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Abstract— The identification of groups in social networks 

drawn as graphs is an important task for social scientists who 

wish to know how a population divides with respect to 

relationships or attributes. Community detection algorithms 

identify communities (groups) in social networks by finding 

clusters in the graph: that is, sets of people (nodes) where the 

relationships (edges) between them are more numerous than 

their relationships with other nodes. This approach to 

determining communities is naturally based on the underlying 

structure of the network, rather than on attributes associated 

with nodes. In this paper, we report on an experiment that (a) 

compares the effectiveness of several force-directed graph 

layout algorithms for visually identifying communities, and (b) 

investigates their usefulness when group membership is based 

not on structure, but on attributes associated with the people in 

the network. We find algorithms that clearly separate 

communities with large distances to be most effective, while 

using colour to represent community membership is more 

successful than reliance on structural layout. 

Keywords— social networks, community detection, network 

layout, proximity  

INTRODUCTION  

Community finding is one of the most studied problems 
in social network analysis. A community typically relates to 
a cluster in a graph: that is, a group of nodes with many links 
between members of the group, and few links exterior to that 
group [1,2]. Several algorithms have been written to 
automatically detect clusters (and therefore community 
structures) in networks [3,4,5], with experiments having been 
conducted to test the strengths of these approaches.  Some 
experiments [6] compared several community detection 
algorithms with embedded ground truth [7], while others [8] 
asked human participants to label their communities in their 
own Facebook network, comparing the performance of 
community finding algorithms to human-centred ground 
truth.  In all cases, the purpose of these prior experiments 
was to test the ability of community finding algorithms in 
recovering the clustering structure embedded in social 
networks, rather than testing the effectiveness of visual 
encodings in enhancing human perception of community 
structure. 

Proximity (in the sense of placement of objects in a 
visualisation) is one of the strongest channels for encoding 
information visually [9]. Proximity is a well-known Gestalt 
principle that states that putting objects close together means 
that they are seen as a group.  If nodes are close to each other 
in the drawing of a graph, users reading the visualisation tend 
to believe that they are close to each other (in a shortest path 
sense) even though this may not be the case [10].  Force-
directed algorithms, by their nature, explicitly place nodes 
that are more likely to share a community relationship closer 
together in the drawing [11,12].  Although this effect is well 

known and algorithms have been written to optimise for it, 
no studies have been run to determine how well these 
visualisations depict attribute and community relationships 
along with the structure of the graph. 

In this paper, we present a study that explores how well 
such force-directed approaches can depict community and 
attribute relationships. We used generated social networks 
with embedded ground truth [6], thus investigating graphs 
with a known number of communities based on structural 
properties.  Our six algorithms use different force-directed 
approaches, allowing us to tune the extent to which attribute 
or community membership influences the position of nodes.  
We then ran a user study to determine how accurately a 
human observer can judge the number of communities in the 
networks, comparing the effectiveness of these algorithms. 

BACKGROUND 

Our literature review covers relevant aspects of the 
following research topics: pre-attentive visual perception, 
graph drawing algorithms, social networks, community 
detection algorithms, and related experimental work.. 

A. Visual Grouping 

Visual “pop out” is the phenomenon whereby items in a 
visual scene pre-attentively stand out, and are noticed by a 
viewer spontaneously [13,14]. Particular visual attributes of 
objects (e.g. colour, shape, orientation) cause them to pop-
out “immediately without effort” [15] when shown amongst 
a set of objects with different attribute values. Pop-out 
contrasts with ‘serial search’, where viewers are required to 
explicitly look at all the objects in a visual scene to locate 
targets, usually because they need to identify items based on 
more than one attribute (e.g. red triangles) [13,16]. One of 
the consequences of this phenomenon is that pre-attentive 
features can be used to highlight group membership of 
objects (see Fig. 1a). 

The Gestalt grouping principles are based on the view 
that the perception of an object cannot be reduced to the sum 
of the perception of its parts [17,18], and that a viewer 
naturally perceives groups within a scene of objects. These 
laws are more general than simply defining those visual 
attributes that ‘pop-out’. They highlight the patterns that we 
see in visual scenes; for example, how background is 
distinguished from foreground, that items that look similar or 
are symmetric to each other appear to be part of a group, and 
that open shapes are perceived as closed [19]. 

