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Abstract—Language Identification (LID) is a challenging task,
especially when the input texts are short and noisy such as
microblog posts on social media or chat logs on gaming forums.
The task has been tackled by either designing a feature set for a
traditional classifier (e.g. Naive Bayes) or applying a deep neural
network classifier (e.g. Bi-directional GRU, Encoder-Decoder).
These methods are usually trained and tested on a private corpus,
then used as off-the-shelf packages by other researchers on their
own datasets, and consequently the various results published are
not directly comparable. In this paper, we first create a new
massive labeled dataset based on one year of Twitter data. We use
this dataset to test several existing LID systems, in order to obtain
a set of coherent benchmarks, and we make our dataset publicly
available so that others can add to this set of benchmarks.
Finally, we propose a shallow but efficient neural LID system,
which is a ngram-regional convolution neural network enhanced
with an attention mechanism. Experimental results show that our
architecture is able to predict tens of thousands of samples per
second and surpasses all state-of-the-art systems in accuracy and
F1 score, including outperforming the popular langid system by
5%.

Index Terms—LID, NN, Data mining, corpus, AI

I. INTRODUCTION

Language Identification (LID) is the Natural Language Pro-
cessing (NLP) task of automatically recognizing the language
that a document is written in. While this task was called
”solved” by some authors over a decade ago, it has seen a
resurgence in recent years thanks to the rise in popularity of
social media [1], [2], and the corresponding daily creation
of millions of new messages in dozens of different languages
including rare ones that are not often included in LID systems.
Moreover, these messages are typically very short (Twitter
messages were until recently limited to 140 characters) and
very noisy (including an abundance of spelling mistakes, non-
word tokens like URLs, emoticons, or hashtags, as well as
foreign-language words in messages of another language),
whereas LID was solved using long and clean documents.
Indeed, several studies have shown that LID systems trained
to a high accuracy on traditional documents suffer significant
drops in accuracy when applied to short social-media texts [3],
[4].

Given its massive scale, multilingual nature, and popularity,
Twitter has naturally attracted the attention of the LID research
community. Several attempts have been made to construct LID
datasets from that resource. However, a major challenge is to
assign each tweet in the dataset to the correct language among
the more than 70 languages used on the platform. The three
commonly-used approaches are to rely on human labeling [5],
[6], machine detection [6], [7], or user geolocation [4], [8], [9].
Human labeling is an expensive process in terms of workload,
and it is thus infeasible to apply it to create a massive dataset
and get the full benefit of Twitter’s scale. Automated LID
labeling of this data creates a noisy and imperfect dataset,
which is to be expected since the purpose of these datasets is
to create new and better LID algorithms. And user geolocation
is based on the assumption that users in a geographic region
use the language of that region; an assumption that is not
always correct, which is why this technique is usually paired
with one of the other two. Our first contribution in this paper
is to propose a new approach to build and automatically label
a Twitter LID dataset, and to show that it scales up well by
building a dataset of over 18 million labeled tweets. Our hope
is that our new Twitter dataset will become a benchmarking
standard in the LID literature.

Traditional LID models start by designing a set of useful
features, which is then passed to a traditional machine learning
algorithms such as Naive Bayes (NB) or SVM [3], [4], [10].
The resulting systems are capable of labeling thousands of
inputs per second with moderate accuracy. Meanwhile, neural
network models [7], [11] start with a deep architecture like
gated recurrent unit (GRU) or encoder-decoder net. They use
the message text itself as input using a sequence of character
embeddings, and automatically learn its hidden structure via a
deep neural network. Consequently, they obtain better results
in the task but with an efficiency trade-off. To alleviate these
drawbacks, our second contribution in this paper is to propose
a shallow but efficient neural LID algorithm. We follow
previous neural LID [7], [11] in using character embeddings as
input. However, instead of using a deep neural net, we propose
a shallow ngram-regional convolution neural network (CNN)
with an attention mechanism to learn input representation.
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We experimentally show that this architecture is much more
efficient than other deep neural networks, and that the attention
structure focuses on the most important LID features in the
text. Compared with other benchmarks on our Twitter datasets,
our proposed model consistently achieves new state-of-the-art
results with an improvement of 5% in accuracy and F1 score
and a competitive inference time.

