood values and the likelihood-ratio test statistic.

A third possible test is called the score test. We will not discuss the details except
to say that it finds standard errors under the assumption that the null hypothesis holds.
For example, the z test (1.2) for a binomial parameter that uses the standard error√[π0(1 − π0)/n] is a score test.

The Wald, likelihood-ratio, and score tests are the three major ways of constructing
significance tests for parameters in statistical models. For ordinary regression models
assuming a normal distribution for Y , the three tests provide identical results. In other
cases, for large samples they have similar behavior when H0 is true.

When you use any of these tests, the P -value that you find or software reports is
an approximation for the true P -value. This is because the normal (or chi-squared)
sampling distribution used is a large-sample approximation for the true sampling
distribution. Thus, when you report a P -value, it is overly optimistic to use many
decimal places. If you are lucky, the P -value approximation is good to the second
decimal place. So, for a P -value that software reports as 0.028374, it makes more
sense to report it as 0.03 (or, at best, 0.028) rather than 0.028374. An exception is
when the P -value is zero to many decimal places, in which case it is sensible to
report it as P < 0.001 or P < 0.0001. In any case, a P -value merely summarizes the
strength of evidence against the null hypothesis, and accuracy to two or three decimal
places is sufficient for this purpose.

Each method has a corresponding confidence interval. This is based on inverting
results of the significance test: The 95% confidence interval for a parameter β is the set
of β0 values for the significance test of H0: β = β0 such that the P -value is larger than
0.05. For example, the 95% Wald confidence interval is the set of β0 values for which
z = (β̂ − β0)/SE has |z| < 1.96. It equals β̂ ± 1.96(SE). For a binomial proportion,
the score confidence interval is the one discussed in Section 1.3.4 that has endpoints
that are π0 values having P -value 0.05 in the z-test using the null standard error.

1.4.2 Wald, Score, and Likelihood-Ratio Inference for Binomial Parameter

We illustrate the Wald, likelihood-ratio, and score tests by testing H0: π = 0.50
against Ha : π �= 0.50 for the example mentioned near the end of Section 1.3.4 of a
clinical trial that has nine successes in the first 10 trials. The sample proportion is
p = 0.90 based on n = 10.

For the Wald test of H0: π = 0.50, the estimated standard error is SE =√[0.90(0.10)/10] = 0.095. The z test statistic is

z = (0.90 − 0.50)/0.095 = 4.22
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The corresponding chi-squared statistic is (4.22)2 = 17.8 (df = 1). The P -value
<0.001.

For the score test of H0: π = 0.50, the null standard error is
√[0.50(0.50)/10] =

0.158. The z test statistic is

z = (0.90 − 0.50)/0.158 = 2.53

The corresponding chi-squared statistic is (2.53)2 = 6.4 (df = 1). The P -value =
0.011.

Finally, consider the likelihood-ratio test. When H0: π = 0.50 is true, the
binomial probability of the observed result of nine successes is �0 = [10!/9!1!]
(0.50)9(0.50)1 = 0.00977. The likelihood-ratio test compares this to the value
of the likelihood function at the ML estimate of p = 0.90, which is �1 =
[10!/9!1!](0.90)9(0.10)1 = 0.3874. The likelihood-ratio test statistic equals

−2 log(�0/�1) = −2 log(0.00977/0.3874) = −2 log(0.0252) = 7.36

From the chi-squared distribution with df = 1, this statistic has P -value = 0.007.
When the sample size is small to moderate, the Wald test is the least reliable of

the three tests. We should not trust it for such a small n as in this example (n = 10).
Likelihood-ratio inference and score-test based inference are better in terms of actual
error probabilities coming close to matching nominal levels. A marked divergence
in the values of the three statistics indicates that the distribution of the ML estimator
may be far from normality. In that case, small-sample methods are more appropriate
than large-sample methods.

1.4.3 Small-Sample Binomial Inference

For inference about a proportion, the large-sample two-sided z score test and the
confidence interval based on that test (using the null hypothesis standard error) per-
form reasonably well when nπ ≥ 5 and n(1 − π) ≥ 5. When π0 is not near 0.50 the
normal P -value approximation is better for the test with a two-sided alternative than
for a one-sided alternative; a probability that is “too small” in one tail tends to be
approximately counter-balanced by a probability that is “too large” in the other tail.

