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Abstract—Representation learning on graphs has been gaining
attention due to its wide applicability in predicting missing
links and classifying and recommending nodes. Most embedding
methods aim to preserve specific properties of the original graph
in the low dimensional space. However, real-world graphs have a
combination of several features that are difficult to characterize
and capture by a single approach. In this work, we introduce
the problem of graph representation ensemble learning and
provide a first of its kind framework to aggregate multiple
graph embedding methods efficiently. We provide analysis of
our framework and analyze – theoretically and empirically –
the dependence between state-of-the-art embedding methods. We
test our models on the node classification task on four real-
world graphs and show that proposed ensemble approaches can
outperform the state-of-the-art methods by up to 20% on macro-
F1. We further show that the strategy is even more beneficial for
underrepresented classes with an improvement of up to 40%.

Index Terms—Graph Representation, Node Embedding, En-
semble Learning, Greedy Search, Node Classification, Distance
Correlation, Prediction Diversity

I. INTRODUCTION

Graphs are used to represent data in various scientific fields,
including social sciences, biology, and physics [1]–[4]. Such
representation allows researchers to gain insights about their
problems. The most common tasks on graphs are link predic-
tion, node classification, and visualization. For example, link
prediction in the social domain is used to determine friendships
between people. Node classification in the biology domain is
used to identify genes of proteins. Similarly, visualization is
used to identify communities and the structure of a graph.
Recently, a significant amount of work has been devoted to
learning low dimensional representation of nodes in the graphs
to allow the use of machine learning techniques to perform
the tasks on graphs. Graph representation learning techniques
embed each node in the network in low dimensional space
and map link prediction and node classification in the network
space to the nearest neighbor search and vector classification
in the embedding space [5]. Several of these techniques have
shown state-of-the-art performance on graph tasks [6], [7].

State-of-the-art techniques in graph representation learning
define some characteristics of the graphs. They aim to capture
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Fig. 1: It illustrates the example motivating the need for
ensemble learning. The graph represents interactions in class-
rooms (in red) and family trees of students (in purple). Such
a complex combination of community and structure requires
a combination of multiple embedding methods for accuracy.

and define an objective function to learn these features in
the low-dimensional embedding. For example, HOPE [7]
preserves higher-order proximity between nodes using the sin-
gular value decomposition of the similarity matrix. Similarly,
Node2Vec [6] captures the similarity of nodes using random
walks on the graph. However, real-world graphs do not follow
a simple structure and can be layered with several categories
of properties with complex interactions between them. It has
been shown that no single method outperforms other methods
on all network tasks and datasets [5]. We further illustrate
this by the example in Figure 1 with a social network from
two classrooms (represented by the pink color). We also show
the family links of individual students in the classroom and
represent family members outside the classroom (represented
by the blue color). Here, we consider the task of multi-label
node classification with the classes classroom and role in the
family. This network is complex and has both community
and structural properties. Methods such as HOPE [7], which
preserve community, can effectively classify the nodes into
classrooms but perform poorly on family links that follow
structure. On the other hand, structure preserving methods can
classify the role of an individual student in the family but puts
nodes in the same classroom into separate categories.

In this work, we introduce graph representation ensemble
learning. Given a graph and a list of methods capturing variousIEEE/ACM ASONAM 2020, December 7-10, 2020
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properties of the graph, we aim to learn a representation of
nodes which can combine embeddings from each method such
that it outperforms each of the constituent methods in terms
of prediction performance. We also show, through our exper-
iments, that ensembling embedding methods by combining
embeddings from individual methods outperform a standard
way of ensembling using majority voting. Ensemble methods
have been very successful in the field of machine learning.
Methods such as AdaBoost [8] and Random Forest [9] have
shown to be much more accurate than the individual classifiers
that compose them. It has been shown that combining even the
simplest but diverse classifiers can yield high performance.
However, to the best of our knowledge, no work has focused
on ensemble learning on graph representation learning.

