
Distill2Vec: Dynamic Graph Representation
Learning with Knowledge Distillation

Stefanos Antaris
KTH Royal Institute of Technology

Hive Streaming AB
Sweden

antaris@kth.se

Dimitrios Rafailidis
Maastricht University

Netherlands
dimitrios.rafailidis@maastrichtuniversity.nl

Abstract—Dynamic graph representation learning strategies
are based on different neural architectures to capture the graph
evolution over time. However, the underlying neural architectures
require a large amount of parameters to train and suffer from
high online inference latency, that is several model parameters
have to be updated when new data arrive online. In this study we
propose Distill2Vec, a knowledge distillation strategy to train a
compact model with a low number of trainable parameters, so as
to reduce the latency of online inference and maintain the model
accuracy high. We design a distillation loss function based on
Kullback-Leibler divergence to transfer the acquired knowledge
from a teacher model trained on offline data, to a small-size
student model for online data. Our experiments with publicly
available datasets show the superiority of our proposed model
over several state-of-the-art approaches with relative gains up
to 5% in the link prediction task. In addition, we demonstrate
the effectiveness of our knowledge distillation strategy, in terms
of number of required parameters, where Distill2Vec achieves
a compression ratio up to 7:100 when compared with baseline
approaches. For reproduction purposes, our implementation is
publicly available at https://stefanosantaris.github.io/Distill2Vec.

Index Terms—Dynamic graph representation learning, knowl-
edge distillation, model compression

I. INTRODUCTION

Dynamic graph representation learning is a fundamental
problem, with ubiquitous applicability in various real-world
domains [1], [2]. To efficiently capture the evolution in the
latent embedding space, dynamic graph representation learning
approaches compute node embeddings based on a sequence
of graph snapshots at different time steps [1]–[4]. Existing
approaches explore several techniques to accurately learn node
embeddings, such as temporal regularizers [2], [5], Recurrent
Neural Networks [1], [6], and joint-self attention mechanisms
[3].

Although dynamic graph representation learning strategies
produce accurate predictions, they are based on deep neural
network architectures with a large number of model pa-
rameters. Moreover, the number of parameters significantly
increases by several orders of magnitude, along with the
number of graph snapshots. Due to the vast amount of
model parameters such approaches incur high online inference
latency, which prohibits their direct applications into a real-
world setting with almost real-time response requirements [7]–
[11]. For example, the model size negatively impacts the

performance of recommendation systems in social networks,
where predictions have to be calculated in real time [11], [12].

Knowledge distillation is a model independent strategy to
generate compact models that exhibit low online inference
latency. [7], [8]. The basic idea of knowledge distillation is
to train a large model, namely teacher, as an offline process.
The teacher model can employ computationally expensive
deep neural networks, as there are no strict requirements on
latency and computational resources during offline learning.
Having trained the teacher model, the knowledge can be
transferred to a smaller model, namely student, by reducing
the model size. Therefore, the student model can be deployed
to online applications, satisfying the low online inference
latency requirements [10], [11], [13]. However, the impact
of knowledge distillation on graph representation learning for
dynamic graphs has not been studied so far.

In this paper, we propose a knowledge distillation strategy,
namely Distill2Vec, to generate a compact student model with
low online inference latency for graph representation learning
on dynamic graphs. The teacher model learns the latent node
representations by employing a self-attention mechanism on
the offline graph snapshots. To train a small student model
on the online graph snapshots, we formulate a distillation loss
function, allowing the student model to distill the knowledge
of the pretrained teacher model. In doing so, the student model
can generate similar predictions as the teacher model, while
significantly reducing the model parameters. Our main contri-
butions are summarized as follows: i) We propose Distill2Vec,
a knowledge distillation strategy on dynamic graph represen-
tation learning approaches. We formulate a distillation loss
function based on Kullback-Leibler divergence to transfer the
knowledge from the teacher model on the offline data, to a
smaller student model when learning online data. In addition,
Distill2Vec employs a self-attention mechanism to capture
the graph evolution in the learned node embeddings.; ii) We
demonstrate that the student model significantly reduces the
online inference latency, in terms of the number of trainable
parameters, when compared with the teacher model. Moreover,
the proposed student model overcomes any bias introduced by
the pretrained teacher model, achieving high accuracy in the
online link prediction task.

