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Abstract—Recommendation systems which are designed to
understand and predict user interest based on user preferences
play an important role in the era of information explosion.
We propose the item influence embedding which adopts the
social influence diffusion concept to model the item relations.
We can learn the activation paths in items-item relation graph.
In addition, for generating top-k items, most of recommendation
systems calculate the similarity between user embedding and
embedding of all items. The calculation costs too much time when
number of users and items are huge. Therefore, we propose the
User Preference Translation Model (UPTM) to recommend the
Top-k items based on the language translation technology. UPTM
directly generates the recommendation items based on translating
the user preference. We can avoid to calculate the similarity of
user embedding and item embedding. From the experimental
results, UPTM not only outperforms the compared methods but
also save the time in real large datasets.

Index Terms—Recommendation Systems, Translation-based
Recommendation Model, Item Influence Embedding

I. INTRODUCTION

Recommendation systems which are designed to understand

and predict user interest based on user preferences play an

important role in the era of information explosion. Generally,

recommendation systems are trying to learn the low dimen-

sional representation of users and items. Many features can be

adopted in recommendation systems, for example, user-item

interactions, user features, item features, and other information

such as the temporal factor.

Some approaches focus on learning the item embedding to

realize the relations between items [11] [13] [2]. Nevertheless,

the relationship between different items are limited in the

common text or co-occurrence. In real world, when we explore

the e-shopping website, we search for some specific items

which we want to buy. The system usually recommends other

items to users such as the similar items and the items which

are watched by similar users. Sometimes, we will buy many

related items if we are attracted by a target item. We would

like to discover the target items which can trigger users to

buy as much related items as possible. Therefore, We adopt

the social influence diffusion [7] concept to help us to learn the

relationship between items. On social network, people spread

influence to their neighbors and receive influence from their

neighbors at the same time. A user is activated by another

user since they have same opinion tendency. Some social

recommendation approaches learn the influence propagation

process between people in the network, leading to the similar

interests among the connecting user on the diffusion path.

Same as the social network, assume an item-item network

is formed from users’ sequential interaction behavior with

item. The item influence propagation represents when a user

interacts with an target item, the probability that user interacts

with the connecting items after interacting with the target

item. According to this concept, we learn the item relations

through modeling the item influence diffusion on the item-item

network.

In this work, we propose a User Preference Translation

model with item influence embedding (UPTM) to recommend

items. Inspired by some session-based item recommendation

approaches uses recurrent neural networks (RNN). These

works try to learn the users and items embedding based on

RNN and calculate the similarity between users and items to

predict the next items [8] [15]. However, when the number

of users and items are large, the similarity which is usually

calculated by the dot product costs much time. We would like

to adopt the concept of translation model in natural language

processing. The translation model is designed for modeling

the sequential text or sentences. The users’ preference and

behaviors can be seen as the sequential data. After training

a User Preference Translation model, we input the user’s

preference, then the model gives us the recommendation

items directly. In UPTM, first, the item-item relationship is

modeled from sampling the influence diffusion path on item-

item network. From the generated influence diffusion path,

the relations include which items can triggler users to interact

with more items and the sequential interaction information can

be realized. Then, we use the skip-gram model to learn theIEEE/ACM ASONAM 2020, December 7-10, 2020
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item influence embedding. Finally, we propose the translation

model to translate the users’ preference into users’ future

behaviors with the item influence embedding. For evaluating

the performance of proposed model, we compare UPTM

model with other existing model on real four datasets.

We summarize the contributions of this work as follows:

1) We propose to apply the influence diffusion on item-

item network to simulate the item relations and embed

the item influence relations into item representations.

2) We propose the translation model to translate the users’

preference into users’ future behavior for recommenda-

tion to avoid the similarity calculating between users and

items.

3) From the experimental results, our proposed method

outperforms the existing methodologies for top-k rec-

ommendation.

II. RELATED WORKS

In this section, we introduce research related to recommen-

dation systems. Recommendation systems aims to learn the

user and item latent representation and calculate the user-item

similarity to predict the items which users will have interest.