The rest of this paper is structured as follows. After a
background review in the next section, we present our Twitter
dataset in Section 3. Our novel LID algorithm is the topic
of Section 4. We then present and analyze some experiments
we conducted with our algorithm in Section 5, along with
benchmarking tests of popular and literature LID systems,
before drawing some concluding remarks in Section 6. Our
Twitter dataset and LID algorithm’s source code are publicly
available1.

II. RELATED WORK

In this section, we consider recent advances on the specific
challenge of LID on short text messages. Readers interested in
a general overview of the area of LID, including older works
and other challenges, are encouraged to read the thorough
survey of [1].

One of the first systems for microblog LID is the graph-
based method of [6]. Their graph is composed of vertices,
or character n-grams (n = 3) observed in messages in all
languages, and of edges, or connections between successive n-
grams weighted by the observed frequency of that connection
in each language. Identifying the language of a new message
is then done by identifying the most probable path in the
graph that generates that message. Their method achieves an
accuracy of 0.975 on their own Twitter corpus.

[4] computed the prior probability of the message being in
a given language independently of the content of the message
itself, in five different ways: by identifying the language of
external content linked to by the message, the language of
previous messages by the same user, the language used by
other users mentioned in the message, the language of previous
messages in the on-going conversation, and the language of
other messages with the same hashtags. They achieve an
accuracy of 0.972 when combining these priors with a linear
interpolation.

One of the most popular LID packages is the langid.py
library [3], thanks to the fact it is an open-source, ready-
to-use library written in Python. It is a multinomial Naı̈ve
Bayes classifier trained on character n-grams (1 ≤ n ≤ 4) from
97 different languages. The training data comes from longer
document sources, both formal ones (government publications,
software documentation, newswire) and informal ones (online
encyclopedia articles, websites). In their experiments, they
outperform the standard linear-kernel SVM LID benchmarks.
While their system is not specialized for short messages, the
authors claim their algorithm can generalize across domains

1https://github.com/duytinvo/LID NN

off-the-shelf, and they conducted experiments using the Twit-
ter datasets [4], [6] that achieved accuracies of 0.941 and
0.886, which is weaker than the specialized short-message LID
systems [4], [6].

Starting from the basic observation that each language has
a small number of words that occur very frequently, [10]
created a dictionary-based algorithm using ranked dictionaries
of the 1,000 most popular words of each language it is trained
on. Given a new message, recognized words are given a
weight based on their rank in each language, and the identified
language is the one with the highest sum of word weights.
They achieve an F1-score of 0.733 on the TweetLID corpus
[12].

[2] built a hierarchical system of two neural networks.
The first level is a Convolutional Neural Network (CNN) that
converts white-space-delimited words into a word vector. The
second level is a Long-Short-Term Memory (LSTM) network
(a type of recurrent neural network (RNN)) that takes in
sequences of word vectors from the first level and maps them
to language labels. They trained and tested their network on
Twitter’s official Twitter70 dataset, and achieved an F-score of
0.912, compared to langid.py’s performance of 0.879 on the
same dataset. They also trained and tested their system using
the TweetLID corpus and achieved an F1-score of 0.762, above
the system of [10] and above the top system of the TweetLID
competition, the SVM LID system of [13] which achieved an
F1-score of 0.752.

[11] also used a RNN system, but found that the Gated
Recurrent Unit (GRU) architecture performed slightly better
than the LSTM in their experiments. Their system breaks the
text into non-overlapping 200-character segments, and feeds
character n-grams (n = 8) into the GRU network to classify
each letter into a probable language. The segment’s language is
the most probable one over all letters, and the text’s language
is the most probable one over all segments. The authors tested
their system on short messages by dividing their data into 200-
character segments. On that corpus, they achieve an accuracy
of 0.955, while langid.py achieves 0.912.