For small sample sizes, it is safer to use the binomial distribution directly (rather
than a normal approximation) to calculate P -values. To illustrate, consider testing
H0: π = 0.50 against Ha : π > 0.50 for the example of a clinical trial to evaluate
a new treatment, when the number of successes y = 9 in n = 10 trials. The exact
P -value, based on the right tail of the null binomial distribution with π = 0.50, is

P(Y ≥ 9) = [10!/9!1!](0.50)9(0.50)1 + [10!/10!0!](0.50)10(0.50)0 = 0.011

For the two sided alternative Ha : π �= 0.50, the P -value is

P(Y ≥ 9 or Y ≤ 1) = 2 × P(Y ≥ 9) = 0.021
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1.4.4 Small-Sample Discrete Inference is Conservative∗

Unfortunately, with discrete probability distributions, small-sample inference using
the ordinary P -value is conservative. This means that when H0 is true, the P -value
is ≤0.05 (thus leading to rejection of H0 at the 0.05 significance level) not exactly
5% of the time, but typically less than 5% of the time. Because of the discreteness, it
is usually not possible for a P -value to achieve the desired significance level exactly.
Then, the actual probability of type I error is less than 0.05.

For example, consider testing H0: π = 0.50 against Ha : π > 0.50 for the clinical
trial example with y = 9 successes in n = 10 trials. Table 1.1 showed the binomial
distribution with n = 10 and π = 0.50. Table 1.2 shows it again with the correspond-
ing P -values (right-tail probabilities) for this one-sided alternative. The P -value is
≤0.05 when y = 9 or 10. This happens with probability 0.010 + 0.001 = 0.011.
Thus, the probability of getting a P -value ≤0.05 is only 0.011. For a desired sig-
nificance level of 0.05, the actual probability of type I error is 0.011. The actual
probability of type I error is much smaller than the intended one.

This illustrates an awkward aspect of significance testing when the test statistic
has a discrete distribution. For test statistics having a continuous distribution, the
P -value has a uniform null distribution over the interval [0, 1]. That is, when H0
is true, the P -value is equally likely to fall anywhere between 0 and 1. Then, the
probability that the P -value falls below 0.05 equals exactly 0.05, and the expected
value of the P -value is exactly 0.50. For a test statistic having a discrete distribution,
the null distribution of the P -value is discrete and has an expected value greater
than 0.50.

For example, for the one-sided test summarized above, the P -value equals 1.000
with probability P(0) = 0.001, it equals 0.999 with probability P(1) = 0.010, . . . ,

and it equals 0.001 with probability P(10) = 0.001. From the table, the null expected

Table 1.2. Null Binomial Distribution and One-Sided
P -values for Testing H0: π = 0.50 against Ha: π > 0.50
with n = 10

y P (y) P -value Mid P -value

0 0.001 1.000 0.9995
1 0.010 0.999 0.994
2 0.044 0.989 0.967
3 0.117 0.945 0.887
4 0.205 0.828 0.726
5 0.246 0.623 0.500
6 0.205 0.377 0.274
7 0.117 0.172 0.113
8 0.044 0.055 0.033
9 0.010 0.011 0.006
10 0.001 0.001 0.0005
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value of the P -value is

∑
P × Prob(P ) = 1.000(0.001) + 0.999(0.010) + · · · + 0.001(0.001) = 0.59

In this average sense, P -values for discrete distributions tend to be too large.