A. Item embedding-based Recommendation

In item embedding-based recommendation, the proposed

methods aims to consider the information of items, for ex-

ample, the co-occurrence of different items, context of items,

context relation of items. Wang et al. [11] propose the Item

Concept Embedding, ICE, which build the item-text network

to learn the item relations via the common text information of

items. In LearnSuc [12], Wang et al. propose the multi-type

item embedding to learn the context items’ representations

collectively from the itemset structure.

B. Collaborative Filtering with Deep Neural Network

Collaborative filtering solves the recommendation problem

by assuming that users with similar behaviors exhibit similar

preferences for items. He et al. [5] propose NeuMF model that

utilize the non-linearity of multi-layer perceptron to replace

dot products of matrix factorization. They combine the multi-

layer perceptron and matrix factorization to learn the user

and item embedding. Wang et al. [14] propose NGCF which

is based on the graph neural network. They encodes the

collaborative signal which represents the high-order connectiv-

ities by performing embedding propagation. Another kind of

Generative Adversarial Networks-based methods try to apply

GAN to recommendation. They try to obtain more satisfactory

recommendation accuracy by adopting adversarial training

methods instead of optimizing pair-wise learning functions.

Chae et al. [1] suggest a new direction of vector-wise adver-

sarial training and propose the GAN-based CF framework.

Generally, recommendation systems utilize any possible

information of users, items, and historical behaviors to learn

the user embedding and item embedding. For top-k recom-

mendation, recommendation systems calculate the similarity

of users and items and rank the score of items to recommend.

However, the similarity calculation limits the capability of rec-

ommendation system since the dot-product calculation costs

much time when number of users and items are large.

III. METHODOLOGY

In this section, we will formulate the translation problem

for recommendation. Then, we will introduce the procedure of

learning item influence embedding and the User Preference
Translation model (UPTM) in detail.

A. Problem Formulation

The recommendation task takes the users’ past behavior

as the preference, then predict the items which user will

have interest in the future. Suppose the U = {u1, u2, ...um}
and I = {i1, i2, ..., in} are denoted the user and item set.

Each user u has the preference Pu = (iu,1, iu,2, ...iu,t)
where t is the interactive order. Given a user’s preference

record Pu, we would like to recommend the Top-k items

Ru = {iu,t+1, iu,t+2, ..., iu,t+k} which user u will interact.

B. The Model Architecture

We develop a new translation-based recommendation

model, User Preference Translation Model with item influence

embedding, abbreviated as UPTM. As shown in Figure 1, the

model contains the simulation of the item influence embedding

and the translation of users’ preference. First, we generate the

item influence diffusion paths using the social influence paths

sampling from the item-item relation graph. UPTM learns the

item influence embedding according to the influence paths.

Then, UPTM encodes the users’ preference based on the

item influence diffusion embedding and learns the parameters

in the hidden layer to output the item embedding. Finally,

UPTM generates the recommendation list from the decoder

of translation module, and applies the softmax function and

top-k sampling.

C. Item Influence Diffusion Embedding

We propose the item influence diffusion embedding to

embed the information of item influence diffusion as shown

in Figure 2. First, we need to construct the item-item relation

graph from transactions. In the transactions, users interact

with different items sequentially. A user may interact with

more items after an item since the the item trigger the user.

Therefore, according to the order of items in a transaction,

there is a relation between two consequent items. We define the

item-item relation graph can be consisted of the items and the

directed relations. The weight on the relation edges is defined

to the number of relation occurs in the transactions. Finally,

the influence probability of an edge (u, v) can be formulated

as p(u, v) = w(u,v)∑
vo∈Out(u) w(u,vo)

, where Out(u) is the set of

out-neighbors of user u
1) Maximum Influence Path (MIP) and Maximum Influence

In-Arborescence(MIIA): For simulating the item influence

propagation paths, we adopt the concept proposed in [3].