Our experiments on two real-world dynamic networks

60

admin
Text Box
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

admin
Text Box
IEEE/ACM ASONAM 2020, December 7-10, 2020978-1-7281-1056-1/20/$31.00 © 2020 IEEE

demonstrate the superiority of our proposed knowledge dis-
tillation strategy, against several state-of-the-art methods.

The remainder of the paper is organized as follows: in
Section II we describe the proposed knowledge distillation
strategy. The experimental evaluation is presented in Section
III and we conclude the study in Section IV.

II. PROPOSED MODEL

Dynamic graph representation learning models employ deep
neural network architectures to learn accurate node embed-
dings, at the cost of high online inference latency [3], [5], [14].
The goal of our knowledge distillation strategy is to generate
a compact student model S with low online inference latency,
and retain the accuracy of the pretrained large teacher model
T [7], [8], [15], [16]. In particular, the teacher model T is
pretrained to learn the node embeddings HT on the offline
graph snapshots. We denote by GT = {G1, . . . ,Gm} the m
consecutive offline graph snapshots of the dynamic graph G,
with 1 ≤ m < T . Thereafter, the student model S exploits the
teacher model T , to learn accurate node representations HS on
the online graph snapshots GS = {Gm+1, . . . ,GT }. To transfer
the knowledge of the pretrained teacher model T , the student
model S minimizes a distillation loss function LD [7], [8]. The
distillation loss function LD calculates the prediction error of
the student model S on the online graph snapshots, and the
deviation of HS from the node embeddings HT . In Section
II-A, we describe the offline teacher model Distill2Vec-T , and
then in Section II-B we present the knowledge distillation
strategy of the online student model Distill2Vec-S.

A. Distill2Vec-T - Teacher Model

The teacher model Distill2Vec-T learns the latent repre-
sentations HTt based on the m offline graph snapshots GT .
Distill2Vec-T employs two self-attention layers [3], [17], [18].
The first layer, namely structural self-attention, captures the
structural properties of each node u ∈ Vt at the t-th graph
snapshot. The second layer, namely temporal self-attention,
models the evolution of the graph, given a sequence of l graph
snapshots {Gt−l, . . . ,Gt}. Provided that the teacher model
Distill2Vec-T is trained as an offline process, we consider all
the graph snapshots GT for the temporal self-attention layer
(l = m). The input of the structural self-attention layer at
the t-th time step is the set of input node representations
Xt ∈ Rnt×nt , where Xt(u) is the one-hot encoded vector
of the node u ∈ Vt. The output is a d-dimensional structural
node representation Zt(u) ∈ Rd, calculated as follows:

Zt(u) = ELU

(∑
u∈Nt(u)

αt(u, v)WtXt(u)

)
(1)

where Nt(u) is the neighborhood set of the node u at the t-th
time step, Wt ∈ Rd×nt is the weight transformation matrix
for each input node representation Xt(u), and ELU is the
exponential linear unit activation function. Variable αt(u, v)
corresponds to the learned coefficients, calculated based on
the softmax over the neighbors of each node u, as follows:

αt(u, v) =
exp
(
et(u, v)

)∑
w∈Nt(u)

exp
(
et(u,w)

) (2)

with et(u, v) = f
(
At(u, v) · a>t [WtXt(u) ‖WtXt(v)]

)
f is the LeakyRelu activation function, at ∈ R2nt is a 2nt-
dimensional weight vector parameterizing the attention process
between nodes u and v, and ‖ denotes the concatenation oper-
ation. The attention weight et(u, v) indicates the contribution
of the node v to the node u at the t-th time step [3], [17].