[7] also created a character-level LID network using a
GRU architecture, in the form of a three-layer encoder-decoder
RNN. They trained and tested their system using their own
Twitter dataset, and achieved an F1-score of 0.982, while
langid.py achieved 0.960 on the same dataset.

III. OUR TWITTER LID DATASETS

A. Source Data and Language Labeling

Unlike other authors who built Twitter datasets, we chose
not to mine tweets from Twitter directly, but instead use
tweets that have been archived on the Internet Archive2. This
has two important benefits: this site makes its content freely
available for research purposes, and the tweets are backed-up
permanently while tweets on Twitter may be deleted at any
time and become unavailable for future research or replication
of past studies. The Internet Archive has made available a set

2https://archive.org/details/twitterstream
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Lang P(%) Lang P(%) Lang P(%)
EN 36.458 EL 0.086 LV, BG,
JA 23.750 SV 0.046 UR, TA 10−3

ES 9.964 FA 0.027 MR, BN,
AR 7.627 VI 0.021 MR, BN,
PT 6.839 FI 0.020 IN, KN,
KO 5.559 CS 0.015 ET, SL,
TH 2.965 UK 0.015 GU, CY,
FR 2.180 HI 0.013 ZH, CKB,
TR 2.152 DA 0.007 IS, LT,
RU 0.948 HU 0.006 ML, SI,
IT 0.490 NO 0.005 IW, NE,
DE 0.356 RO 0.003 KM, MY,
PL 0.251 SR 0.003 TL, KA,
NL 0.187 EU 0.002 BO < 10−3

Table I: Twitter corpus distribution by language label.

of 1.7 billion tweets collected over the year of 2017, including
all tweet metadata attributes. Five of these attributes are of
particular importance to us. They are tweet .id , tweet .user .id ,
tweet .text , tweet .lang , and tweet .user .lang , corresponding
to the tweet ID number, the user ID number, the text content
of the tweet, the tweet’s language as determined by Twitter’s
LID software, and the user’s self-declared language.

We begin by filtering the corpus to keep only tweets where
the user’s self-declared language and the tweet’s detected lan-
guage correspond; that language becomes the tweet’s correct
language label. This is in line with automated LID labeling
techniques found in the literature [4], [9], [12], and while it
will favor tweets written in each user’s first language the nature
of Twitter communications means those tweets will show
a huge variation of quality, from well-written professional
messages to slang chit-chat. This operation leaves us with a
corpus of about 900 million tweets in 54 languages distributed
according to Table I. It is a very imbalanced distribution, with
English and Japanese accounting for 60% of all tweets. This
is consistent with other studies and statistics of language use
on Twitter3 and with other massive imbalanced Twitter LID
datasets [7]. It does however make it very difficult to use this
corpus to train a LID system for other languages, especially
for one of the dozens of seldom-used languages. This is our
motivation for creating a balanced Twitter dataset.

Table I also shows that only major languages are identified
in Twitter, while regional dialects are not. For example, there
is an entry for Portuguese (PT), but it does not distinguish be-
tween Portugal and Brazil’s dialects. This means that closely-
related LID, such as distinguishing different variations of
Portuguese [14], cannot be studied from Twitter data without
enriching the data by manually annotating the different dialects
[15].

B. Our Balanced Datasets

When creating a balanced Twitter LID dataset, we face
a design question: should our dataset seek to maximize the
number of languages present, to make it more interesting and
challenging for the task of LID, but at the cost of having

3https://www.statista.com/statistics/267129/
most-used-languages-on-twitter/

Lang C1 C2 C3 C4
EN 99 0 0 1
FR 98 2 0 0
VI 84 16 0 0
DE 88 8 0 4
ES 97 1 0 3
AR 98 0 0 2

Table II: Validation of language labels.

fewer tweets per language to include seldom-used languages.
Or should we maximize the number of tweets per language
to make the dataset more useful for training deep neural
networks, but at the cost of having fewer languages present
and eliminating the seldom-used languages. To circumvent
this issue, we propose to build three datasets: a small-scale
one with more languages but fewer tweets, a large-scale one
with more tweets but fewer languages, and a medium-scale
one that is a compromise between the two. Moreover, for
our datasets to become a standard benchmarking tool, we
have subdivided the tweets of each language into training,
validation, and testing sets.