Here, we formally introduce ensemble learning on graph
representation methods and provide a framework for it. We
first give a motivation example to show that a single embed-
ding approach is not enough for accurate predictions on a
graph task, and combining methods can yield improvement
in performance. We then formalize the problem and define
a method to measure the correlations of embeddings obtained
from various approaches. Then, we provide an upper bound on
the correlation assuming certain properties of the graph. The
upper bound is used to establish the utility of our framework.

We focus our experiments on the task of node classifica-
tion. We compare our method with state-of-the-art embedding
methods and show its performance on four real-world net-
works, including collaboration networks, social networks, and
biological networks. Our experiments show that the proposed
ensemble approaches outperform the state-of-the-art methods
by 20% on macro-F1. We further show that the approach is
even more beneficial for underrepresented classes and get an
improvement of 40%.

Overall, our paper makes the following contributions:
1) We introduce ensemble learning in the field of graph

representation learning.
2) We propose a framework for ensemble learning on given

a variety of graph embedding methods.
3) We provide a theoretical analysis of the proposed frame-

work and show its utility theoretically and empirically.
4) We demonstrate that combining multiple diverse meth-

ods through ensemble achieves state-of-the-art accuracy
and outperforms majority voting strategy to the ensem-
ble for node classification.

II. RELATED WORK

Methods for graph representation learning (aka graph em-
bedding) typically vary in properties preserved by the approach
and the objective function used to capture these properties.
Based on the properties, embedding methods can be divided
into two broad categories: (i) community preserving, and (ii)
structure preserving. Community preserving approaches aim to
capture the distances in the original graph in the embedding
space. Within this category, methods vary on the level of
distances captured. For example, Graph Factorization [10] and
Laplacian Eigenmaps [11] preserve shorter distances (i.e., low

order proximity) in the graph, whereas more recent methods
such as Higher Order Proximity Embedding (HOPE) [7]
and GraRep [12] capture longer distances (i.e., high order
proximity). Structure preserving methods aim to understand
the structural similarity between nodes and capture the role
of each node. Node2Vec [6] uses a mixture of breadth first
and depth first search for this. Deep learning methods such
as Structural Deep Network Embedding (SDNE) [13] and
Deep Network Graph Representation (DNGR) [12] use deep
autoencoders to preserve distance and structure.

Based on the objective function, embedding methods can be
broadly divided into two categories: (i) matrix factorization,
and (ii) deep learning methods. Matrix factorization techniques
represent a graph as a similarity matrix and decompose it to get
the embedding. Graph Factorization and HOPE use adjacency
matrix and higher order proximity matrix for this. Deep
learning methods, on the other hand, use multiple non-linear
layers to capture the underlying manifold of the interactions
between nodes. SDNE, DNGR, and VGAE [14] are examples
of these methods. Some other recent approaches use graph
convolutional networks to learn graph structure [15]–[17].
As an example, Geometric GCN [18] maps the graph to
a continuous latent space using node embedding and then
uses the geometric relationships defined in the latent space
to build structural neighborhoods for aggregation. Some more
recent methods suggested augmenting deep networks with
attention mechanism. One such method is Graph Attention
Networks [19], which uses a novel attention model on the
power series of the transition matrix, which guides the random
walk to optimize an upstream objective.

In machine learning, ensemble approaches [20] are algo-
rithms that combine the outputs of a set of classifiers. It has
been shown that the ensemble of classifiers are more accurate
than any of its members if the classifiers are accurate and
diverse [21]. There are several ways individual classifiers can
be combined. Broadly, they can be divided into four categories:
(i) Bayesian voting, (ii) random selection of training examples,
(iii) random selection of input features, and (iv) random se-
lection of output labels. Bayesian voting methods combine the
predictions from the classifiers weighted by their confidence.
On the other hand, methods such as Random Forest [9] and
Adaboost [8] divide the training data into multiple subsets,
train classifiers on each subset, and combine the output. The
third category of approaches divides the input set of features
available to the learning algorithm [22]. Finally, for data with
a large number of output labels, some methods divide the set
of output labels and learn individual classifiers to learn their
corresponding label subset [23].