1.4.5 Inference Based on the Mid P -value∗

With small samples of discrete data, many statisticians prefer to use a different type
of P -value. Called the mid P -value, it adds only half the probability of the observed
result to the probability of the more extreme results. To illustrate, in the above example
with y = 9 successes in n = 10 trials, the ordinary P -value for Ha : π > 0.50 is
P(9) + P(10) = 0.010 + 0.001 = 0.011. The mid P -value is P(9)/2 + P(10) =
0.010/2 + 0.001 = 0.006. Table 1.2 also shows the mid P -values for the possible y

values when n = 10.
Tests using the mid P -value are, on the average, less conservative than tests using

the ordinary P -value. The mid P -value has a null expected value of 0.50, the same
as the regular P -value for continuous variates. Also, the two separate one-sided mid
P -values sum to 1.0. For example, for y = 9 when n = 10, for Ha : π > 0.50 the
ordinary P -value is

right-tail P -value = P(9) + P(10) = 0.011

and for Ha : π < 0.50 it is

left-tail P -value = P(0) + P(1) + · · · + P(9) = 0.999

That is, P(9) gets counted in each tail for each P -value. By contrast, for Ha :π > 0.50,
the mid P -value is

right-tail mid P -value = P(9)/2 + P(10) = 0.006

and for Ha : π < 0.50 it is

left-tail mid P -value = P(0) + P(1) + · · · + P(9)/2 = 0.994

and these one-sided mid P -values sum to 1.0.
The two-sided P -value for the large-sample z score test approximates the two-sided

mid P -value in the small-sample binomial test. For example, with y = 9 in n = 10
trials for H0: π = 0.50, z = (0.90 − 0.50)/

√[0.50(0.50)/10] = 2.53 has two-sided
P -value = 0.0114. The two-sided mid P -value is 2[P(9)/2 + P(10)] = 0.0117.
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For small samples, one can construct confidence intervals by inverting results of
significance tests that use the binomial distribution, rather than a normal approx-
imation. Such inferences are very conservative when the test uses the ordinary
P -value. We recommend inverting instead the binomial test using the mid P -
value. The mid-P confidence interval is the set of π0 values for a two-sided test
in which the mid P -value using the binomial distribution exceeds 0.05. This is
available in some software, such as an R function (written by A. Gottard) at
http://www.stat.ufl.edu/∼aa/cda/software.html.

1.4.6 Summary

This chapter has introduced the key distributions for categorical data analysis: the
binomial and the multinomial. It has also introduced maximum likelihood estimation
and illustrated its use for proportion data using Wald, likelihood-ratio, and score meth-
ods of inference. The rest of the text uses ML inference for binomial and multinomial
parameters in a wide variety of contexts.

PROBLEMS

1.1 In the following examples, identify the response variable and the explanatory
variables.

a. Attitude toward gun control (favor, oppose), Gender (female, male),
Mother’s education (high school, college).

b. Heart disease (yes, no), Blood pressure, Cholesterol level.

c. Race (white, nonwhite), Religion (Catholic, Jewish, Protestant), Vote for
president (Democrat, Republican, Other), Annual income.

d. Marital status (married, single, divorced, widowed), Quality of life
(excellent, good, fair, poor).

1.2 Which scale of measurement is most appropriate for the following variables –
nominal, or ordinal?

a. Political party affiliation (Democrat, Republican, unaffiliated).

b. Highest degree obtained (none, high school, bachelor’s, master’s, doctor-
ate).

c. Patient condition (good, fair, serious, critical).

d. Hospital location (London, Boston, Madison, Rochester, Toronto).

e. Favorite beverage (beer, juice, milk, soft drink, wine, other).

f. How often feel depressed (never, occasionally, often, always).

1.3 Each of 100 multiple-choice questions on an exam has four possible answers
but one correct response. For each question, a student randomly selects one
response as the answer.
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a. Specify the distribution of the student’s number of correct answers on
the exam.

b. Based on the mean and standard deviation of that distribution, would it be
surprising if the student made at least 50 correct responses? Explain your
reasoning.

1.4 A coin is flipped twice. Let Y = number of heads obtained, when the
probability of a head for a flip equals π .

a. Assuming π = 0.50, specify the probabilities for the possible values for Y ,
and find the distribution’s mean and standard deviation.

b. Find the binomial probabilities for Y when π equals (i) 0.60, (ii) 0.40.

c. Suppose you observe y = 1 and do not know π . Calculate and sketch the
likelihood function.

d. Using the plotted likelihood function from (c), show that the ML estimate
of π equals 0.50.

