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Abstract—Detecting fake accounts (also called Sybils) is a
fundamental security problem in online social networks (OSNs).
Existing feature-based or social-graph-based approaches suffer
from the key limitations: they can only leverage either node
feature or graph structure properties such as fast-mixing and
conductance, but not both. To overcome this shortcoming, we
explore the introduction of recent advancements in deep neural
networks for graph-structured data into Sybil detection field.
These types of models enable integrating both user-level activities
and graph-level structures for a new generation of feature-
and-graph-based detection mechanisms. However, we find that
although applying Graph Convolutional Networks (GCNs) are
effective against naı̈ve attacks, they are vulnerable to adversarial
attacks in which fake accounts alter local edges and features with
patterns to resemble real users.

In this paper, we present TrustGCN, a Sybil-resilient defense
algorithm that combines the idea of social-graph-based defense
with GCN. TrustGCN first assigns trust scores to nodes based
on the landing probability of short random walks that starts
from known real accounts. As this short, supervised random
walk is likely to stay within the subgraph consisting of real
accounts, most real accounts receive higher trust scores than
fakes. Then it introduces these trust scores as edge weights
and adopts graph convolution operations to aggregate features
of local graph neighborhoods over this weighted graph for
classification. In this way, we prevent Sybil partners with low
trust scores from contributing to the feature aggregation for a
target node, thus is more robust against adverse manipulations
of the attackers. Our experiment on real data demonstrates that
TrustGCN significantly outperforms GCN in the robustness. To
the best of our knowledge, this is the first attempt to combine
social-graph-based defenses with graph neural networks into a
unified model, paving the way for the robust feature-and-graph-
based detection mechanisms.

Index Terms—Sybil detection, graph convolutional network,
adversarial attacks

I. INTRODUCTION

Sybil defense is one of the primary concerns of distributed
systems [1]. Sybils, created as fake identity accounts, aim to
exert or spread malicious influence on the systems. And they
are regarded as big threats to the security of P2P systems
[2], recommendation systems [3], [4], and anonymous com-
munication platforms [5]. Nowadays, online social networks
(OSNs) become hot targets of Sybil attacks [6]. The popular
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coverage and rapid propagation of information on OSNs offer
great opportunities and profits for Sybils. The attackers can
spread out spams, scams, or malware in a quick and wide-
effecting way with Sybils in OSNs. Detecting Sybils is one of
the most important tasks in social network, which can improve
the experience of its users and their perception of the service
by stemming annoying spam messages and invitations.

Most of today’s fake account detection mechanisms are
either feature-based or graph-based, depending on whether
they utilize machine learning or graph analysis techniques to
identify fakes. In the feature-based approach, unique features
are extracted from recent user activities (e.g., frequency of
friend requests, fraction of accepted requests) and local graph
structure, after which they are applied to a classifier that has
been trained offline using machine learning techniques. In
the social-graph-based approach [7]–[10], also called random
walk-based solutions, an OSN is formally modeled as a graph,
and the approach relies on social graph properties to uncover
fake users: Given assumption that the number of ties that
the adversary can forge between Sybils and honest nodes is
restricted, the trust propagation (via short random walks) from
the normal users would hardly reach Syibls.

These mechanisms, however, suffer from the key limitation:
they only leverage either node features or graph structure,
but not both, often leading to unsatisfied detection accuracy.
For example, feature-based detection is still relatively easy to
circumvent, whereas most social-graph-based approaches are
used to rank users instead of classification due to relatively
high false positive rate.

Motivation. Recent years have seen significant developments
of new deep learning methods that are capable of learning
on graph-structured data. Most prominent among these recent
advancements is the success of Graph Convolutional Networks
(GCNs) [11], [12] and their variants, which have become the
de facto methods in many supervised and semi-supervised
graph representation learning scenarios such as node classi-
fications. Through iteratively aggregating feature information
from local graph neighborhoods using deep neural networks,
GCNs allow to incorporate both graph structure as well as
node feature for the classification. Therefore, different from
traditional machine learning or graph analysis techniques,IEEE/ACM ASONAM 2020, December 7-10, 2020
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Fig. 1. The key difference between standard GCN and TrustGCN.