In this work, we extend the concept of ensemble learning
to graph representation learning and get insights into the
correlations between various graph embedding methods. Based
on this, we propose ensemble methods for them and show the
improvement in performance on node classification task.
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III. MOTIVATING EXAMPLE

This section presents a motivational case study to highlight
the effectiveness of the proposed graph representation ensem-
ble learning on a synthetic dataset. We present the analysis
by utilizing four synthetically generated graphs: (a) Barabasi-
Albert, (b) Random Geometry (c) Stochastic Block Model, and
(d) Watts Strogatz graph (see Figure 2). Each of these graphs
exhibits a specific structural property. We use a spring layout
to further elucidate the difference in the structural properties
of the four different synthetic graphs. The Barabasi-Albert
graph makes new connections through preferential attachment
using the degree of the existing nodes. Watts Strogatz graph
generates a ring of n graphs with the addition of edges of each
node with its k neighbors. Stochastic Block Model creates
community clusters by preserving the community structure.
The Random Geometry graph generates n nodes and adds m
edges by utilizing the spatial proximity among the nodes as a
measure.

Barabasi Albert Graph Random Geometric Graph

Stochastic Block Model Graph Watts Strogatz Graph

Fig. 2: Four synthetic graph with different graph properties
(with node color representing different degrees) initially drawn
using the spring layout.

We have generated each of the synthetic graphs with 100
nodes each. As mentioned earlier, different embedding al-
gorithms such as Graph Factorization, Laplacian Eigenmaps,
High Order Proximity Preserving, Structural Deep Network
Embedding, Node2Vec, Geometric Graph Convolution Net-
works, Graph Autoencoders, and Graph Attention Learning
Networks capture various characteristics of the graphs. Hence,
a single embedding algorithm may not be able to capture the
entire complex interaction. To test this hypothesis, we have
created two node labels for the synthetic graph. The first label
is based on the degree of the graph, whereas the second label
is based on the closeness centrality measure [24] of the graph.
The centrality values are binned, and the respective bins are
used as node labels.

To simulate the interaction between different synthetic
graphs, we have randomly selected node pairs (equal to 40%
of the total number of nodes) and added edges between them

Fig. 3: It illustrates the merge graph of four synthetically gen-
erated graphs using two approaches(different colors represent
the updated node degree). Left graph: shows the original
layout by adding edges of four graphs. Right graph: shows
a new layout by adding four graphs using Spring techniques.

(with a probability threshold of 0.3). The addition of the edges
are shown in Figure 3.

Method Macro-F1 deg↑ Macro-F1 cent↑
GF 0.052 0.137
LAP 0.221 0.157
HOPE 0.172 0.163
SDNE 0.136 0.216
Node2Vec 0.203 0.186
Graph AE 0.175 0.141
Geom GCN 0.194 0.174
Graph Attn 0.113 0.114
Majority Vote All 0.235 (6.33%) 0.221 (2.31%)
Optimal Concatenation 0.252 (14.02%) 0.241 (11.57%)

TABLE I: Ensemble performance on motivating example.
The result of the node classification for the degree labels

of the merged synthetic graph is shown in column 2 of Table
I. The embedding obtained from the state-of-the-art methods
and the ensemble approach is utilized to predict the degree
labels. It can be seen that compared to the state-of-the-art
algorithms, the ensemble based approach is able to achieve
14.02% improvement in macro F1 score. It is a significant
improvement in the classification accuracy as compared to
all individual methods independently and a majority voting
ensembling scheme of all methods together.

The classification accuracy results for classifying the cen-
trality measures are shown in column 3 of Table I. For this
label, it can be observed that the ensemble based method
can achieve 11.57% improvement in macro F1-score. Both
the macro F1-score proves that the ensemble based approach
can utilize the best characteristic of different graph embedding
algorithm’s ability to capture the structure of the network.