Our small-scale dataset is composed of 28 languages with
13,000 tweets per language, subdivided into 7,000 training
set tweets, 3,000 validation set tweets, and 3,000 testing set
tweets, for a total of 364,000 tweets in the corpus. Referring
to Table I, this dataset includes every language that represents
0.002% or more of Twitter. It is possible to create a smaller
dataset with all 54 languages and much fewer tweets per
language, but we feel that this is the lower limit to be useful for
training LID deep neural systems. The medium scale dataset
keeps 22 of the 28 languages of the small-scale one, but has
10 times as many tweets per language. Each language has
70,000 training tweets, 30,000 validation tweets, and 30,000
testing tweets, for a total of 2,860,000 tweets. For the large-
scale dataset we again increased tenfold the number of tweets
per language, and kept the 14 languages that had sufficient
tweets in our initial 900 million tweet corpus. Each language
thus has 700,000 tweets in its training set, 300,000 tweets in
its validation set, and 300,000 tweets in its testing set, for
a total 18,200,000 tweets. Referring to Table I, this dataset
includes every language that represents 0.1% or more of the
Twitter corpus.

One noteworthy consequence of creating a balanced dataset,
as opposed to maintaining the language distribution of Table
I, is that the priors learned from our dataset will be different
form those observed on Twitter. That is deliberate: the aim
of our dataset is to be used to train and test microblog LID
systems independently of the source (Facebook, chat rooms,
etc.), and an imbalanced dataset would bias the trained systems
to expect the language distribution of Twitter and hinder their
performances on other sources that have different language
distributions. The neutrality of a balanced dataset is preferable
in these circumstances.

To verify the quality of our automated language labeling, we
randomly selected 100 tweets labeled in each of the languages
the co-authors are familiar with, namely English, French, Viet-
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namese, German, Spanish, and Arabic. We manually read and
classified these 600 tweets into one of four categories: (C1)
tweets written in the labeled language; (C2) tweets mixing
the labeled language and another language; (C3) mislabeled
tweets written in another language; and (C4) tweets that are
gibberish. The results are found in Table II. We find that, in
each case, between 84 and 99 tweets are indeed written in the
labeled language, and the others are either mixed languages
or gibberish (most frequently long lists of usernames). Most
notably, we found no case of mislabeled tweets in our random
sample.

C. Comparison to Existing Twitter Datasets

To be sure, ours are not the first Twitter datasets created for
the task of LID.

Few balanced LID datasets exist. There is the dataset of
[6], which covers German, English, Spanish, French, Italian,
and Dutch, and contains about 1,500 tweets per language. It
was built by selecting six monolingual users per language, and
manually validating the content. The dataset of [4] is likewise
balanced at 1,000 tweets per language for Dutch, English,
French, German, and Spanish. It was built by selecting users
geolocalized in regions where each language was dominant,
and manually validating their tweets. Finally, one of the
datasets of [5] is a balanced dataset of 65 languages, assembled
by randomly sampling Twitter users over one month, and
identifying the language by majority vote of five different LID
software.