GCNs would open a promising direction for designing new
feature-and-graph-based Sybil detection mechanism.
Challenge. To exploit this direction, we study the perfor-
mance of GCN in a real dataset where fake accounts perform
malicious befriending activities. We model the friend request
interactions among users as a signed graph, with the sign
indicating the acceptance/rejection. We find that although
GCN could achieve high detection accuracy against naı̈ve
attacks, it is vulnerable to adversarial attacks and can be easily
evaded if fake accounts manipulate their local graph structure.

The key reason is that GCN mainly focuses on the local
graph neighborhood of a target node. Thus, it is possible for
the attacker to manipulate the links of its local neighbors to af-
fect the GCN’s performance. As illustrated in Figure 1, Sybils
can send/accept requests among themselves. As standard GCN
allows each node in the neighborhood contributing to the
feature aggregation of the target node, the manipulation from
colluding fake neighbors could lead to significant accuracy
drop for GCNs. In this paper, we aim to tackle the question:
“How can we design a Sybil-resilient defense that allows to
leverage GCNs for the new generation of feature-and-graph-
based Sybil detection mechanism?”.
Our Solution. We introduce trust as a way to improve
the robustness of GCN. The key intuition is that, due to
the difficulty of soliciting and maintaining reciprocal social
relationships, Sybils have more rejected friend requests than
accepted ones for signed friend request graph, or establish
a limited number of attack edges to real users for unsigned
social graph. The low fraction of accepted links (or limited
attack edges) result in a negative cut (or a sparse cut) between
the non-Sybil and the Sybil region.

To exploit such structural gap for robust detection, we
present TrustGCN, which combines GCN with the idea of
social-graph-based defenses. Specifically, TrustGCN decou-
ples the feature aggregation into two stages: At the first
stage, TrustGCN computes trust scores of nodes in the signed
friend activity graph (or unsigned social graph) based on the
land probabilities of short random walks starting from known
benign nodes. Given the structure gap between Sybils and real

(a) Normal (b) Sybil

Fig. 2. The number of accepted friend requests of real nodes and Sybils.

(a) Normal (b) Sybil

Fig. 3. The number of rejected friend requests of real nodes and Sybils.

users, most real accounts would have higher trust than Sybils.
At the second stage, TrustGCN integrates these trust scores
of nodes into the graph convolution operation as weights (or
the probability for selection), in order to guarantee that most
neighbors for feature aggregation are selected from those real
users. As illustrated in Figure 4, TrustGCN could effectively
prevent most distrust Sybil partners from contributing to the
neighborhood feature aggregation of a specific fake node,
irrespective of manipulated local neighborhood.

Notice that even the attacker could manipulate the node-
level features of individual Sybils (e.g., the fraction of ac-
cepted requests), the local neighborhood feature is hard to
manipulate as most Sybils cannot effectively contribute to the
neighborhood feature aggregation. This enables TrustGCN to
be attack-resilient, overcoming the limitations of both existing
feature-based and social-graph-based approaches.
Contributions. The key contribution of this paper is that, for
Sybil detection in OSN, we show that GCNs are vulnerable
to adversarial local structure manipulation, and advocate com-
bining social-graph-based defenses and graph neural networks
for robust detection. Given various types of social-graph-based
methods and graph neural networks, TrustGCN represents
a critical step in this direction by showing not only the
feasibility, but also the potential of such combination.

II. RESILIENCE OF GCNS

In this section, we examine the resilience of GCN under
different attacking strategies.

A. Graph Construction

Sybil Dataset. We use a regional Peking university (PKU)
network of complete friend request records from Renren [13].



Fig. 4. The fraction of rejected requests of real users and Sybils.

We construct the PKU friend-request network as a signed
graph with about 60K users and 2.2 million positive edges
and 0.4 million negative edges. We use the 5.5K PKU fake
accounts which have been detected by Renren security team
as the ground truth of Sybils. We randomly choose 5% nodes
from the ground truth as label data, and predict the labels
of other 95% nodes. Here we choose a low labeling rate as
labeled data is often expensive to obtain in practice, requiring
manual examination of social network posts and user profiles.

Friend Request Graph. We construct the acceptance and
rejections of friend request interactions of users as a signed
graph G = (V,E), where V = {v1, ..., vn} represents n
nodes and E = {eij} represents the edges. Each edge eij
is associated with a sign sij . indicating whether vi accepts
vj (sij = 1) or vi rejects vj (sij = −1). The node feature
information matrix is represented as X = {x1,x2...,xN}
and xi ∈ Rd. In our experiment, unique features are extracted
from user-level activity [14], such as the frequency of friend
requests, the fraction of accepted requests, the number of
accepted or reject requests, clustering coefficient, etc.