IV. GRAPH REPRESENTATION ENSEMBLE LEARNING

In this section, we define the notations and provide the
graph ensemble problem statement. We then explain multi-
ple variations of deep learning models capable of capturing
temporal patterns in dynamic graphs. Finally, we design the
loss functions and optimization approach.

A. Notations

We define a directed graph as G = (V,E), where V is
the vertex set, and E is the directed edge set. The adjacency
matrix is denoted as A. We define the embedding matrix from
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a method m as Xm. The embedding matrix can be used to
reconstruct the distance between all pairwise nodes in the
graph. We denote this as Sm, in which Sm

i,j = ‖Xm
i,. −Xm

j,.‖.

B. Problem Statement

In this paper, we introduce the problem of ensemble learning
on graph representation learning. We define it as follows:
Given a set of embedding methods {m1, . . . ,mk} with cor-
responding embeddings for a graph G as {Xm1 , . . . , Xmk}
and errors {ε1, . . . , εk} on a graph task T , a graph ensemble
learning approach aims to learn an embedding Xm with error
ε such that ε < min(ε1, . . . , εk).

C. Measuring Graph Embedding Diversity

Different graph embedding techniques vary in the types of
properties of the graphs preserved by them and the model
defined. Broadly, embedding techniques can be divided into
(i) structure preserving, and (ii) community preserving models,
defined as follows:

Definition 1. (Community Preserving Models): It aims to
embed nodes with the lower distance between them closer
in the embedding space.

Definition 2. (Structure Preserving Models): It aims to embed
structurally similar nodes closer in the embedding space.

As the ensemble accuracy of a combination of methods
depends on the diversity of the input methods [25], we now
establish bounds on the diversity of embedding models. Graph
embedding of a graph G is a matrix X ∈ Rn×d where
n is the number of nodes, and d is the dimension of the
embedding. Thus, we require a diversity measure that can
quantify diversity between matrices. Pearson correlation [26]
is a popular metric traditionally used to measure diversity of
two univariate random variables. It can be generalized to a
multivariate case and defined as RV coefficient [27].

As RV Coefficient measures linear dependence between
the variables and embedding methods can be non-linear in
construction, we can use a distance based metric to capture
such non-linearity between embeddings:

Definition 3. [28] (Distance Covariance): Suppose that X and
Y are matrices of centered random vectors (column vectors).
Let the n×n distance matrices (aj,k) and (bj, k) containing all
pairwise distances, aj,k = ‖Xj −Xk‖ and bj,k = ‖Yj − Yk‖.
We compute the doubly centered distance matrices (Aj,k) and
(Bj,k), where Aj,k = aj,k − aj,. − a.,k + a.,. and Bj,k =
bj,k − bj,. − b.,k + b.,.. The distance covariance is defined as
follows:

dCov2(X,Y ) =
1

n2

n∑
j=1

n∑
k=1

Aj,kBj,k.

Definition 4. [29] (Distance Correlation): The distance corre-
lation between random variables X and Y is given as follows:

dCor(X,Y ) =
dCov(X,Y )√

dCov(X,X)dCov(Y, Y )

Based on this, we obtain the following bound:

Theorem 1. Consider two embedding methods m1 and m2

with corresponding embeddings for a graph G = (V,E) as
Xm1 and Xm2 , where |V | = n. Let G have a set V1 of
structurally similar nodes with |V1| = n1 and a set V2 =
V \ V1 with nodes in multiple communities. If m1 is a purely
structural preserving method and m2 preserves both structural
and community properties, then distance correlation between
the the embeddings has the following bound:

dCor(Xm1 , Xm2) < 1− n1
n
.