The largest imbalanced LID dataset available is the one of
[7], at almost 98 million tweets in 53 languages. It is built by
sampling Twitter users over two months, and automatically
labeling the language using LID software. Other imbalanced
datasets do use manual labeling to validate the language labels.
This is notably the case of [8], [9], and [12]. However their
datasets are necessarily samller, due to the increased labeling
workload; they feature 10,000 tweets in three dialects, 18,000
tweets in nine languages, and 35,000 tweets in 6 languages,
respectively. Finally, Twitter released their own Twitter70 LID
dataset4. The dataset is composed of 120,575 tweets in 70
languages sampled during one month and manually labeled.
The dataset is imbalanced and reflects the distribution of
languages on Twitter, with English and Japanese accounting
for more than half of tweets while a dozen languages have
only one tweet each. Moreover, Twitter only made the tweet
IDs available, and many tweets have become unavailable since
the corpus was assembled in 2014: [2] report being only able
to download 82% of the tweets in 2016, while [8] could only
retrieve 62% of the tweets the following year.

It thus appears that our balanced datasets have a consid-
erably larger number of tweets than all of the other datasets
save [7]. Moreover, our sampling period of one year is much
longer than the one month typically used (only [8] has a
longer sampling period) and we do not use select users on

4https://blog.twitter.com/engineering/en us/a/2015/
evaluating-language-identification-performance.html

geolocalization. This is important for guaranteeing a variety
in the content of the messages; a corpus sampled over a short
period or a small geolocalized may be dominated by messages
on a single locally-popular topic. Finally, our datasets are
balanced, which is rare in language identification datasets, and
unique for a dataset of this size.

IV. PROPOSED MODEL

Since many languages have unclear word boundaries, char-
acter n-grams, rather than words, have become widely used as
input in LID systems [3], [6], [7], [11]. The LID problem can
be stated as: given a tweet tw consisting of n ordered charac-
ters (tw = [ch1, ch2, ..., chn]) selected within the vocabulary
set char of V unique characters (char = {ch1, ch2, ..., chV })
and a set l of L languages (l = {l1, l2, ..., lL}) , predict the
language l̂ present in tw using a classifier:

l̂ = argmaxli∈lScore(li|tw), (1)

where Score(li|tw) quantifies how likely it is that li was used
given the observed message tw.

Most statistical LID systems follow the model of [3]. They
start off by representing each character chi as a one-hot vector
xoh
i ∈ ZV

2 according to the index of this character in char .
This transforms tw into a matrix Xoh:

Xoh = [xoh
1 ,xoh

2 , ...,xoh
n ] ∈ ZV×n

2

where xi
oh[j] =

{
1, if chi = char j

0, otherwise

(2)

The vector Xoh is passed to a feature extraction function,
for example row-wise sum or tf-idf weighting, to obtain
a feature vector h, which is fed to a classifier model for
either discriminative scoring (e.g. Support Vector Machine)
or generative scoring (e.g. Naı̈ve Bayes).

A typical neural network LID system, as illustrated in Figure
1a, first passes the input through an embedding layer to map
each character chi ∈ tw to a low dimensional and dense
vector xi ∈ Rd, where d denotes the dimension of character
embedding. This gives an embedded matrix:

X = [ x1 x2 ...xn ] ∈ Rd×n, (3)

Matrix X is then fed through a neural network, which trans-
forms it into an output vector h = f(X) of length L that
represents the likelihood of each language in l , and which is
passed through a Softmax function. This updates Equation 1
as:

l̂ = argmaxli∈lSoftmax i(h) (4)

Tweets are noisy messages that can contain a mix of multiple
languages. To deal with this challenge, most previous neural
network LID systems use deep sequence layers, such as
an encoder-decoder [7] or a GRU [11], to extract global
representations at a high computational cost. By contrast,
we employ a shallow (single-layer) CNN to locally learn
region-based features along with an attention mechanism to
proportionally merge together these local features for an entire
tweet tw. The attention mechanism will efficiently capture
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(a) Neural network LID baseline. (b) Our attentional-based CNN model.

Figure 1: Neural network classifier architectures.

which local features of a particular language are the dominant
features of the tweet. There are two major advantages to
our architecture: the CNN has very few parameters, which
simplifies the model and decreases the inference latency, while
the attention mechanism makes it possible to model the mix
of languages without affecting performance.