Assume the influence from one node to another in G can only

be transmitted along the maximum influence path between the
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Fig. 2: Item Influence Diffusion Embedding Procedure

two nodes. Therefore, MIPG(u, v) has the maximum prop-

agation probability. MIPG(u, v) = argmaxP {pp(P ) | ∀P ∈
ϕ(G, u, v)}, where ϕ(G, u, v) is the set of all the possible

paths on G extending from u to v; and pp(·) is the propagation
probability of given path P =< u = p1, p2, . . . , pm = v >,

which is defined as pp(P ) =
∏m

i=1 pp(pi, pi+1).

We generate the maximum influence in-arborescence(MIIA)

from MIP, which consider the received influence from the in-

edges. The MIIA of node v ∈ V , MIIA(v, θ) can be formulated

as follow:

MIIA(v, θ) = ∪u∈V,pp(MIP (u,v))>θMIPG(u, v), (1)

where MIPG(u, v) is the maximum influence path from u to

v and the influence pruning threshold θ. The pruning threshold

is set to ignore the edges with too small influence probability.

Generally, MIIA(v, θ) scoping the influence region of node v
in G. MIIA(v, θ) takes the view from the receiver’s perspective

indicating the potential nodes that could propagate its influence

to v.

2) Item embedding with MIIA: After generating MIIA from

the graph, we have a set of MIIAs which is denoted as M ,

where each MIIA is defined as m = (i1, ...il). We adopt the

skip-gram model to learn the item representation vector vil .
In this model, we define a window size w in a sequence to

determine the context items and central item. Then skip-gram

model assumes the context items are related to central item

and aims to learn the item representation that related items

locate nearby in the embedding space. The objective function

L can be formulated as follow:

L =
∑

m∈M

∑

il∈m

(
∑

−w≥j≤w,j �=0

logP(il+j |il)), (2)

where the P(il+j |il) is the probability of predicting context

items from the central target item. The probability can be

defined as a softmax function P(il+j |il) =
exp(v�

il
v
′
il+j

)
∑|I|

i=1 exp(v�
il
v
′
i)

,

where the vil is the input vector of item il and v
′
il+j

is the

output vector of the j-th context items. Finally, we embed the

information of item influence diffusion into the item embed-

dings. The embedding size is set to 64 in our implementation.

D. User Preference Translation Model

In sequence-to-sequence language translation models, they

usually have a encode-decoder structure. We adopt the idea

of Transformer architecture and follow the notations in that

work [10]. The encoder and decoder are consisted of several

identical layers. In encoder, each layer contain two sub-layers,

multi-head attention layer and feed forward layer.

1) Multi-Head Attention Layer: Different with the scaled

dot-product attention, the multi-head attention projects the

queries, keys, and values into h subspace with different and

learned linear projected function. The dimensions of queries,

keys, and values are dk, dk and dv . Then, the transformer

performs the attention function in parallel and generate the

output values corresponding to the dimensions. The formula

is defined as follow:

MultiHead(Q,K, V ) = Concat(head1, head2, ..., headh)W
O

headi = Attention(QWQ
i ,KWK

i , V WV
i ),

(3)

where the projection matrices are corresponding to WQ
i ∈

R
dk×dk/h, WK

i ∈ R
dk×dk/h, WV

i ∈ R
dv×dv/h. The

Attention function is the scaled dot-product attention.

2) Feed Forward Layer: In each identical layer of encoder

and decoder, there is a feed forward layer which is fully

connected to each unit of the network. The fully connected

layer enables the model learn the non-linearity and interaction

between different units in the network. We apply the Gaussian
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TABLE I: Statistics of the datasets

Dataset ML-1M ML-20M AmazonBook Yahoo
# Users 5953 138475 323186 19843
# Items 11847 22187 90398 144868

# Records 394486 9587046 10502385 642868
Avg. Records/User 66.26 69.23 32.49 32.39

Density 0.559% 0.312% 0.035% 0.022%

Error Linear Unit (GELU) [6] activation function which has

better performance especially in transformer.