Proof. Let Sm1 and Sm2 denote the pairwise distance matrices
for methods m1 and m2, and S′m1 and S′m2 denote their
doubly centered versions. We now have,

dCov(Xm1 , Xm2) =
1

n2

∑
v,w∈V

S′m1
v,w S

′m2
v,w (1)

dCov(Xm1 , Xm1) =
1

n2

∑
v,w∈V

(S′m1
v,w )2 (2)

We can divide the first summation (eqn. 1) into four parts:

∑
v,w∈V

S′m1
v,w S

′m2
v,w =

∑
v,w∈V1

S′m1
v,w S

′m2
v,w +

∑
v∈V1,w∈V2

S′m1
v,w S

′m2
v,w

+
∑

v∈V2,w∈V1

S′m1
v,w S

′m2
v,w +

∑
v,w∈V2

S′m1
v,w S

′m2
v,w

As m2 preserves structural similarity, the distance between
each pair of nodes in set V1 will be 0 yielding the first term
of above equation 0. Also, since V1 and V2 do not have a
specified relation, the embedding distances by m1 and m2 will
be randomly distributed and uncorrelated. Thus, the second
and third terms become 0. We can get similar results for second
summation (eqn. 2) as well. From this, we get

dCor(Xm1 , Xm2) =

∑
v,w∈V2

S′m1
v,w S

′m2
v,w√∑

v,w∈V2
(S′m1

v,w )2
√∑

v,w∈V2
(S′m2

v,w )2

As correlation between two variables is bounded by 1, from
the above we get

dCor(Xm1 , Xm2) ≤ (n− n1)2

n2
= 1 +

n21
n2
− 2n1

n

Also, n1 < n and thus n2
1

n2 <
n1

n . We thus get

dCor(Xm1 , Xm2) < 1− n1
n
.

Corollary 1. For a graph G with s sets of structurally similar
nodes {V1 . . . Vk} with |Vi| = ni and embedding methods m1

and m2 preserving purely structural and both structural and
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community properties respectively, the distance correlation
bound is:

dCor(Xm1 , Xm2) < 1−
s∑

i=1

ni
n
.

Proof. The summation in Theorem 1, eqn. 2, can be broken
down into 2s parts and the rest follows as above.

D. Measuring Label Prediction Diversity

We have now established the upper bound on correlation
between the embeddings. We also know the following about
predictions using Logistic Regression:

Theorem 2. Consider two sets of feature spaces for data
D represented as X ∈ Rn×d1 and Y ∈ Rn×d2 with labels
for individual data points as Z ∈ Rn. If logistic regression
models trained on (X,Z) and (Y, Z) obtain accuracy of aX
and aY respectively, then we have the following bound for the
model trained on (X ‖ Y,Z), where ‖ denotes concatenation
operation:

aX‖Y ≥ max(aX , aY )

Proof. Without loss of generality, assume that aX > aY . As
logistic regression is an additive model, setting weights of the
model corresponding to Y would yield the accuracy of the
concatenated model aX .

From the above theorem, we note that adding embeddings
of method m2 on m1 would not decrease the performance.
Further, the equality in Theorem 2 is realized when Y is a
linear scaling of X or distances in Y are exactly correlated
with X . But from Theorem 1 we have an upper bound on the
correlation between the embeddings. Thus, we get aX‖Y >
max(aX , aY ). Tighter bounds are left as future work.

Further, to empirically measure good candidates for embed-
dings concatenation, we compute a prediction diversity score
div(pm1

,pm2
), defined as the ratio of data points which are

predicted differently by m1 and m2 with one of the methods
making correct prediction to the total number of data points.

E. Runtime Optimization Techniques

Given a set of k embedding methods {m1 . . .mk} with
optimal hyperparameters {〈1 . . . 〈k} and the maximum time
complexity from the methods as T per unit dimension, a
naive implementation of finding the optimal combination of
methods would take a time complexity of O(2k × T × d),
where d is the embedding dimensionality. To optimize this,
we do an approximation by greedily adding the next method’s
embedding to the current set of embeddings. This yields a time
complexity of O(k × T × d).