Having computed the d-dimensional structural node repre-
sentations Zt for each time step t = 1, . . . ,m, we capture the
graph evolution in the temporal attention layer. In contrast to
the structural attention layer that learns the structural proper-
ties of the nodes at each time step, the temporal attention layer
emphasizes on the evolution of each node over l consecutive
graph snapshots, with l = m for the teacher model. The input
of the temporal attention layer, denoted by X′t(u) ∈ Rl×d,
is calculated as X′t(u) = Concat(Zt−l(u), . . . ,Zt(u)), that
is the concatenation of the l structural node representations of
each node u. We apply the scaled dot-product form of attention
[3], [18], where the structural node representations X′t are
the queries, keys and values of the attention process. For each
node u ∈ Vt, the temporal attention layer calculates l new
k-dimensional representations Bt(u) ∈ Rl×k as follows:

Bt(u) = βt(u)(X
′
t(u)W

value
t) (3)

Wvalue
t ∈ Rd×k is the linear projection matrix of the

structural node representations of each node u. Variable
βt(u) ∈ Rl×l is the attention weight matrix that indicates the
similarity of the node’s u structural embeddings in different
graph snapshots. For each graph snapshot i = t− l, . . . , t and
j = t− l, . . . , t, we calculate the attention weight of the node
u as follows:

βij(u) =
exp(cij(u))
t∑

r=t−l

exp(cir)(u)

(4)

with cij(u) =

(
((X′i(u)W

query)(X′j(u)W
key))ij√

k
+M ij

)
Wquery ∈ Rd×k and Wkey ∈ Rd×k are the weight parameter
matrices to transform the query and key input node repre-
sentations, respectively [18]. A high attention weight βij(u)
corresponds to similar structural node embeddings for the
node u in the graph snapshots GTi and GTj . In Equation 4
M ∈ Rl×l is a mask matrix to encode the temporal order
between different time steps i and j. The values of the matrix
M are zero if i < j, and infinite otherwise.

We employ multi-head attention on both the structural and
temporal attention layers, to capture the evolution of different
latent facets over time for each node u ∈ Vt [3]. The output
of the multi-head attention on the structural attention layer

61

is computed as Ct(u) = Concat(Z1
t (u), . . . ,Z

h
t (u)), where

h is the number of attention heads and Ct(u) ∈ Rd is the
output representation of the node u at the t-th time step.
Similar to the structural attention layer, the output of the multi-
head attention on the temporal attention layer is defined as
Dt(u) = Concat(B1(u), . . . ,Bg

t (u)), where g is the number
of attention heads applied to the temporal attention layer and
Bt(u) ∈ Rl×k is the output node representations of the node
u.

Having computed both the structural and the temporal node
representations, we can calculate the final node representation
Ht(u) for each node u ∈ Vt. We encode the ordering
information in the node representations Dt(u) of the tem-
poral attention layer, by calculating the position embeddings
Pt(u) ∈ Rd for each node u [19]. The final node represen-
tations HTt (u) of the teacher model Distill2Vec-T are then
computed by combining the output node representations Ct(u)
of the structural attention layer with the position embeddings
Pt(u) as follows:

HTt (u) = Ct(u) +Pt(u) (5)

To train the teacher model and learn the node embeddings,
we adopt the binary cross-entropy loss function with respect
to the node embeddings HTt (u):

min
HT

t

L =
∑
u∈Vt

(∑
v∈Nwalk

t (u)

−log
(
σ(< HTt (u),H

T
t (v) >)

)
−wneg ·

∑
u′∈Pt

neg(u)

log
(
1− σ(< HTt (u

′),HTt (u) >)
))

(6)
where σ is the sigmoid activation function, <,> is the inner
product operation between node representations HTt (u) and
HTt (v). Nwalk

t (u) is the set of nodes explored in a fixed
length random-walk started at the node u at the t-th graph
snapshot Gt. Pt

neg(u) is a negative sampling distribution for
the graph snapshot Gt, and wneg is the negative sampling ratio.
We optimize the weight parameter matrices in the structural
and the temporal attention layers based on the loss function
in Equation 6 and the backpropagation algorithm.

B. Distill2Vec-S - Student Model

To reduce the high online inference latency of the teacher
model Distill2Vec-T , we train a compact student model
Distill2Vec-S on the online graph snapshots GS . For each
time step t = m+ 1, . . . , T , the student model Distill2Vec-S
computes the structural node representations Ct(u). To capture
the graph evolution over the last l consecutive historical graph
snapshots {GSt−l, . . . ,GSt }, Distill2Vec-S computes the tempo-
ral node representations Dt(u). The final node representations
HSt (u) are calculated based on Equation 5.