Figure 2 and Figure 3 show the distribution of the number
of accepted (rejected) requests of real users and Sybils, re-
spectively. We see that real users have more accepted friend
requests and less rejected friend requests than those of Sybils.
Figure 4 shows the faction of rejected friend requests of real
users and Sybils. On average, real users have a low rate of 0.3
to be rejected by others, whereas Sybils have a high rejection
rate of 0.3. This is because real users typically send invitations
to the people with whom they have prior relationships, whereas
Sybils target strangers.

B. Attacking Strategies

We take the number of links already exist in the network as
default network, and manipulate the links of Sybils to simulate
more complex attacking scenarios, as illustrated in Fig. 5. We
simulated the following attacking strategies in our experiment.

Collusion Attack. The attacker creates many positive fake
edges among Sybils, e.g., Sybils send requests among them-
selves and accept each other.

Legitimate users Promoters Sybils

friendship rejection cut

Fig. 5. Illustration of attack models.

Self-rejection Attack. The attacker attempts to whitewash a
part of the Sybils by letting these Sybils reject friend requests
from other Sybils.
Promotion Attack. Besides the manipulation between Sybils,
Sybils could also send/receive requests to/from compromised
real users who are more likely to accept. Here we suppose the
number of compromised real users are quietly limited.

We set parameter α as the percentage of Sybils participating
in the attack. The parameter β represents the percentage of
collusion links, self rejection links or promotion links of
these Sbyils in different attacking models, respectively. The
parameter γ controls the probability that compromised users
accept promotion requests.

C. GCN-based Detection Model

GCN Model. Given the graph, GCN uses a graph convolution
operation to obtain node embeddings layer by layer. At each
layer, the embedding of a node is obtained by gathering the
embeddings of its neighbors, followed by one or a few layers
of linear transformations and nonlinear activations. The final
layer embedding is then used for some end tasks. Due to
over-smoothing problem, a commonly used application is to
apply two-layer GCN to semi-supervised node classification
on graphs.

Figure 6 shows our model architecture. As the graph has
two types of edges, we concatenate the features of node itself,
the aggregated features of its positive neighbors and negative
neighbors as the input for each layer. More formally, given
the signed adjacency matrix A, let the positive matrix A+ and
negative matrix A− contain only positive and negative values
in the matrix A, respectively. In other words, A = A+ +
A−. Let D+ and D− be the out-degree diagonal matrices:
D+ii =

∑
j A+ij and D−ii =

∑
j A−ij . Then the semi-row

normalized matrix of A+ (or A−) is Ã+ = D−1+ A+ (or Ã− =
D−1− A−).

In GCNs, each layer updates the node feature embedding in
the graph by aggregating the features of neighboring nodes:

Zl+1 = concat(X l, Ã+X
l, Ã−X

l)W,

X l+1 = σ(Zl+1)
(1)



Fig. 6. The GCN-based Sybil detection model.

(a) Collusion attack (b) Self-rejection attack (c) Promotion attack

Fig. 7. Performance of GCN under different attacking strategies.

where X where X l is the embedding at the layer l for all the
nodes, and W is the feature transformation matrix which will
be learnt for the node classification. The activation function σ
is usually set to be the element-wise ReLU.

Model Setup. We set the hidden dimension of node as 16. In
the training stage, we randomly initialize the model parameters
with a Gaussian distribution, and optimize the model with
mini-batch Adam. We set the batch size as 512, and set the
learning rate as 0.01. All the experiments are implemented on
the Tensorflow.

D. Detection Results

To our knowledge, we are the first to examine the robustness
of GCN under different adverse manipulation in the social
Sybil detection filed. Figure 7 shows the performance of GCN
under different attacking strategies.

We see that the start point α = 0 gives the performance of
GCN before the attackers’ manipulation. Even the available
labeled data is limited (only 5%), GCN achieves high detection
accuracy by capturing both the node-level and graph-level
features. However, we see that the GCNs are vulnerable to
adversarial manipulation on the local structure or feature of
attacking nodes. All the proposed attacking strategy results
in significant drops in performance for GCN as more Sybils
participate in the manipulation.