3) Softmax and Top-k sampling layer: In order to output

the probabilities of items, we use the softmax function to

transform the output of decoder to predict the most suitable

item in the itemset. The softmax is defined as Softmax(xi) =
exp(xi)

∑|I|
i=0 exp(xi)

. However, using a sequence-to-sequence model

for language generation task often generates the duplicate

words or sentences. We use the top-k sampling [4] to solve

the repetition problem when generating the predict items.

The main idea is selecting the items with top-k probabilities.

The k most likely next items are filtered and the probability

distribution is recalculated among only those k items.

IV. EXPERIMENTS

A. Experiment Setting

1) Datasets Description: Table I summarizes the detailed

statistics of these datasets. For evaluating performance with

UPTM, we split the datasets into training set and testing

set by sequential splitting. We sort the users’ interactions

by the timestamp column, and take the first 80% user-item

interactions of each user as the training set and remaining

20% as the testing set. We use the testing set to valid the

performance of UPTM and tuning hyper-parameters.

2) Compared Methods: We compare UPTM with the fol-

lowing methods:

• BPR-MF: [9] BPR adopts the matrix factorization to

learn the representation vectors of users and items.

• NeuMF: [5] NeuNF is generic and can express and

generalize matrix factorization under its framework.

• CFGAN: [1] CFGAN is the state-of-the-ark GAN-based

recommendation system. They propose the new direction,

real-valued vector-wise adversarial training, to solve the

problem of applying GAN on recommendation.

• NGCF: [14] NGCF is the state-of-the-ark CF-based rec-

ommendation system. This work exploits the user-item

graph structure and design an embedding propagation

layer to enhance the high-order connectivity information.

B. Overall Performance Comparison

Table II describes the performance comparison of all meth-

ods. We report the precision@K, recall@K, and ndcg@K in

the results. Overall, UPTM has achieved the best performance

in most cases. In some cases, we observe that NGCF and

CFGAN are defeated by NeuMF, e.g. the precision in Movie-

Len 20M and the NDCG in MovieLen 20M. That may be

caused by the sampling methods for splitting the dataset into
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Fig. 3: Costing time comparison of each Model.

the training part and the testing part. For comparing to our

UPTM, we split the dataset using the sequential sampling

instead of random sampling. We split the first 80% of each

user’s behaviors as the training and remaining 20% part as

the testing.

From the results of MovieLen 1M and MovieLen 20M, in

compared methods, we can observe that the larger number of

items and users usually lead to the recommendation systems

performs bad. In contrast, UPTM has more information to

learn and makes the performance better. In addition, the

Amazon book dataset has the largest number of users, and

each user has a few interactions with items. Even we remove

the unfrequent users and items, there still a lot of users and

the dataset is very sparse. That makes the performance of all

recommendation is lower than 10%. The Yahoo E-commerce

dataset is a special dataset since we collect the data from

the user’s view behavior. Therefore, there are many duplicate

items in users’ preference so that all recommendation systems

are hard to generate the recommendation list correctly.

C. Ablation Study of UPTM

In this section, we verify the effectiveness of the proposed

item influence diffusion embedding. We use the MovieLen 1M

and MovieLen 20M as the datasets to test the performance.

We only report the precision@20, recall@20, and NDCG@20

in table III. From the experimental results, the item influence

diffusion embedding actually helps the model to learn the more

complex item relations in the users’ preference.

D. Costing Time Comparison

We would like to verify the time efficiency of UPTM since

UPTM does not need to calculate the similarity between users

and items. When the number of users and items are large, the

calculation costs too much time. The results are shown in Fig.