We employ a knowledge distillation strategy on the student
model Distill2Vec-S to transfer the knowledge of the pre-
trained teacher model Distill2Vec-T . In practice, the student
model Distill2Vec-S adopts the following distillation loss
function LD during the online training process:

min
HS

LD = (1− γ)LS + γLF (7)

where LS is the binary cross-entropy loss that measures the
accuracy error of the student model on the online data, and
LF = KL(HSt (u) | HTt (u)) is the Kullback-Leibler (KL)
divergence between the node embeddings HSt (u) and HTt (u)
for each node u ∈ Vt [20]. This means that the student
model Distill2Vec-S mimics the teacher model Distill2Vec-T
during online training, to achieve similar performance with low
number of model parameters [7], [10], [11]. Hyperparameter
γ ∈ [0, 1] balances the distillation process and the prediction
error of the student model Distill2Vec-S on the online data.
High values of γ reflect on generating node embeddings
HSt (u) similar to the node embeddings HTt (u) of the student
model Distill2Vec-T . Instead, low values of γ emphasize on
the prediction errors of the student model Distill2Vec-S. This
allows the student model to overcome any bias introduced by
the teacher and achieve similar or better performance than
Distill2Vec-T [7], [8], [10], [11].

III. EXPERIMENTS

A. Evaluation Setup

We evaluate the performance of the proposed distillation
strategy based on two publicly available datasets, that is the
Yelp1, with 6, 569 users and businesses and 95, 361 ratings in
16 graph snapshots, and ML-10M2 with 20, 537 users/movies
and 43, 760 user/tag interactions in Movielens and 12 graph
snapshots. In our experiments, we train the teacher model
Distill2Vec-T on the offline graph snapshots GT . For each
dataset, we consider the first 5 time steps (m = 5) as the
offline graph snapshots GT and the remaining time steps as
the online graph snapshots GS , that is 11 and 7 test graph
snapshots for the Yelp and ML-10M datasets, respectively. We
measure the online inference efficiency based on the required
number of parameters to train each model. We adopt the Area
Under the ROC Curve (AUC), to evaluate the performance of
the link prediction task [3], [21]. For each graph snapshot in
GS , we report average AUC values over five randomized runs.

We compare the proposed Distill2Vec-T and Distill2Vec-S
models with the following baseline strategies: i) DynVGAE3

[5]; ii) DynamicTriad4 [2]; iii) TDGNN5 [22]; iv) DyREP6

[1]; v) DMTKG-T 7 [23], the teacher model of the knowledge
distillation strategy applied on the DeepGraph graph repre-
sentation learning approach [24]. DMTKG-T computes the
node embeddings on static graphs by employing Convolutional
Neural Networks on the intermediate node representations
generated by the Heat Kernel Signature (HKS); vi) DMTKG-S
[23], the student model of the DMTKG knowledge distillation

1https://www.yelp.com/dataset
2https://grouplens.org/datasets/movielens/
3https://github.com/stefanosantaris/DynVGAE
4https://github.com/luckiezhou/DynamicTriad
5https://github.com/stefanosantaris/TDGNN
6https://github.com/uoguelph-mlrg/LDG
7https://github.com/stefanosantaris/DMTKG

62

TABLE I
NUMBER OF REQUIRED PARAMETERS IN MILLIONS TO TRAIN EACH MODEL FOR THE ONLINE GRAPH SNAPSHOTS/TIME STEPS

Yelp
Time Step Distill2Vec-T Distill2Vec-S DynVGAE DynamicTriad TDGNN DyREP DMTKG-T DMTKG-S

1 1.054 0.214 6.090 4.185 2.593 8.295 2.182 1.063
2 1.054 0.238 6.649 4.338 2.984 9.235 2.182 1.099
3 1.054 0.261 7.187 5.027 3.495 10.591 2.182 1.123
4 1.054 0.283 7.685 5.892 3.891 11.058 2.182 1.155
5 1.054 0.304 8.225 6.236 4.185 11.837 2.182 1.192
6 1.054 0.327 8.809 6.915 4.563 12.293 2.182 1.226
7 1.054 0.351 9.380 7.448 4.982 12.944 2.182 1.468
8 1.054 0.375 9.933 8.109 5.527 13.284 2.182 1.591
9 1.054 0.398 10.308 9.235 6.019 13.749 2.182 1.802
10 1.054 0.413 10.658 9.763 6.237 13.987 2.182 1.914
11 1.054 0.428 11.236 10.291 6.832 14.235 2.182 2.022