For example, Figure 7(a) shows the resilience of GCN to the
collusion among Sybils. We see that the performance of GCN
drops dramatically as the number of collusion links grow, since
Sybils could add fake positive links to make their computation
graphs more similar to those of real users. We also observe
that GCN is more vulnerable to the promotion attacks, where
the accuracy drops significantly lower than others. Although
the number of promoters (e.g., comprised real users) are quite
limited, Sybils could enlarge their effect by allowing them
to contribute the feature aggregation for each Sybil, making
Sybils more difficult to distinguish from real ones.

The key reason behind high vulnerability is that the core
idea of GCNs is to learn how to iteratively aggregate feature
information from local graph neighborhoods using neural
networks (Figure 1). Here a single “convolution” operation
transforms and aggregates feature information from a nodes
one-hop graph neighborhood. Thus, for a two-layer GCN, the
attacker only needs to mimic the local structure and features of
normal users by manipulating a small two-hop neighborhood
by colluding with or self-rejecting other Sybils,

Moreover, we cannot solve this problem by stacking mul-
tiple such convolutions due to oversmoothing. Specifically, as
the information can be propagated across far reaches of a
graph, node representations become more and more similar,
which eventually become indistinguishable. Also, it is still
relatively easy for promotion attack to circumvent even given



Fig. 8. The workflow of TrustGCN model.

far reaches of a graph, because we are able to prevent from real
nodes to be included for positive neighborhood aggregation
once a promotion link is added. Therefore, the application of
GCN on Sybil detection field brings a significant challenge to
the robustness.

III. TRUSTGCN MODEL

To resolve the above major challenge, we propose the
TrustGCN, which overcomes the limitations of GCN with
social-graph-based methods.

A. Overview

Due to the difficulty of soliciting and maintaining reciprocal
social relationships, we assume that Sybils have more rejected
friend requests than accepted ones for signed friend request
graph, or establish a limited number of attack edges to real
users for unsigned social graph. The low fraction of accepted
links (or limited attack edges) result in a negative cut (or a
sparse cut) between the non-Sybil and the Sybil region.

To exploit the above structure gap, TrustGCN contains two
key stages to achieve robustness while being able to introduce
GCN into the Sybil detection filed, as shown in Figure 8:
Trust Propagation. TrustGCN first aims to ensure that most
real accounts have higher trust than Sybils. It utilizes the
power iteration method to efficiently propagate trust across the
graph. This method involves successive matrix multiplications
where each element of the matrix represents the random walk
transition probability from one node to a neighbor node. Each
iteration computes the landing probability distribution over all
nodes as the random walk proceeds by one step.
Trust-guided Graph Convolution. TurstGCN then uses
graph convolution operation (e.g., GCN) guided by the gener-
ated landing probabilities for node neighborhood aggregation
and classification. Our goal is to ensure that the most features
for graph convolution are collected from those trusted real
users. Specifically, we introduce the landing probabilities as
edge weights in the original graph to penalize the suspected
fake links, thus is robust against attack manipulation on node
classification.

We next describe each stage in detail. It is worth noting that
TrustGCN could be used for both signed friend request graph
or unsigned social graph. In the following, we mainly focus
on the former, as the unsigned social graph could be treated
it as a special case of containing no negative links.

B. Trust Propagation

Social-graph-based solutions uncover Sybils from the per-
spective of already known non-Sybil nodes (trust seeds). The
intuition is that if we seed all trust in the non-Sybil region,
then both trust/distrust can flow into the Sybil region via the
both positive/negative links. If we terminate the power iteration
early before it converges, non-Sybil users will obtain higher
positive landing probability (trust), whereas the reverse holds
for Sybils.
Signed Short Random Walks. We define T (i)

+ (v) and T (i)
− (v)

as the landing probabilities of signed random walks on node
v after i iterations. Initially, T −(0) v = 0, where as the total
trust, denoted as TG(TG > 0), is evenly distributed on a set
of trust seeds S.

T +(0) (v) =

{
TG

|S| v ∈ S
0 else

(2)

During each power iteration, a node first evenly distributes
its trust/distrust to its neighbors according the sign of edges.
It then collects trust distributed by its neighbors and updates
its own signed landing probabilities accordingly. The process
is shown below.

T +(i) (v) =
∑

suv=1

T +(i−1) (u)

deg(u)

T −(i) (v) =
∑

suv=−1

T +(i−1) (u)

deg(u)
+

∑
suv=±1

T −(i−1) (u)

deg(u)

(3)

where (u, v) ∈ E.
If the random walk starting at node v with a positive sign

encounters a negative edge, it flips the sign from positive to
negative, or vice versa. Our model distinguishes whether node
u is the friend of node v or not according to its sign at node u.



