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These notes are a brief introduction to the Black-Scholes formula, which prices the European
call options. The essential reading is of course their 1973 Journal of Political Economy paper.
Other standard references are Darrell Duffie’s Dynamic Asset Pricing Theory, 3rd ed., 2001,
and John Campbell, Andrew Lo, and Craig MacKinlay’s The Econometrics of Financial
Markets, 1997, both published by the Princeton University Press. Here I follow Duffie’s text
more closely.

The basic tools to understand continuous-time finance are Brownian motion (or Wiener
process). A recent book written (not yet published) by Professor Nancy Stokey at the
University of Chicago is an excellent introduction to these tools and their applications.
Readers could visit her website (http://home.uchicago.edu/∼ntokey/course.htm) for details.

1. Basics of Brownian Motion

There are two basic types of Brownian motion: arithmetic and geometric. The latter was
used in option pricing. The first type is defined as follows:

Definition

An arithmetic Brownian motion Bt is a stochastic process which satisfies:

(a) Bs −Bt ∼ N(µ(s− t), σ2(s− t)),∀s > t,

(b) ∀ti, 0 ≤ t0 < t1 < ... < ∞, B(t0), B(t1) − B(t0), B(t2) − B(t1), ..., are independently
distributed,

(c) sample path of Bt is continuous,

(d) B0 = 0, a.s. (almost surely).
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Definition

A standard Brownian motion is an arithmetic Brownian motion when µ = 0 and σ = 1.
Usually we call µ drift, and σ diffusion process, respectively.

Note: Since Brownian motion is a continuous-time random walk, B(t + ∆t)− B(t) can be
viewed as Gaussian white noise as ∆t → 0, or “dB(t)” is a “continuous-time version” of
white noise.

Example

Let St be stock price at t, and assume that it is an arithmetic Brownian motion. Let Bt be
a standard Brownian motion. Then we could write the stock price as:

(1) St = µt + σBt

which satisfies all the requirements of conditions (a)-(d) above.

2. Stochastic Calculus and Ito’s Lemma

Now we can write a stochastic differential equation:

(2) dSt = µdt + σdBt

which has a stochastic integral counterpart as follows:

(3) St = x +
∫ t

0
µds +

∫ t

0
σdBs

where S0 = x is an integral constant.

Definition

A stochastic process with a representation of equation (3) is called an Ito process.

Ito’s Lemma:

For an Ito process dXt = µtdt + σtdBt, Yt = f(Xt, t) ( f : R2 → R is twice-differentiable) is
also an Ito process which satisfies:

(4) dYt = [fx(Xt, t)µt + ft(Xt, t) + 1
2
fxx(Xt, t)σ

2
t ]dt + fx(Xt, t)σtdBt

Definition:

St is a geometric Brownian motion (or log-normal), if
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(5) St = x exp(αt + σBt),

∀t ≥ 0, x > 0, where α, σ are constants. Since αt+σBt =
∫ t

0
αds+

∫ t

0
σdBs is an Ito process,

Ito’s lemma implies that St is an Ito process and ln St is also an Ito process (note that both
exponential and logarithmic functions are twice-differentiable), so we have

(6) d ln St = µdt + σdBt, S0 = x, µ = α + σ2

2
, or

(6)’ dSt = µStdt + σStdBt

3. Black-Scholes Formula

Now we turn to the derivation of Black-Scholes formula. The basic idea behind this formula
is an arbitrage equilibrium among three assets: stock, bond, and European call option. It is
a risk-neutral valuation because investors in their model economy were implicitly assumed
to be risk neutral and they are concerned only with maximizing profits. A more realistic,
discrete-time formulation of option pricing (by using a binomial tree) was later proposed by
William Sharpe, and formalized by Cox-Ross-Rubinstein (Journal of Financial Economics,
1979), which would not be discussed here.

A bond price is defined by βt = β0e
rt, where r is the continuously compounding interest

rate. Taking logarithm on both sides and rearranging terms, we would have

(7) dβt = rβtdt

Definition (Self-financing condition): for trading strategies (a, b),

atSt + btβt = a0S0 + b0β0 +
∫ t

0
aτdSτ +

∫ t

0
bτdβτ

This means that current portfolio value (the left-hand-side of the above equation) is equal
to the sum of initial investment (the first two terms in the right-hand-side) and trading
gains (the last two terms of right-hand-side). And trading gains are the gains from trading
stocks and bonds. These two are primary or underlying assets, and the derivative asset in
the present case would be the European call options. The pricing formula of the associated
American call options was derived in the same year (1973) by Robert C. Merton in a paper
published in the Bell Journal of Economics. The corresponding pricing formula for put
options can be obtained by the put-call parity, which will be briefly discussed at the end of
these notes.

