
1

User Manual of Chinese Dark Chess Client

Jr-Chang Chen, Gang-Yu Fan and Yao-Rong Yang

This document includes three parts. We provide the client program to connect to the Chinese dark chess server.
Section 1 is the environment settings in Ubuntu for the client package. Section 2 describes the codes you have
to write in your game-playing program to fit the client. Section 3 is our contact information.

1. ENVIRONMENT

The demo game-playing program is a random-play program, called myai in the file ”search”. You can run two
copies and connect to the chess server to test the connection.

1.1 Environment Setting

• The Chinese dark chess interface (CDC interface.zip) includes an execution file ”DarkChess linux”, a
library ”GameDLL.so” and a folder ”Search”, as shown in Figure 1.

Figure 1:

• Your game-playing program name has to be renamed as ”search”, and then replace the ”search” execution
file in the ”Search” folder by your program, as shown in Figure 2.

Figure 2:

• Export the library path to the folder that includes ”GameDLL.so”. For example, in the following figure,
”GameDLL.so” is in the current folder, so we type the command ”export LD LIBRARY PATH=.”, as
shown in Figure 3.

2

Figure 3:

• To run your game-playing program and connect to the server, you have to execute ”DarkChess linux”.
There are two modes by typing the command ”DarkChess linux mode”. If mode = 0, we enter the
Setting Mode (see subsection 1.2); and if mode = 1, we enter the Play Mode (see subsection 1.3), as
shown in Figure 4.

Figure 4:

1.2 Setting Mode

Input the command ”DarkChess linux 0” to start the Setting Mode, as shown in Figure 5.

Figure 5:

Create a Room

Input the game mode ”0” to create a room. Then, you set the room information by the following message as
shown in Figure 6.

• Testing accounts are ”a0”, ”a1”, ..., and ”a999”.

• The password for all accounts is ”123”.

• ReMidBoard must be ”0”.

• If you want to play multiple games and re-start automatically, set automatically re-start to ”1”; and ”0”
otherwise.

• Set re-start times if automatically re-start is ”1”. For example, ”3” if three games will be played.

• Play first or not? Input ”1” to be the first player and ”2” to be the second player.

• Change turns in the following games? Input ”1” to mean playing first and playing second in turns if
multiple games are played. Input ”0” to mean that you always play first or second you select in ”play first
or not?” in all games.

3

• Time limit is the total time you have in a game. For example, ”900” means you have to finish a game
within 900 seconds.

• Times of repetitions. Input 3 to mean the game is judged as a draw if the same board is repeated three
times.

• Random initial-board must be ”0”.

Figure 6: Create a room.

Join a Room

Input the game mode ”1” to join a room as shown in Figure 7. The room information is set by the room owner as
described above.

• ReMidBoard must be ”0”.

Figure 7: Join a room.

1.3 Play Mode

Input the command ”DarkChess linux 1” to start the Play Mode.

Wait for the Opponent

If you select the ”create a room” in the setting mode, you have to wait for an opponent to join the room, as
shown in Figure 8.

4

Figure 8: Wait for the opponent.

Join a Room

If you select the ”join a room” in the setting mode, you have to select the ”room ID” of the opponent, as shown
in Figure 9.

Figure 9: Join a room.

1.4 Set Server IP

Input the command ”DarkChess linux -ip <ip address>” to start to set the server IP, as shown in Figure 10.

Figure 10: Server IP setting.

5

1.5 Read Game Record Mode

Input the command ”DarkChess linux -r <game record file>” to start to read the history of the game saved in
game record file, as shown in Figure 11.

Figure 11: Read a game record.

1.6 Help Mode

Input the command ”DarkChess linux -h” to list the descriptions of all commands, as shown in Figure 12.

Figure 12: Help mode.

6

2. PROTOCOL

The package CDC client.zip includes:

• ClientSocket.h, ClientSocket.cpp, Protocol.h and Protocol.cpp - the client protocol

• myai.h, myai.cpp - the random-playing program in Section 1

• main.cpp, main clear.cpp - to connect myai and the client

To connect your game-playing program (assume called YourAI.cpp) to the client, you only have to modify a few
lines in main.cpp. These lines are marked by ”// todo:” in main clear.cpp. Then, compile with the command

g++ -o search main.cpp Protocol.cpp ClientSocket.cpp YourAI.cpp

The newly compiled file, search, should overwrite the search file in the Search folder. Thus, you can connect to
the server with your program by execute DarkChess linux, as described in Subsection 1.1.

The class and functions used are described in the following subsections.

enum PROTO_CLR {PCLR_RED, PCLR_BLACK, PCLR_UNKNOWN};

class Protocol
{
public:

Protocol();
˜Protocol();
void init_protocol(const char *ip, const int port);
void init_board(int piece_count[14], char current_position[32], struct History &history,

int &time);
void get_turn(bool &turn, PROTO_CLR &color);
void send(const char src[3], const char dst[3]);
void send(const char move[6])
void recv(char move[6], int &time);
PROTO_CLR get_color(const char move[6]);

};

2.1 init protocol

void init_protocol(const char *ip, const int port);

Connect to the server by inputting the ip and port of the server via command line or GUI interface. init protocol
must be called in the beginning.

#include "protocol.h"
int main(int argc, char **argv)
{

Protocol protocol;
switch (argv) {
case 3:

if (!protocol.init_protocol(argv[1], atoi(argv[2]))) return 0;
break;

}
...
return 0;

}

7

(a) (b)

Figure 13: Notations of piece kinds and the board.