A. ngam-regional CNN Model

To begin, we present a traditional CNN with an ngam-
regional constraint. The convolution operation of a filter with
a region size m is parameterized by a weight matrix Wcnn ∈
Rdcnn×md and a bias vector bcnn ∈ Rdcnn , where dcnn is
the dimension of the CNN. The inputs are a sequence of m
consecutive input columns in X, represented by a concatenated
vector X[i : i+m−1] ∈ Rmd. The region-based feature vector
ci is computed as:

X[i : i+m− 1] = xi ⊕ ...⊕ xi+m−1,

ci = g(Wcnn ·X[i : i+m− 1] + bcnn),
(5)

where ⊕ denotes a concatenation operation and g is a non-
linear function. The region filter is slid from the beginning to
the end of X to obtain a convolution matrix C:

C = [c1, ..., cn−m+1] ∈ Rdcnn×(n−m+1). (6)

We add a zero-padding constrain at both sides of X to
ensure that the number of columns in C is equal to the
number of columns in X. Consequently, each ci feature vector
corresponds to an xi input vector at the same index position
i, and is learned from concatenating the surrounding m-gram
embeddings. Particularly:

2p+ (n−m+ 1) = n,

p =
m− 1

2
,

(7)

where p is the number of zero-padding columns. Finally, in
a normal CNN, a row-wise max-pooling function is applied
on C to extract the dcnn most salient features, as shown in
Equation 8. However, one weakness of this approach is that it
extracts the most salient features out of sequence.

h = fCNN (X)

= poolingmax(C) ∈ Rdcnn
(8)

B. Attention Mechanism

Instead of the traditional pooling functions of Equation 8,
our CNN uses an attention mechanism to model the interaction
between region-based features from the beginning to the end
of an input, as shown in Figure 1b. The sequence of regional
feature vectors C = [c1, c2, ..., cn] computed in Equation
6 passes through a fully-connected hidden layer to learn a
sequence of regional hidden vectors H = [h1,h2, ...,hn] ∈
Rdhd×n using:

hi = g2(Whd · ci + bhd) ∈ Rdhd , (9)

where g2 is a non-linear activation function, Whd and bhd

denote model parameters, and dhd is the dimension of the
hidden layer. Inspired by attention structures [16]–[18] which
are widely applied on sequence models such as LSTM and
Encoder-Decoder, we employ a regional context vector u ∈
Rdhd to measure the importance of each window-based hidden
vector as:

t = u×H ∈ Rn. (10)

The importance factors are then fed to a Softmax layer to
obtain the normalized weights:

αi =
ti∑
i′ ti′

. (11)

20



Parameter our CNN our att CNN
d 50 50
g relu relu
g2 n.a. relu
dcnn 100 100
m 5 5
p 2 2
dhd n.a. 100
lr 0.001 0.001
decay rate 0.05 0.05
max epochs 512 512
patience 64 64
clip rate 5 5

Table III: Parameter settings

The final representation of an input is computed by a weighted
sum of its regional feature vectors:

h =
∑
i

αici. (12)

While other NLP systems have used attention models and
architectures similar to ours [16]–[18], it is worth noting that
our work is different from the literature on three points. First,
we take multilingual character embeddings as inputs while
other models’ inputs are word and sentence embeddings [16].
Second, while other approaches rely on max pooling to extract
features [17], [18], we use the output of the attention layer
directly. Finally, other authors tackled other sub-problems in
NLP, such as question-answering [17] and sentiment analysis
[18], while ours is the first to use this architecture for LID.