Consider an European call option, the price of which at the expiry date YT being

(8) YT = max(ST −K, 0) ≡ (ST −K)+

where K is the exercise or striking price of the call option.
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No Arbitrage Condition:

Yt = atSt + btβt

This condition requires that in equilibrium risk-neutral investors be indifferent between hold-
ing underlying assets (with at stocks and bt bonds) and holding derivative asset (European
call options). Investors could not increase their profits by either changing the position of
stocks/bonds or changing the position of call options. So no arbitrage is the theoretical basis
of Black-Scholes formula.

Now we are ready to derive the Black-Scholes formula. Let Yt = C(St, t) be the value of
European call option at period t, then by Ito’s lemma,

(9) dYt = [Cx(St, t)µSt + Ct(St, t) + 1
2
Cxx(St, t)σ

2S2
t ]dt + Cx(St, t)σStdBt

By no arbitrage condition and the properties of stochastic differential equations, we have

(10) dYt = atdSt + btdβt = at(µStdt + σStdBt) + bt(rβtdt)
= (atµSt + btrβt)dt + atσStdBt

By the method of undetermined coefficients, (9), (10) imply

(11-1) Cx(St, t)µSt + Ct(St, t) + 1
2
Cxx(St, t)σ

2S2
t = atµSt + btrβt

(11-2) Cx(St, t)σSt = atσSt (and this implies at = Cx(St, t))

Because at = Cx(St, t), by no arbitrage condition and Yt = C(St, t), we have

Cx(St, t)St + btβt = C(St, t).

bt = [C(St, t)− Cx(St, t)St]/βt.

By (11-1),

Ct(St, t) + 1
2
Cxx(St, t)σ

2S2
t = btrβt = r[C(St, t)− Cx(St, t)St],

and therefore

−rC(St, t) + Ct(St, t) + rStCx(St, t) + 1
2
Cxx(St, t)σ

2S2
t = 0

If x = St is the current stock price, and at the expiry date YT = C(ST , T ) = (ST −K)+ ,
then there is a boundary condition:

(12) C(x, T ) = (x−K)+

x ∈ (0,∞), with the following partial differential equation:

(13) −rC(x, t) + Ct(x, t) + rxCx(x, t) + 1
2
σ2x2Cxx(x, t) = 0
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Black-Scholes Formula:

(14) C(x, t) = xφ(z)− e−r(T−t)Kφ(z − σ
√

T − t),

where z = [ln(x/K) + (r + σ2

2
)(T − t)]/(σ

√
T − t), and φ is the cumulative standard normal

distribution function. Mathematically, this formula is a solution to equations (12) and (13).

4. Put-Call Parity

Finally we want to discuss how to derive the corresponding pricing formula for the European
put options. There is a relationship between call and put options, which naturally arises
because of the arbitrage conditions in financial markets equilibrium.

Put-Call Parity :

(15) St + Pt − Ct = e−r(T−t)K

∀t, t = 0, 1, 2, ..., T. Pt is the value of put option at period t.

An intuition behind this relation is that this is an arbitrage equilibrium between using options
(for both put and call ones) and not using; or between “in (or out of) the money” and “at
the money”.

More precisely, the benefits when using options are as follows. If the expected end-of-
period (at the expiry date) stock price is larger (smaller) than the striking price, that is if
ST > (<)K, then we call this situation in the money for the call option or out of the money
for the put option (in the money for the put option or out of the money for the call option),
and the investor should sell (buy) the call (put) option to maximize her profit. Otherwise,
the investor should do nothing but take as given ST = K at the expiry date T , and its
present value from the period t on would be just e−r(T−t)K. We call this situation at the
money. When capital can be freely moved between these two margins, equation (15) would
hold in arbitrage equilibrium.

A sloppy illustration of this parity is as follows. If at period t, the expected ST > K, then this
means that call option is in the money and put option is out of the money, or equivalently
CT > PT . On the other hand, if at period t, the expected ST < K, then this means that put
option is in the money and call option is out of the money, or equivalently CT < PT . And
finally if at period t, the expected ST = K, then this means that both call option and put
option are at the money, or equivalently CT = PT . In the first situation the investor should
sell the call option to increase her profit. In the second situation the investor should buy
the put option, and in the last one she should do nothing. Put all these stuffs together we
would guess that in arbitrage equilibrium the relationship among these variables could be
described exactly by equation (15).
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