ML-10M
1 6.956 1.542 6.035 5.923 4.285 10.234 5.293 3.927
2 6.956 1.700 6.668 6.142 4.928 11.083 5.293 4.023
3 6.956 2.011 7.911 6.591 5.291 12.953 5.293 4.125
4 6.956 2.127 8.374 7.839 6.018 13.392 5.293 4.329
5 6.956 2.264 8.922 8.113 6.827 14.952 5.293 4.532
6 6.956 2.375 9.367 8.788 7.283 15.295 5.293 4.728
7 6.956 2.562 10.113 9.423 8.183 16.223 5.293 4.892

TABLE II
AVERAGE AUC FOR EACH ONLINE GRAPH SNAPSHOTS/TIME STEP

Yelp
Time Step Distill2Vec-T Distill2Vec-S Distill2Vec-L DynVGAE DynamicTriad TDGNN DyREP DMTKG-T DMTKG-S

1 69.12± 0.13 69.23± 0.12 69.13± 0.12 62.15± 0.21 67.32± 0.10 68.14± 0.28 64.17± 0.05 58.03± 0.26 59.42± 0.29
2 69.01± 0.13 69.32± 0.11 69.15± 0.14 62.19± 0.23 67.41± 0.09 68.23± 0.24 64.86± 0.04 57.76± 0.28 58.72± 0.23
3 68.23± 0.14 69.38± 0.11 69.19± 0.12 62.21± 0.19 67.12± 0.09 67.53± 0.29 65.58± 0.02 57.61± 0.21 58.94± 0.26
4 67.64± 0.16 69.68± 0.14 69.21± 0.12 62.23± 0.25 67.58± 0.06 67.64± 0.25 65.82± 0.06 57.44± 0.27 57.83± 0.27
5 66.97± 0.15 69.89± 0.11 69.25± 0.13 62.22± 0.25 67.93± 0.08 68.18± 0.25 65.91± 0.02 54.89± 0.28 56.28± 0.27
6 65.59± 0.14 69.92± 0.11 69.27± 0.12 62.25± 0.24 67.24± 0.11 69.19± 0.26 66.32± 0.05 55.27± 0.29 56.63± 0.28
7 65.02± 0.16 70.01± 0.10 69.32± 0.13 62.35± 0.23 68.62± 0.09 68.76± 0.23 66.57± 0.04 55.11± 0.25 57.69± 0.24
8 64.54± 0.17 70.01± 0.11 69.36± 0.12 62.46± 0.24 68.82± 0.08 69.09± 0.27 66.54± 0.06 55.03± 0.26 56.14± 0.28
9 64.09± 0.15 70.03± 0.11 69.41± 0.14 62.82± 0.25 68.89± 0.10 69.06± 0.28 67.78± 0.06 56.40± 0.28 58.68± 0.24
10 64.01± 0.16 69.96± 0.12 69.52± 0.13 62.91± 0.21 68.92± 0.09 68.58± 0.24 67.51± 0.07 55.32± 0.26 59.49± 0.26
11 63.25± 0.17 69.12± 0.13 68.84± 0.12 63.02± 0.22 68.15± 0.07 68.26± 0.24 66.40± 0.09 54.95± 0.29 60.19± 0.28

ML-10M
1 90.94± 0.34 90.95± 0.26 90.95± 0.12 79.43± 0.52 86.63± 0.41 88.35± 0.52 83.49± 0.41 72.42± 0.19 73.19± 0.17
2 90.42± 0.39 91.53± 0.22 90.97± 0.13 80.15± 0.61 87.86± 0.42 88.89± 0.51 83.92± 0.44 73.64± 0.12 75.82± 0.16
3 89.92± 0.31 92.68± 0.25 91.04± 0.13 80.37± 0.56 87.91± 0.45 89.26± 0.52 85.02± 0.45 73.82± 0.14 75.53± 0.18
4 89.84± 0.30 93.26± 0.27 91.13± 0.11 81.02± 0.58 88.23± 0.45 90.64± 0.55 86.25± 0.44 74.03± 0.15 75.67± 0.14
5 88.69± 0.38 94.14± 0.25 92.37± 0.11 82.64± 0.51 89.56± 0.44 92.20± 0.52 85.98± 0.46 73.76± 0.14 75.82± 0.15
6 88.29± 0.32 94.47± 0.21 92.59± 0.12 82.86± 0.45 90.86± 0.45 92.45± 0.53 86.14± 0.42 74.21± 0.16 75.74± 0.16
7 87.58± 0.37 94.69± 0.28 92.84± 0.12 82.91± 0.59 90.94± 0.42 92.61± 0.52 87.01± 0.45 73.97± 0.17 76.18± 0.17