1.5 Refer to the previous exercise. Suppose y = 0 in 2 flips. Find the ML estimate
of π . Does this estimate seem “reasonable”? Why? [The Bayesian estimator
is an alternative one that combines the sample data with your prior beliefs
about the parameter value. It provides a nonzero estimate of π , equaling (y +
1)/(n + 2) when your prior belief is that π is equally likely to be anywhere
between 0 and 1.]

1.6 Genotypes AA, Aa, and aa occur with probabilities (π1, π2, π3). For n = 3
independent observations, the observed frequencies are (n1, n2, n3).

a. Explain how you can determine n3 from knowing n1 and n2. Thus, the
multinomial distribution of (n1, n2, n3) is actually two-dimensional.

b. Show the set of all possible observations, (n1, n2, n3) with n = 3.

c. Suppose (π1, π2, π3) = (0.25, 0.50, 0.25). Find the multinomial probabi-
lity that (n1, n2, n3) = (1, 2, 0).

d. Refer to (c). What probability distribution does n1 alone have? Specify the
values of the sample size index and parameter for that distribution.

1.7 In his autobiography A Sort of Life, British author Graham Greene described a
period of severe mental depression during which he played Russian Roulette.
This “game” consists of putting a bullet in one of the six chambers of a pistol,
spinning the chambers to select one at random, and then firing the pistol once
at one’s head.

a. Greene played this game six times, and was lucky that none of them resulted
in a bullet firing. Find the probability of this outcome.

b. Suppose one kept playing this game until the bullet fires. Let Y denote the
number of the game on which the bullet fires. Argue that the probability of
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the outcome y equals (5/6)y−1(1/6), for y = 1, 2, 3, . . . . (This is called
the geometric distribution.)

1.8 When the 2000 General Social Survey asked subjects whether they would be
willing to accept cuts in their standard of living to protect the environment,
344 of 1170 subjects said “yes.”

a. Estimate the population proportion who would say “yes.”

b. Conduct a significance test to determine whether a majority or minority of
the population would say “yes.” Report and interpret the P -value.

c. Construct and interpret a 99% confidence interval for the population
proportion who would say “yes.”

1.9 A sample of women suffering from excessive menstrual bleeding have been
taking an analgesic designed to diminish the effects. A new analgesic is claimed
to provide greater relief. After trying the new analgesic, 40 women reported
greater relief with the standard analgesic, and 60 reported greater relief with
the new one.

a. Test the hypothesis that the probability of greater relief with the standard
analgesic is the same as the probability of greater relief with the new anal-
gesic. Report and interpret the P -value for the two-sided alternative. (Hint:
Express the hypotheses in terms of a single parameter. A test to com-
pare matched-pairs responses in terms of which is better is called a sign
test.)

b. Construct and interpret a 95% confidence interval for the probability of
greater relief with the new analgesic.

1.10 Refer to the previous exercise. The researchers wanted a sufficiently large
sample to be able to estimate the probability of preferring the new analgesic
to within 0.08, with confidence 0.95. If the true probability is 0.75, how large
a sample is needed to achieve this accuracy? (Hint: For how large an n does a
95% confidence interval have margin of error equal to about 0.08?)

1.11 When a recent General Social Survey asked 1158 American adults, “Do you
believe in Heaven?”, the proportion who answered yes was 0.86. Treating this
as a random sample, conduct statistical inference about the true proportion of
American adults believing in heaven. Summarize your analysis and interpret
the results in a short report of about 200 words.

1.12 To collect data in an introductory statistics course, recently I gave the students
a questionnaire. One question asked whether the student was a vegetarian. Of
25 students, 0 answered “yes.” They were not a random sample, but let us use
these data to illustrate inference for a proportion. (You may wish to refer to
Section 1.4.1 on methods of inference.) Let π denote the population proportion
who would say “yes.” Consider H0: π = 0.50 and Ha : π �= 0.50.
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a. What happens when you try to conduct the “Wald test,” for which z =
(p − π0)/

√[p(1 − p)/n] uses the estimated standard error?

b. Find the 95% “Wald confidence interval” (1.3) for π . Is it believable?
(When the observation falls at the boundary of the sample space, often
Wald methods do not provide sensible answers.)

c. Conduct the “score test,” for which z = (p − π0)/
√[π0(1 − π0)/n] uses

the null standard error. Report the P -value.

d. Verify that the 95% score confidence interval (i.e., the set of π0 for which
|z| < 1.96 in the score test) equals (0.0, 0.133). (Hint: What do the z test
statistic and P -value equal when you test H0: π = 0.133 against Ha : π �=
0.133.)