(a) Collusion attack (b) Self-rejection attack (c) Promotion attack

Fig. 9. The comparison between TrustGCN and GCN under different attacking strategies.

Different from structural balance theory, we still take enemy’s
enemy as enemy for detecting self-rejection attacks.
Early termination. We terminates the power iterations after
small number of K iterations, e.g., O(log n) steps. This number
of iterations is sufficient to reach a large portion over the fast-
mixing non-Sybil region, but limits the trust escaping to the
Sybil region or distrust flowing back to non-Sybil region.

C. Trust-guided Graph Convolution

Graph Weighting. Let T+ and T− be the positive and negative
landing probability vectors for the nodes based on short
random walks. TrustGCN incorporate these landing probability
vectors into the graph as weights, such that edges incident
to Sybils have lower weights than others for the feature
aggregation. More formally, let A be the signed adjacency
matrix, we weigh the graph as follows:

T = T+ + T−,

Atr = TA
(4)

Graph Convolution. Intuitively, a large edge weight implies
the source node is more trustable and reliable for the feature
aggregation of the target node. Thus, we perform graph
convolution operation on this new weighted graph defined by
weighted adjacent matrix Atr. Let the positive matrix Atr

+

and negative matrix Atr
− contain only positive and negative

values in the matrix A, respectively. Let Dtr
+ and Dtr

− be the
weighted out-degree diagonal matrices: Dtr

+ii =
∑

j A
tr
+ij and

Dtr
−ii =

∑
j A

tr
−ij . Then the semi-row normalized matrices of

Atr
+ and Atr

− ) are Ãtr
+ = (Dtr

+ )−1A+ and Ãtr
− = (Dtr

− )
−1A−,

respectively.
Based on the above definitions, a single layer of TrustGCN

model can be represented as the following equation:

Zl+1 = concat(X l, Ãtr
+X

l, Ãtr
−X

l)W,

X l+1 = σ(Zl+1)
(5)

where X l is the embedding at the layer l for all the nodes, and
W is the feature transformation matrix which will be learnt
for the node classification.

Since the graph is weighted by the trust score, TrustGCN
could achieve more reliable feature aggregation, thus is robust
against adverse manipulation over the signed friend request

graph. For example, most the collusion links between Sybils
would have negative weights given the negative cut between
the Sybil and normal regions. As a result, the Sybil partners
contribute each negative neighborhood feature aggregation
instead of positive ones in the original graph, thus making
them more easy to be distinguished from real users.

TrustGCN is also robust against adverse manipulation over
the unsigned social graph. Given the assumption that OSN
Sybils have a disproportionately small number of connections
to real users, the contribution of Sybils to the feature aggre-
gation of each other is limited by this small number of attack
edges, irrespective of their manipulation.

IV. RESULTS ON ROBUST DETECTION

We use the same experiment set up as Section 2. For
TrustGCN, we choose the propagation iteration number K as
4, with other parameters similar to the GCN used in Section
2. Figure 9 shows the performance comparison between Trust-
GCN and GCN under different attacking strategies. We make
the following observations.

First, we see that TrustGCN significantly enhances re-
silience to each types of attacks compared to GCN. The
fundamental rationale of TrustGCN is to leverage the unique
structural gap of Sybil community in this signed graph: the
colluding Sybils as a whole has more negative outgoing links
than positive ones, since real users usually send/accept the
friend requests to/from their friends or acquaintances. Al-
though an attacker can control the connections between Sybils
arbitrarily, it is hard to manipulate such structural gap between
benign nodes and Sybils. Because of high fraction of negative
landing probability on himself or other Sybil neighbors, the
Sybils cannot involve their partners for feature aggregation,
irrespective how they manipulate local neighborhood.

Second, TrustGCN is much robust in the self-rejection and
promotion attacks. Since we still consider enemy’s enemy as
enemy, the attacker cannot whitewash a part of the Sybils by
adding self-rejection links among Sybils. For the promotion
attack, the Sybils could get some positive landing probability
from compromised or popular users that are more willing to
accept other strangers. However, this probability is quite small
as these users have a large number outgoing edges but with
fixed incoming edges and trust scores. This prevents Sybils



from positively contributing to the feature aggregation of each
other due to low trust scores (i.e., the low weights in feature
aggregation).