3. The unit of time is the second.

In MovieLen 1M dataset, all methods cost the most time on

training model and cost few seconds to calculate the similarity

and generate the top-k recommendation list for all users. In

MoveLen 20M dataset, NeuMF and NGCF cost a lot of time

to generate the top-k recommendation list since the number

of users and items are large. CFGAN is the GAN-based

method so that the model also does not need to calculate the

similarity. The recommendation results are generated by the
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TABLE II: Overall performance comparison

Methods
Movielens 1M Movielens 20M Amazon Book Yahoo E-commerce

Pre@5 Pre@10 Pre@20 Pre@5 Pre@10 Pre@20 Pre@5 Pre@10 Pre@20 Pre@5 Pre@10 Pre@20

BPR-MF 0.0765 0.0697 0.0884 0.0687 0.0568 0.0489 0.0086 0.0111 0.0094 0.0098 0.0092 0.0086

CFGAN 0.0811 0.0868 0.0922 0.0711 0.0668 0.0622 0.0156 0.0126 0.0117 0.0138 0.0122 0.0117

NeuMF 0.1165 0.1051 0.0906 0.1149 0.1103 0.1035 0.0136 0.0141 0.0137 0.0116 0.0104 0.0095

NGCF 0.1194 0.1070 0.0918 0.0944 0.0871 0.0787 0.0183 0.0164 0.0144 0.0251 0.0217 0.0195

UPTM 0.2262 0.2205 0.1853 0.2391 0.2384 0.2163 0.0321 0.0314 0.024 0.0264 0.0224 0.0208

Methods
Movielens 1M Movielens 20M Amazon Book Yahoo E-commerce

Rec@5 Rec@10 Rec@20 Rec@5 Rec@10 Rec@20 Rec@5 Rec@10 Rec@20 Rec@5 Rec@10 Rec@20

BPR-MF 0.0256 0.0358 0.0487 0.0254 0.0348 0.0683 0.0032 0.0071 0.0123 0.0039 0.0057 0.0108

CFGAN 0.0331 0.0427 0.0674 0.0334 0.0427 0.0774 0.0053 0.0076 0.0167 0.0051 0.0069 0.0134

NeuMF 0.0365 0.0686 0.1046 0.0402 0.0744 0.1044 0.004 0.0083 0.0159 0.0048 0.0072 0.0129

NGCF 0.0356 0.0672 0.1147 0.0456 0.0772 0.1086 0.0078 0.0146 0.0249 0.0057 0.0089 0.0201

UPTM 0.0438 0.0812 0.1302 0.0543 0.1086 0.1862 0.0095 0.0168 0.0263 0.0082 0.0148 0.0197

Methods
Movielens 1M Movielens 20M Amazon Book Yahoo E-commerce

ND@5 ND@10 ND@20 ND@5 ND@10 ND@20 ND@5 ND@10 ND@20 ND@5 ND@10 ND@20

BPR-MF 0.086 0.0812 0.0901 0.0786 0.0864 0.0916 0.0118 0.0107 0.0129 0.0138 0.0141 0.0153
CFGAN 0.1066 0.0962 0.0916 0.0856 0.0986 0.09 0.0166 0.0152 0.0188 0.0152 0.0154 0.0178
NeuMF 0.0945 0.1033 0.1131 0.1193 0.1168 0.1231 0.0135 0.0141 0.0166 0.0144 0.0164 0.0177
NGCF 0.1168 0.1157 0.1235 0.0931 0.0921 0.098 0.0191 0.0176 0.0184 0.0156 0.0187 0.0215
UPTM 0.1888 0.1996 0.1946 0.2001 0.2185 0.2327 0.0268 0.0283 0.0245 0.0189 0.0201 0.0197

TABLE III: The performance comparison of UMTP and

UMTP without Item Influence Diffusion Embedding

Methods
MovieLen 1M MovieLen 20M

Prec@20 Rec@20 ND@20 Prec@20 Rec@20 ND@20
UPTM without Item
Influence Diffusion
Embedding

0.1735 0.1194 0.1828 0.2033 0.1792 0.2019

UPTM 0.1853 0.1302 0.1947 0.2163 0.1862 0.2327

generator in the GAN. However, in our experiment, UPTM

has outperformed CFGAN in all test datasets.

V. CONCLUSION

In this work, we adopt the social influence spreading to

model the trigger relation between items in the item-item

network. In addition, we propose User Preference Transla-

tion Model to translate users’ preference into users’ future

interactions. The model also can avoid the time-comsuming

calculation of similarity between users and items. From the

experimental results, UPTM outperforms the compared meth-

ods in most of cases.
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