F. Algorithm

Algorithm 1 provides the pseudo-code for the framework.
Given an input graph G, we split the graph nodes into training,
validation and test. We then use the validation set to get
an accuracy score for each embedding method. Based on
the evaluation score and prediction divergence metric, we

Algorithm 1: graphensemble
Function graphensemble (Graph G, Embedding
methods M = {m1, ..,mK})

train, val, test ← splitNodeIndexes(G);
for i = 1 . . .K do

Xmi ← getEmbedding(G, mi);
training(model, Xmi [train]);
ai ← evaluate(model, Xmi [val]);

sortedmethods ← Sort M based on a;
ens ← sortedmethods[0];
for i = 1 . . .K do

if mi == ens then
continue;

div(pmi
,pens) ← predDiv(pmi

, pens);
dcormi,ens ← dcor(mi, ens);
greedy cmi,ens←div(pmi

,pens) * ami
* aens;

ensembleset ← set();
ensembleset.add(ens);
remainingmethods ← M - ensembleset;
aprev ← 0;
for m ∈ remainingmethods sorted by
greedy cmi,ens do

ensembleset.add(m);
remainingmethods ← M - ensembleset;
ens ← set(mi ∀ mi ∈ ensembleset);
X ← concat(Xmi ∀ mi ∈ ensembleset);
training(model, X[train]);
aens ← evaluate(model, X[val]);
if aens < aprev then

ensembleset.remove(m);

for i = 1 ∈ remainingmethods−m do
div(pmi

,pens) ← predDiv(pmi
, pens);

greedy cmi,ens←div(pmi
,pens) * ami

*
aens;

aprev ← ae;

X ← concat(Xmi ∀ mi ∈ ensembleset);
training(model, X[train]);
atest ← evaluate(model, X[test]);
return atest

greedily add the next best embedding approach to evaluate the
performance of the ensemble of methods. Finally, we report
the performance on a held-out test set. In the experiments
below the above step is performed 5 times and the average is
reported. Please note that in order to evaluate the performance
of our greedy algorithm, we also compare the results with the
optimal ensemble found by searching the entire search space.
We call that ensemble as the optimal ensemble.

V. EXPERIMENTS

In this section, we establish the Graph Ensemble approach
against eight state-of-the-art baseline embedding methods to
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evaluate their multi-label node classification performance on
four benchmark datasets. In addition, we yield insights into
the correlation of graph embedding methods.

A. Datasets

Table II shows used four benchmark real-life graphs for
node classification tasks in our experiment. For each dataset,
we derive the largest weakly connected component.

Dataset Node Edge Class
PPI [30] 03,890 038,839 50
BlogCatalog [31] 10,312 333,983 39
Citeseer [32] 03,312 004,660 06
Wikipedia [33] 04,777 092,512 40

TABLE II: Statistics of benchmark datasets in the experiment.
B. Baseline Graph Embedding Methods

We compare our Graph Ensemble method with the eight
baseline models - Graph Factorization (GF) [34], Lapla-
cian Eigenmaps (LAP) [35], High Order Proximity Pre-
serving (HOPE) [36], Structural Deep Network Embedding
(SDNE) [37], Node2Vec [38], Geometric Graph Convolutional
Networks (Geom GCN) [18], Variational Graph Autoencoders
(GraphAE) [14] and Graph Attention Networks [19].

C. Graph Ensemble Approach

Our graph representation ensemble learning mechanism
leverages a bag of single embedding methods and achieves
an optimal embedding combination for graph feature learning.
First, we run an individual graph embedding method on the
original graph to get the best embedding at each dimension.
Then, we use the greedy approximated search to add embed-
ding generated by other methods iteratively to the embedding
given by the best single method. In the end, we feed the ensem-
ble concatenation embedding and baseline method embedding
to the downstream multi-label node classification task. At each
experiment round, we split the nodes of a graph into training
data (50%), validation data (20%), and test data (30%). Using
training data is intended to find the best hyperparamter for
single methods. We choose the optimal ensemble embedding
combination based on the validation data. And we report the
performance of our graph ensemble methods and five baseline
methods on test data.