In this paper, we focus on the pre-attentive visual feature 
of colour and the Gestalt principle of proximity (that is, items 
in close Euclidean proximity to each other are perceived as a 
group, see Fig. 1b), in the context of community membership 
of social networks, where these networks are depicted as 
graph drawings. 
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Fig.1a. Colour highlights groups (pop-out): we see the objects of the 
same colour as belonging to the same group. Fig.1b. Proximity highlights 
groups (Gestalt): we see objects that are close together as belonging to the 
same group. 

Prior research considering Gestalt principles in relation to 
graph drawing does not typically consider colour, and is 
dispersed across the literature. Bennet et al. [20] review the 
graph drawing aesthetics literature with reference to 
Norman’s stages of perception [21], including Gestalt 
theories in the visceral stage, but excluding colour. Marriott 
et al. [22] investigated features of small graph drawings that 
make them memorable, considering symmetry, continuity, 
orientation and proximity, but not colour. They find that 
drawings with symmetry and continuity are amongst those 
most readily recalled. In software engineering, Wong and 
Sun evaluate three UML tools with respect to Gestalt-based 
criteria [23]; Lemon et al [24] show that similarity, proximity 
and continuity affect comprehension of complex software 
diagrams. Neither consider colour. Nesbitt & Freidrich [25] 
use colour as part of the ‘Law of Similarity’ in relation to 
graphs evolving over time, not with respect to group 
identification, but with providing “landmarks” to support 
maintaining a consistent mental map over time. 

B. Social Networks 

Social networks that encode relationships between people 
(where nodes are individuals and edges are social ties 
between individuals) are often multivariate networks [26] 
with a range of different attributes:  gender, age, post-code, 
etc.  In graph visualisation these attributes can be depicted 
using a variety of visual channels: colour, shape, texture etc. 
(see Fig. 2a). 

C. Graph Drawing Algorithms and Social Networks 

Graph drawing algorithms are typically based on several 
layout principles (minimising edge crossings, highlighting 
symmetric sub-graphs where possible; maximising the 
average angle of edges incident to a node etc.) [27]. These 
algorithms can be applied to graphs that relate to a real 
domain (e.g. UML diagrams, biological networks), as well as 
graphs where the nodes and edges bear no relation to any real 
objects. Indeed, many such graph layout algorithms were 
initially designed for the latter domain-free case. 

Some graph layout algorithms are designed to optimise 
the visual form of the drawing so as to reveal clusters in the 
network; that is, sub-graphs that have a high number of edges 
between the nodes within the sub-graph and only a few edges 
connected to members outside the sub-graph – also known as 
communities [1,2]. Energy-based graph layout algorithms are 
the most common of these; Noack [12] distinguishes 
between their two components as “an energy model which 
specifies what layouts to compute, and an energy 
minimization algorithm which specifies how to compute 
these layouts”. He defines two novel energy models (the 
LinLog models [11,12]) which were explicitly designed to 
depict communities in the drawing by encouraging the 
placement of nodes within a cluster closer together.  Another 
approach uses ‘virtual springs’ and ‘virtual nodes’ to 

                          

Fig 2a. Example multivariate social network. Edges represent 
friendships, colours show membership of different committees, shapes 
indicate one of three age ranges. Fig. 2b. The same network laid out with a 
force directed algorithm: the structural communities highlighted in the 
graph layout (friendships) are not the communities represented by the 
attribute values of the nodes (committees, age). 

explicitly pull members of a cluster in towards the centre of 
that cluster (where the virtual node is placed), thus bringing 
community members closer to each other [28]. 

However, these approaches do not provide a way to 
explicitly adapt the placement of the community nodes or 
base their position on other attribute values.  In this paper, 
we investigate several simple approaches that are better able 
to tune the forces that place nodes of the same community 
membership or attribute value close together. 