2.2 Notations

Piece kinds

• The letters ’K’, ’G’, ’M’, ’R’, ’N’, ’C’, ’P’ represent the king, guard, minister, rook, knight, cannon, pawn
of red pieces.

• The letters ’k’, ’g’, ’m’, ’r’, ’n’, ’c’, ’p’ represent those of the black pieces.

• The letter ’X’ represents an unrevealed/hidden piece.

• The letter ’-’ represents an empty square.

Board configuration

• Letters a to d from left to right for columns

• Numbers 1 to 8 bottom up for rows

For example, in Figure 13(a), a black pawn (labelled by p) is on square c3, and an unrevealed piece (labelled by
X) is on square b4. In Figure 13(b), square a4 is empty and is labelled by -, and the red king (labelled by K) is
on square d3.

2.3 struct History

struct History{
char** move;
int number_of_moves;

};

The meanings of move and number of moves are as follows.

• move:
If the ply is a move or capture (e.g., the 2nd ply is moving a piece from a3 to a4), then move[2] = ”a3-a4”.
If the ply is a flip (e.g., the 2nd ply is flipping a red king on c2), then move[2] = ”c2(K)”.

8

• number of moves:
The total number of ply.
For example, if number of moves = 3, we use move[0], move[1] and move[2].

If the program resumes to play, you have to restore the history as follows (in the TODO part).

struct History history;
protocol->init_board(piece_count, current_position, &history);
for (int i = 0; i < history.number_of_moves; i++) {

// TODO: restore the history to your program.
}

2.4 init board

void init_board(int piece_count[14], char current_position[32], struct History &history,
int &time);

After calling init board, you get the initial board settings as follows.

• piece count[14]: The number of pieces that are alive of 14 piece kinds.

• current position[32]: The value of each element represents the piece kind on the board. Notations are
described in Subsection 2.2.

• history: The history of the game.

• time: The remaining time of my turn. (millisecond)

For example, in Figure14, two red ministers (M), a black knight (n), and a black king (k) are revealed. And a red
pawn and a black cannon are captured. The values of piece count[14] and current position[32] are:

piece_count[14] = {1, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 1, 5}
current_position[32] = "XnXXX-XXXXXXXXXXXM-XXXkXMXXXXXXX"

Figure 14: current position[32].

9

2.5 get turn

enum PROTO_CLR {PCLR_RED, PCLR_BLACK, PCLR_UNKNOWN};
void get_turn(bool &turn, PROTO_CLR &color);

turn = true means the first player, and turn = false means the second player.
The value of color are PCLR RED as red, PCLR BLACK as black, and PCLR UNKNOWN as unknown.

If the game is played when all pieces are unrevealed/hidden, you get your turn and color is set to PCLR UNKNOWN.
If the game is played from midgame, you get your turn and color that may be set to PCLR RED or PCLR BLACK.

2.6 send

You may choose one of the following two functions to send your ply.

void send(const char src[3], const char dst[3]);

If the ply is a move or capture (e.g., move a piece from d5 to c5), then src = ”d5” and dst = ”c5”.
If the ply is a flip (e.g., flip a piece on d5), then src = ”d5” and dst = ”d5”.

void send(const char move[6]);

If the ply is a move or capture (e.g., move a piece from d5 to c5), then move = ”d5-c5”.
If the ply is a flip (e.g., flip a piece on d5), then move = ”d5-d5”.

2.7 recv

void recv(char move[6], int &time);

move is the ply that the opponent played and sent to you by the server.
If the ply is a move or capture (e.g., move a piece from a3 to a4), then move = ”a3-a4”.
If the ply is a flip (e.g., flip a red king on c2), then move = ”c2(K)”.

time is the remaining time of my turn. (millisecond)

2.8 get color

enum PROTO_CLR {PCLR_RED, PCLR_BLACK, PCLR_UNKNOWN};
PROTO_CLR get_color(const char move[6]);

This function returns the color of the flipped piece. For example,

PROTO_CLR color;
char move[6] = "a8(G)";
color = get_color(move); /* color == PCLR_RED */
move[6] = "d6(p)";
color = get_color(move); /* color == PCLR_BLACK */

10

3. CONTACT INFORMATION

If there are any unclear description about the protocol, please contact:

• Jr-Chang Chen, email: jcchen@cycu.edu.tw

• Gang-Yu Fan, email: imloed10000@gmail.com

• Yao-Rong Yang, email: kevin12345621@gmail.com

The rules and notations of Chinese dark chess are mentioned in the following articles.

• Chen, B.N., Shen, B.J., and Hsu, T.s., ”Chinese Dark Chess,” ICGA Journal, vol. 33, no. 2, pp. 93-106,
2010.

• Chen, J.C., Lin, T.Y., Hsu, T.s., ”Equivalence Classes in Dark Chess Endgames,” accepted by IEEE Trans-
actions on Computational Intelligence and AI in Games (IEEE TCIAIG) (DOI: 10.1109/TCIAIG.2014.2317832).

• Yen, S.J, Chou, C.W., Chen, J.C., Wu, I.C., Kao, K.Y., ”Design and Implementation of Chinese Dark Chess
Programs,” accepted by IEEE TCIAIG (DOI: 10.1109/TCIAIG.2014.2329034).