Finally, we observe that TrustGCN has slight accuracy drop
with the increasing number of positive collusion links. This is
because some inactive Sybils have not launched attacks yet.
As they receive few negative links whereas many positive links
under the collusion strategy. The model tends to mis-classify
them as normal users. These accounts cannot do harm to real
users until after they start generating friend requests to real
users or their colluders. In this case, TrustGCN can recall these
accounts as quickly as possible once they become active, to
minimize the amount of damage they can do to real users.

V. RELATED WORKS

Sybil attacks are among the fundamental threats for dis-
tributed systems, especially for todays online social networks.
Feature-based detection. This approach relies on user-level
malicious behaviors manifested as profile and activity features,
and use various machine learning techniques to classify each
account as fake or real. Yang et al. [14] use activity-level fea-
tures, such as frequency of friend requests, fraction of accepted
requests, and per-account clustering coefficientus to train an
SVM classifier in order to detect fake accounts. Íntegro [15]
employs feature-based detection to identify unknown victims
in a non-adversarial setting. The dataset used to train a victim
classifier includes features of only known real accounts that
have either accepted or rejected friend requests send by known
fakes. Even though feature-based detection scales to large
OSNs, it is still relatively easy to circumvent, since attackers
can cheaply create fakes that resemble real users.
Social-graph-based defenses. Yu et al develop SybilGuard
[7] and SybilLimit [16] to defend against Sybil attacks, which
are among the first approaches leveraging the structure of
social networks. These two systems rely on the basic idea that
normal users and Sybil nodes are respectively well connected
and mutually isolated. Thus random walk from normal users
can hardly reach Sybil users, which could help to classify
the community of normal users and Sybils. These schemes
encourage a thread of research based on the edge conductance
[8], [10], [17]–[20]. They leverage the random walk method
and additional structural characteristics of the social network
to distinguish the Sybil communities from the normal users.
The primal prerequisite to use these random walk based
mechanisms is that the communities should be externally
isolated and internally fast mixing.

Another direction is to convert the Sybil identification
problem to community detection problem. Work from [21]
and [22] show the performance of leveraging community
detection techniques to achieve Sybil detection job. The com-
munity detection algorithms in [23] and [24] offer methods
to transfer the Sybil detection problems into the community
detection problems. Stemming from the observation that Sybils
inevitably receive a significant number of social rejections
from legitimate users, previous studies [13], [25] begin to take
into account request rejections.

However, graph-based defenses cannot leverage the feature
information for high classification accuracy. In practice, they
are usually used to derive a quality ranking instead of binary
classification, in which a substantial portion of Sybils ranks
low. This enables the OSN to focus its manual inspection
efforts towards the end of the list, where it is more likely
to encounter Sybils.
Graph Neural Networks. Recent years have seen significant
developments in this space especially the development of
new deep learning methods that are capable of learning on
graph-structured data. Most prominent among these recent
advancements is the success of deep learning architectures
known as Graph Convolutional Networks (GCNs) [11], [12],
[26], [27]. These methods combine standard neural networks
with iterative graph propagation: the feature of a target node
is computed recursively (with neural networks) from features
of graph-structural neighborhood nodes.

However, despite the successes of GCN algorithms, no
previous works have managed to apply them to Sbyil detection
field in a Sybil-resilient manner. Previous works [28], [29]
develop algorithms to attack GCNs by perturbing the links
and embeddings of a small subset of nodes. They employed
a gradient ascent method to change the graph structure in
the whitebox setting. Our methods focus on Sybil detection
scenario in social network and have different attacking strategy
and proposed defenses from the previous works.

VI. CONCLUSION

In this paper, we presented TrustGCN, a robust Sybil
detection algorithm that combines traditional social-graph-
based defenses with recent advancements in graph neural
networks. TrustGCN achieves this combination with a two-
stage framework: It first computes trust scores of nodes in
the graph based on the land probabilities of short random
walks starting from known benign nodes. Given the structure
gap between Sybils and real users, most Sybils would have
significantly lower trust scores than those of real users. Then
TrustGCN integrates these trust scores of nodes into the graph
convolution operation as edge weights (or the probability for
selection), in order to guarantee that most neighbors for feature
aggregation are selected from those real users. Using the
proposed approach, we are able to leverage the advantage
of GCN to incorporate both graph structure as well as node
feature information for more accurate Sybil detection, while
significant improving the GCN’s robustness against adversarial
attacks and manipulation over the graph.
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