1) Hyperparameter Search: In order to get the best em-
bedding for each single graph embedding model, we employ
a best hyperparamter search on the training dataset. Among
three embedding dimensions 32, 64 and 128, we select the
best hyperparameter set respectively at each dimension. Except
for LAP which does not contain hyperparamters, we use grid
search on a range of hyperparameter sets for the other four
methods. For GF, we search parameters including learning rate
from {1e-3, 1e-2, 1e-1} and regularization from {1e-1, 1, 10}.
For HOPE, we select a decaying factor from {1e-4, 1e-3, 1e-
2, 1e-1} and similarity function from Katz Index, PageRank,
Common Neighbours and Adamic-Adar. For SDNE, we fix the
auto-encoder structure 500, 1000, 300 nodes in each layer, and
set first loss function parameter α to 1e-5 and penalty β to
10. We select two regularization factors and xeta from {1e-3,

1e-2} respectively. As for Node2Vec, we set walk length to
80, number of walks to 10, context size to 10. We select return
p and in-and-out q from {0.25, 0.5, 1, 2, 4} respectively.

2) Ensemble Combination Search: After obtaining the best
hyperparameter set for each method at each dimension, we
evaluate their performance on a multi-label node classification
task with the validation dataset and select the optimal ensem-
ble combination. First, we choose the best method, which
has the best performance on the training data. We test its
performance on validation data under the best setting with
respect to three dimensions 32, 64, and 128, and then select
its best dimension based on Macro F1 score. Secondly, we
append the embedding of the second best method at three
dimensions separately to the best embedding so far and repeat
the evaluation process. The criteria we use to select the next
best method is based on the highest value of the product
between the prediction divergence and the individual method’s
macro averaged F-score. If the performance improves, we keep
the second embedding at the chosen dimension. Otherwise, we
abandon this method and continue the appending process. In
the end, we will obtain the best combination iteratively via
such greedy approximation.

D. Embedding Correlation and Prediction Divergence

Fig. 4: Distance correlations of embedding methods on real
networks (dimensions set to 128).

The distance correlations between the embeddings obtained
by different embedding methods are presented in Figure 4.
We observe that the correlation between the embeddings
varies significantly with the underlying dataset. For PPI and
Wikipedia, we see that most methods are weakly correlated.
This strengthens our claim in Theorem 1 that embedding
methods preserve different properties and if the underlying
graph is complex, then the embeddings will be diverse. For
both Wikipedia and PPI datasets, we observe that SDNE and
HOPE have high correlation values, as both preserve higher
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order proximity in a non-linear way, further strengthening
our claim. We also observe, in general, that for the pair
of embedding methods that have high correlation values,
prediction divergence score is low. A high value of prediction
divergence score directly provides an indication of how much
gain can be obtained by ensembling the pair of embeddings.
However, if the distance correlation values for those methods is
very low, not much performance gain was observed because of
induction of high non-linearity in the joint embedding space.
To combat this, we use a product of distance correlation
and prediction divergence as the criteria to greedily select
embedding methods for ensembling.

E. Multi-label Node Classification

In the multi-label node classification task, we are given a
graph as well as labels of a proportion of nodes as training
data. And we aim to predict the unknown labels for the rest
of the nodes in the test data. Each node in the graph has one
or multiple labels. To evaluate the graph ensemble embedding
and baseline methods embedding, we utilize the same One-
Vs-the-Rest multi-label strategy and Logistic Regression (with
L2 regularization and class balancing using sample weights)
to build classifiers. To ensure the robustness of our proposed
graph ensemble methods and stability of the experiments, we
repeat the whole process for five rounds and report the average
results. We use Macro F1 and Micro F1 as evaluation metrics.
Micro F1 has a similar performance like Macro F1; thus, it
is not reported in the paper. We care more about the minority
class prediction, and Macro F1 is preferably considered.

We summarize multi-label classification results in Table III.
Overall, we observe that the ensemble of methods outperforms
individual methods significantly except for Citeseer. Geometric
GCN gives the highest accuracy for all PPI and BlogCat
datasets, Graph AE for Citeseer and HOPE for Wikipedia.
The performance improvement with embeddings concatena-
tion can be attributed to the interplay of embeddings when
concatenated together, and the amount of information shared.