strategy, that employs a distillation loss function based on
the weighted cross entropy; vii) Distill2Vec-L, a variant of
the proposed student model, where we replace the Kullback-
Leibler divergence LF in Equation 7 with the binary cross-
entropy loss function, as in [25]. In [26], we report the values
of the hyper-parameters of each examined model following a
cross-validation strategy.

B. Performance Evaluation

In Table I, we report the number of required parameters in
millions to train each model over the different online graph
snapshots/time steps. As aforementioned in Section II, the
teacher models Distill2Vec-T and DMTKG-T are trained on
the offline data GT . Therefore, the model sizes of Distill2Vec-
T and DMTKG-T are not affected during the evaluation of the
model on the online data GS . We observe that Distill2Vec-S
reduces the model size significantly, when compared with the
teacher model Distill2Vec-T , achieving averaged compression

ratios of 31:100 and 30:100 for the Yelp and ML-10M datasets,
respectively. Moreover, Distill2Vec-S constantly outperforms
the baseline approaches in both datasets, in terms of the
number of trainable parameters. We omit the number of
parameters for Distill2Vec-L, as it is a variant of Distill2Vec-S
with equal number of parameters. The averaged compression
ratios of Distill2Vec-S are 13:100, 16:100, 21:100, 9:100,
27:100 and 37:100, when evaluated against DynVGAE, Dy-
namicTriad, TDGNN, DyREP, DMTKG-T and DMTKG-S,
respectively. The high compression ratios demonstrate the
ability of our proposed distillation strategy to significantly
reduce the number of model parameters. This means that the
proposed student model Distill2Vec-S achieves low latency
during the online inference of the node embeddings, compared
with the other baseline approaches. We also notice that DyREP
requires a large amount of trainable parameter in both datasets.
This indicates that DyREP scales poorly when increasing the

63

number of nodes in the graph, degrading the performance of
the model for online graph snapshots.

In Table II, we evaluate the performance of the student
model Distill2Vec-S against the baseline approaches in the
link prediction task. We observe that the student model
Distill2Vec-S constantly outperforms the baseline approaches,
in terms of AUC, for both datasets. This indicates that
the proposed knowledge distillation strategy can efficiently
transfer the knowledge of the pretrained model Distill2Vec-
T to the student model Distill2Vec-S. Therefore, Distill2Vec-
S achieves high link prediction accuracy, while reducing
the number of trainable parameters. Moreover, we observe
that Distill2Vec-L exhibits similar behaviour as Distill2Vec-S.
However, the cross entropy function in Distill2Vec-L limits the
prediction accuracy, when compared with the Kullback-Leibler
divergence of the proposed the Distill2Vec-S model. Evaluated
against TDGNN, which is the second best baseline approach in
all datasets, Distill2Vec-S achieves relative gains 1.8 and 2.5%
for the Yelp and ML-10M datasets, respectively. Note that as
shown in Table I Distill2Vec-S achieves average compression
ratio of 7:100 and 35:100, in terms of trainable parameters,
when compared with TDGNN for the Yelp and ML-10M
dataset, respectively. Thus, our model is able to capture the
evolution of the graph in the learned node representations,
while significantly reducing the model size. In addition, on
inspection of Table II we observe that the student models
Distill2Vec-S and DMTKG-S constantly outperform their
respective teacher models Distill2Vec-T and DMTKG-T . This
demonstrates the capability of student models to overcome any
bias introduced by the pretrained teacher models on the offline
data. Thus, the student model Distill2Vec-S achieves relative
gains of 5.5 and 4.2% against its teacher model for Yelp and
ML-10M, respectively.