V. EXPERIMENTAL RESULTS

A. Benchmarks

We selected five LID benchmark systems. We picked the
langid.py library which is frequently used to compare systems
in the literature. We selected two neural network systems
from the literature, specifically the encoder-decoder EquiLID
system of [7] and the GRU neural network LanideNN system
of [11]. In addition, we included CLD25 and CLD36, which
are two implementations of the Naı̈ve Bayes LID and the
feedforward neural network LID, respectively. Both software
packages are deployed in the Chrome web browser [1], [5], [9]
and sometimes used as a benchmark in the LID literature [3],
[7]–[9], [11]. We obtained publicly-available implementations
of each of these algorithms, and used their pre-trained and
optimized versions and parameters, which are supposed to
give optimal LID results for each system out of the box. We
tested them on our three datasets. In Table IV, we report each
algorithm’s accuracy and F1 score, the two metrics usually
reported in the LID literature. We also include precision and
recall values for more details. And we include the speed
in number of messages handled per second. This metric is
not often discussed in the LID literature, but is of particular
importance when dealing with a massive dataset such as ours
or a massive streaming source such as Twitter.

5https://github.com/CLD2Owners/cld2
6https://github.com/google/cld3

We compare these benchmarks to our two models: the basic
CNN and the CNN with an attention mechanism. They are
labeled CNN and Attention CNN in Table IV. In both models,
we filter out characters that appear less than 5 times and apply
a dropout rate of 0.5. ADAM optimization and early stopping
are employed during training. The parameters are listed in
Table III. This configuration was randomly selected; it takes
four days to train our system, making a parameter optimization
step impractical.

B. Analysis

The first thing that appears from these results is the speed
difference between algorithms. CLD3 and langid.py can pro-
cess several thousands of messages per second and CLD2 is an
order of magnitude better, but the two neural network software
have considerably worse performances, at less than a dozen
messages per second. This is the efficiency trade-off of neural-
network LID systems we mentioned in Section 1; although we
should note that those two systems are research prototypes and
may not have been optimized.

In terms of accuracy and F1 score, langid.py, LanideNN,
and EquiLID have very similar performances. All three con-
sistently score above 0.90, and each achieves the best accuracy
or F1 score at some point. By contrast, CLD2 and CLD3 have
weaker performances; significantly so in the case of CLD3.
Using our small, medium, or large-scale test set does not
significantly affect these results.

The last two lines of Table IV report the results of our basic
CNN and our attention CNN. It can be seen that both of them
outperform the benchmark systems in accuracy, precision,
recall, and F1 score in all experiments. Moreover, the attention
CNN outperforms the basic CNN in every metric, and while
the gains may be small (less than 1% at times), combined
with the other benefits of the attention mechanism which we
will explore in the next subsection they make it the preferred
version of our system. In terms of processing speed, only the
CLD2 system surpasses ours, but it does so at the cost of a
10% drop in accuracy and F1 score. Looking at the choice of
datasets, it can be seen that training our systems with either
the small, medium, or large-scale dataset yields roughly the
same performance.

C. Impact of Attention Mechanism

We can illustrate the impact of our attention mechanism
by displaying the importance factor αi of equation 11 cor-
responding to each character chi in selected tweets. Table V
shows a set of tweets that were correctly identified by the
attention CNN but misclassified by the regular CNN in three
different languages: English, French, and Vietnamese. The
color intensity of a letter’s cell is proportional to the attention
mechanism’s normalized weight αi, or the focus the network
puts on that character. In order words, the attention CNN puts
more importance on the features that have the darkest color.

The case studies of Table V show the noise-tolerance that
comes from the attention mechanism. It can be seen that
the system puts virtually no weight on URL links (twen1

,
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Model Small-scale dataset Medium-scale dataset Large-scale dataset
Acc P R F1 Speed Acc P R F1 Speed Acc P R F1 Speed