F. Minority Class

Figure 5 highlights the F1 score of our graph ensemble
methods on smaller classes is higher than the best individual
methods. Our graph ensemble strategy combines the captured
features derived by all single methods and generates a compre-
hensive graph embedding, which can improve the performance
of less represented classes. In Wikipedia, we observe that for
minimal classes, none of the individual methods perform well.
However, the combination ensemble performs well and gives
F1 upto 0.8. Similarly, in Citeseer, we see an improvement of
about 40% for less represented labels.

VI. CONCLUSION

In this paper, we proposed a framework which can create an
ensemble of graph embedding approaches outperforming each
method. We provided a theoretical analysis of the framework
and established the upper bound on the correlations be-
tween graph embedding techniques. Further, we compared our

Dataset Method Dimension Macro-F1↑
GF 128 0.908
LAP 128 0.051
HOPE 128 0.104
SDNE 32 0.139
Node2Vec 128 0.146
Geom GCN 128 0.167
Graph AE 128 0.155

PPI Graph Attn 128 0.114
Majority Vote All All 0.169 (1.2%)
Optimal Concatenation of
Geom GCN, Graph AE, 128, 128,
Node2Vec, SDNE 128, 32 0.198 (18.56%)
Greedy Concatenation of
Geom GCN, Graph AE, 128, 128,
Node2Vec, SDNE, Graph Attn 128, 32, 128 0.193 (15.57%)
GF 128 0.042
LAP 32 0.047
HOPE 128 0.127
SDNE 128 0.198
Node2Vec 128 0.214
Geom GCN 128 0.223
Graph AE 128 0.116

BlogCat Graph Attn 128 0.084
Majority Vote All All 0.232 (4.04%)
Optimal Concatenation of
Geom GCN, HOPE, LAP, 128, 128, 32,
Node2Vec, SDNE 128, 128 0.256 (14.80%)
Greedy Concatenation of
Geom GCN, HOPE, 128, 128,
Node2Vec, SDNE 128, 128 0.254 (13.90%)
GF 128 0.114
LAP 128 0.666
HOPE 64 0.636
SDNE 128 0.398
Node2Vec 128 0.643
Geom GCN 64 0.580
Graph AE 64 0.669

Citeseer Graph Attn 128 0.355
Majority Vote All All 0.676 (1.05%)
Optimal Concatenation of
GF, HOPE, LAP, SDNE, 128, 64, 128, 128,
Graph AE, Node2Vec 64, 128 0.697 (4.2%)
Greedy Concatenation of
HOPE, LAP, 64, 128,
Graph AE, Node2Vec 64, 128 0.692 (3.44%)
GF 64 0.041
LAP 128 0.032
HOPE 128 0.159
SDNE 128 0.030
Node2Vec 128 0.098
Geom GCN 64 0.102
Graph AE 128 0.064

Wikipedia Graph Attn 64 0.058
Majority Vote All All 0.168 (5.66%)
Optimal Concatenation of
GF, HOPE, LAP, Node2Vec 64, 128, 128, 128,
Geom GCN, Graph AE 64, 128 0.191 (20.12%)
Greedy Concatenation of
HOPE, LAP, Node2Vec 128, 128, 128,
Geom GCN 64 0.187 (17.61%)

TABLE III: Macro F1 score of Graph Ensemble methods. The
percentage inside parentheses indicates the performance gain
of Graph Ensemble over the best single method.

method with state-of-the-art embedding methods and showed
improvement in four real-world networks. We also showed that
the model is even more useful for underrepresented classes.
There are several research directions for future work: (1)
tighter ensemble bound, (2) information theoretic approaches
which can take into account the mutual information between
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Fig. 5: Node classification results on PPI and Wikipedia Datasets. Y-axis is F1 score on each class.

embeddings, and (3) dynamic ensembles for evolving graphs.
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