IV. CONCLUSION

In this paper, we presented a knowledge distillation strategy
to reduce the size of a teacher model for dynamic graph
representation learning. The proposed distillation strategy can
efficiently generate a compact student model with low online
inference latency, while achieving high link prediction accu-
racy. The experimental results demonstrate the compression
efficiency of our distillation strategy. The proposed student
model achieves a compression ratio up to 31:100 on two real-
world datasets, when compared with the pretrained teacher
model. Evaluated against several state-of-the-art approaches,
the proposed student model achieves an average relative
improvement of 2.2% on both datasets, by significantly re-
ducing the number of required parameters. An interesting
future direction is to explore the performance of data-free
distillation strategies on dynamic graph representation learning
approaches [27]. The main challenge is to design the student
model so as to infer accurate embeddings on unobserved nodes
by the teacher model.

REFERENCES

[1] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning
representations over dynamic graphs,” in ICLR, 2019.

[2] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in AAAI, 2018, pp.
571–578.

[3] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,”
in WSDM, 2020, pp. 519–527.

[4] L. Zhu, D. Guo, J. Yin, G. V. Steeg, and A. Galstyan, “Scalable temporal
latent space inference for link prediction in dynamic social networks
(extended abstract),” in ICDE, 2017, pp. 57–58.

[5] S. Mahdavi, S. Khoshraftar, and A. An, “Dynamic joint variational graph
autoencoders,” in ECML, 2019, pp. 385–401.

[6] E. Hajiramezanali, A. Hasanzadeh, K. R. Narayanan, N. Duffield,
M. Zhou, and X. Qian, “Variational graph recurrent neural networks,”
in NeurIPS, 2019, pp. 10 700–10 710.

[7] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in KDD, 2006, pp. 535–541.

[8] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in NIPS, 2015.

[9] Y. Liu, J. Cao, B. Li, C. Yuan, W. Hu, Y. Li, and Y. Duan, “Knowledge
distillation via instance relationship graph,” in CVPR, 2019, pp. 7096–
7104.

[10] M. Phuong and C. Lampert, “Towards understanding knowledge distil-
lation,” in ICML, 2019, pp. 5142–5151.

[11] J. Tang and K. Wang, “Ranking distillation: Learning compact ranking
models with high performance for recommender system,” in KDD, 2018,
p. 2289–2298.

[12] H. Li, T. N. Chan, M. L. Yiu, and N. Mamoulis, “Fexipro: Fast and exact
inner product retrieval in recommender systems,” in SIGMOD, 2017, p.
835–850.

[13] Y. Cao, X. Wang, X. He, Z. Hu, and T.-S. Chua, “Unifying knowledge
graph learning and recommendation: Towards a better understanding of
user preferences,” in WWW, 2019, p. 151–161.

[14] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding
method for dynamic graphs,” vol. abs/1805.11273, 2018.

[15] R. Anil, G. Pereyra, A. Passos, R. Ormándi, G. E. Dahl, and G. E.
Hinton, “Large scale distributed neural network training through online
distillation,” in ICLR, 2018.

[16] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in NIPS,
2014, pp. 2654–2662.

[17] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[19] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in ICML, 2017, pp.
1243–1252.

[20] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distilla-
tion,” in ICLR, 2020.

[21] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD, 2016, pp. 855–864.

[22] L. Qu, H. Zhu, Q. Duan, and Y. Shi, “Continuous-time link prediction
via temporal dependent graph neural network,” in WWW, 2020, p.
3026–3032.

[23] J. Ma and Q. Mei, “Graph representation learning via multi-task knowl-
edge distillation,” in NeurIPS, 2019.

[24] C. Li, X. Guo, and Q. Mei, “Deepgraph: Graph structure predicts
network growth,” 2016.

[25] S. Antaris, D. Rafailidis, and S. Girdzijauskas, “EGAD: Evolving graph
representation learning with self-attention and knowledge distillation for
live video streaming events,” in IEEE Big Data, 2020.

[26] “Supplementary Material,” https://github.com/stefanosantaris/
Distill2Vec/blob/master/supplementary/supplementary.pdf, 2020,
[Online; accessed 24-October-2020].

[27] P. Micaelli and A. J. Storkey, “Zero-shot knowledge transfer via adver-
sarial belief matching,” in NeurIPS, 2019, pp. 9547–9557.

64