1.13 Refer to the previous exercise, with y = 0 in n = 25 trials.

a. Show that �0, the maximized likelihood under H0, equals (1 − π0)
25, which

is (0.50)25 for H0: π = 0.50.

b. Show that �1, the maximum of the likelihood function over all possible π

values, equals 1.0. (Hint: This is the value at the ML estimate value of 0.0.)

c. For H0: π = 0.50, show that the likelihood-ratio test statistic,
−2 log(�0/�1), equals 34.7. Report the P -value.

d. The 95% likelihood-ratio confidence interval for π is (0.000, 0.074). Verify
that 0.074 is the correct upper bound by showing that the likelihood-ratio
test of H0: π = 0.074 against Ha : π �= 0.074 has chi-squared test statistic
equal to 3.84 and P -value = 0.05.

1.14 Sections 1.4.4 and 1.4.5 found binomial P -values for a clinical trial with y = 9
successes in 10 trials. Suppose instead y = 8. Using the binomial distribution
shown in Table 1.2:

a. Find the P -value for (i) Ha : π > 0.50, (ii) Ha : π < 0.50.

b. Find the mid P -value for (i) Ha : π > 0.50, (ii) Ha : π < 0.50.

c. Why is the sum of the one-sided P -values greater than 1.0 for the ordinary
P -value but equal to 1.0 for the mid P -value?

1.15 If Y is a variate and c is a positive constant, then the standard deviation of
the distribution of cY equals cσ (Y ). Suppose Y is a binomial variate, and let
p = Y/n.

a. Based on the binomial standard deviation for Y , show that σ(p) =√[π(1 − π)/n].
b. Explain why it is easier to estimate π precisely when it is near 0 or 1 than

when it is near 0.50.

1.16 Using calculus, it is easier to derive the maximum of the log of the likelihood
function, L = log �, than the likelihood function � itself. Both functions have
maximum at the same value, so it is sufficient to do either.
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a. Calculate the log likelihood function L(π) for the binomial distribution
(1.1).

b. One can usually determine the point at which the maximum of a log like-
lihood L occurs by solving the likelihood equation. This is the equation
resulting from differentiating L with respect to the parameter, and setting
the derivative equal to zero. Find the likelihood equation for the binomial
distribution, and solve it to show that the ML estimate equals p = y/n.

1.17 Suppose a researcher routinely conducts significance tests by rejecting H0 if
the P -value satisfies P ≤ 0.05. Suppose a test using a test statistic T and right-
tail probability for the P -value has null distribution P(T = 0) = 0.30, P (T =
3) = 0.62, and P(T = 9) = 0.08.

a. Show that with the usual P -value, the actual probability of type I error is 0
rather than 0.05.

b. Show that with the mid P -value, the actual probability of type I error equals
0.08.

c. Repeat (a) and (b) using P(T = 0) = 0.30, P(T = 3) = 0.66, and P(T =
9) = 0.04. Note that the test with mid P -value can be “conservative” [hav-
ing actual P (type I error) below the desired value] or “liberal” [having
actual P (type I error) above the desired value]. The test with the ordinary
P -value cannot be liberal.

1.18 For a given sample proportion p, show that a value π0 for which the test statistic
z = (p − π0)/

√[π0(1 − π0)/n] takes some fixed value z0 (such as 1.96) is a
solution to the equation (1 + z2

0/n)π2
0 + (−2p − z2

0/n)π0 + p2 = 0. Hence,
using the formulax = [−b ± √

(b2 − 4ac)]/2a for solving the quadratic equa-
tion ax2 + bx + c = 0, obtain the limits for the 95% confidence interval in
Section 1.3.4 for the probability of success when a clinical trial has nine
successes in 10 trials.
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