langid.py 0.9229 0.9290 0.9229 0.9240 3710.96 0.9449 0.9475 0.9449 0.9454 3797.34 0.9483 0.9502 0.9483 0.9486 4630.59
CLD2 0.8670 0.9624 0.8670 0.8997 43308.31 0.8784 0.9638 0.8784 0.9067 40287.01 0.8711 0.9527 0.8711 0.8952 42297.95
CLD3 0.7284 0.8686 0.7284 0.7456 5911.94 0.7131 0.8792 0.7131 0.7333 6265.21 0.6976 0.9133 0.6976 0.7326 6139.86
LanideNN 0.9304 0.9052 0.8984 0.9003 11.47 0.9414 0.9064 0.9005 0.9021 9.38 0.9370 0.8811 0.8745 0.8763 7.08
EquiLID 0.9244 0.9516 0.9244 0.9325 7.53 0.9430 0.9616 0.9430 0.9484 7.64 0.9489 0.9648 0.9489 0.9532 7.05
CNN 0.9675 0.9677 0.9675 0.9675 39562.69 0.9832 0.9834 0.9832 0.9832 38427.42 0.9866 0.9867 0.9866 0.9866 31647.77
Attention CNN 0.9712 0.9716 0.9712 0.9713 31782.44 0.9841 0.9842 0.9841 0.9842 24828.28 0.9915 0.9915 0.9915 0.9915 35266.82

Table IV: Benchmarking results.

IDs Tweets with attention values att. CNN CNN

twen1 en de

twen2 en de

twen3 en fr

twfr1 fr de

twfr2 fr ro

twfr3 fr es

twvi1 vi es

twvi2 vi hu

twvi3 vi ko

Table V: Tweets misclassified by the CNN but recognized by the Attention CNN

twfr2 , twvi2 ), on hashtags ( twen3
), or on usernames (twen2

,
twfr1 , twvi1 ). We should emphasize that our system does
not implement any text preprocessing steps to filter these
elements out; the input tweets are kept as-is. Despite that,
the network learned to distinguish between words and non-
words, and to focus mainly on the former. In fact, when
the network does put attention on non-word elements, it is
when they appear to use real words (“star” and “seed” in the
username of twen2 , “mother” and “none” in the hashtag of
twen3

). This also illustrates that the attention mechanism can
pick out fine-grained features within noisy text, such as the
real-word components of longer non-word strings.

The examples of Table V also show that the attention CNN
learns to focus on common words to recognize languages.
Some of the highest-weighted characters in the example tweets
are found in common determiners, adverbs, and verbs of
each language. These include “in” (twen1 ), “des” (twfr1 ),
“le” (twfr2 ), “est” (twfr3 ), “quá" (twvi2 ), and “nhất" (twvi3 ).

Finally, when multiple languages are found within a tweet,

the attention network spots all of them. For example, twfr3

switches from French to Spanish and twvi2 mixes both English
and Vietnamese. In both cases, the network identifies features
of both languages; it focuses strongly on “est” and “y” in
twfr3 , and on “Don’t” and “bài" in twvi2 . The message of
twvi3 mixes Vietnamese, English, and Korean, and the network
focuses on all three parts, by picking out “nhật" and “mừng"
in Vietnamese, “#생일축하해” and “#태형생일” in Korean,
and “have” in English. Since our system is setup to classify
each tweet into a single language, the strongest feature of
each tweet wins out and the message is classified in the
corresponding language. But since features of all languages
are picked out, a future version of our system could identify
multilingual messages and decompose them into segments of
each language.

VI. CONCLUSION

In this paper, we first demonstrated how to build bal-
anced, automatically-labeled, and massive LID datasets. These
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datasets are taken from Twitter, and are thus composed of real-
world and noisy messages. We applied our technique to build
three datasets, ranging from hundreds of thousands to tens
of millions of messages in between 14 and 28 languages. We
have made these datasets available online for other researchers,
and our next step will be to expand the manual validation of
Table II to more messages and languages using crowdsourced
labelers. Next, we proposed our new neural LID system, a
CNN-based network with an attention mechanism, which over-
comes the speed limitation of other neural LID systems while
maintaining a state-of-the-art accuracy. The results obtained
by our system surpass five benchmark LID systems by 5% to
10%. Moreover, our analysis of the attention mechanism shed
some light on the inner workings of the typically-black-box
neural network, and demonstrated how it picks out the most
important linguistic features of messages while ignoring noise.
All of our datasets and source code are publicly available at
https://github.com/duytinvo/LID NN.
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