D. Communities in Social Networks 

Community membership might be explicitly associated 
with the nodes in a social network as one of their attributes. 
For example, each member in the network supports one 
football team in the league, or lives in one postcode in the 
country, or regularly attends one of many church 
denominations. Communities may be overlapping or non-
overlapping; in the latter case, an individual may belong to 
more than one community – for example, by regularly 
attending more than one church.  In this paper, we consider 
strict partitions, that is, nodes belong only to one community. 

Where community membership is not explicitly 
associated with each node as one of its attributes, community 
membership can be automatically and algorithmically 
detected using community detection algorithms [3,4,5]. 
These approaches are based on the principle that the 
community structure is related to the graph structure – there 
is a higher likelihood that members of a community have 
structural relationships (ie. edges) between them than 
between the members of different communities. Thus, 
clusters in a graph would be an indication of membership in 
a community. 

This assumption, of course, relies on the structural 
relationships in the network being in some way related to the 
community attribute. This assumption is more likely to be 
valid if, for example, the community attribute is membership 
of a particular church and the edge relationships are familial, 
than if the community attribute is membership of a particular 
church and the edge relationships are co-workers (See Fig 
2b). 

Lancichinetti and Fortunato [6] performed a large 
experiment investigating prominent community finding 
algorithms in the literature.  This experiment generated 
graphs of realistic structure and embedded ground truth using 
their LFR benchmark approach [7]. A range of community 
finding algorithms was run on these graphs and their ability 
to reliably recover the embedded ground truth assessed [29]. 
The study found that the Infomap community detection 
algorithm [5] was best able to recover the embedded 
community structure imposed by the LFR generation 
approach. 
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E. Experimental Work 

The early work of McGrath et al [30] initiated 
experimental work asking participants to identify 
communities in social networks drawn as graphs. They 
showed the same graph laid out in five different ways, and 
asked participants about the number of ‘subgroups’, 
prominence, and bridging. They found that graph layout 
affected the distribution of the number of sub-groups 
identified – the first time this fact had been empirically 
proven. In their later article [31] they state in their findings 
that “the number of perceived groups changes when nodes 
are spatially clustered to hide or highlight a clique”. In this 
study, participants were asked to assign each node in a graph 
(laid out three ways) to one (and only one) group. The 
authors looked at both correct and incorrect group 
assignment, concluding that spatial clustering affects 
viewers’ perceptions of groups, and suggesting that nodes 
connected with edges should be placed near to each other 

Lee and Archambault [8] tested how well community 
detection algorithms recovered known community structures 
present in Facebook networks.  Participants downloaded 
their own Facebook network and visualised it as a node-link 
diagram drawn with a standard force-directed algorithm.  
They were asked to indicate their personal social 
communities in the network using a lasso selection tool.  
These communities were recorded and compared to the 
communities found by these algorithms through normalised 
mutual information.  The study found that Infomap [5] 
provided the result that best reflected how a human considers 
communities in their own social network. 

Huang et al [32] asked participants to determine how 
many groups there were in a network (amongst other tasks), 
having created their graph drawings specifically to conform 
to five sociogram drawing conventions. They concluded that 
the layout that “separat[ed] different groups and plac[ed] 
nodes in the same group close to each other” produced 
higher accuracy in the group identification tasks, and that 
this layout was preferred above the others. 

As part of a larger study that compared user generated 
with automatic graph layouts, Dwyer et al [33] asked 
participants to first select the graph drawing that would best 
support the task of identifying a six-person clique in a social 
network (of which there was always only one), before 
performing the task itself. They found that the highly 
orthogonal (grid-like) layout produced high accuracy, and 
that participants focussed on ‘tight clustering, and the shape 
and symmetry of the clique.’ 

In all these cases, the community principle used is a 
structural one; that is, ‘community’ is defined by the 
presence of several edges between the nodes that belong to 
the community. 

RESEARCH AIM 

We aim to determine whether explicitly including 
proximity as a graph layout feature within the design of a 
layout algorithm when depicting a social network assists in 
community identification. We have proposed some simple 
amendments to a common graph layout algorithm that will 
highlight proximity, and aim to see whether by doing so 
communities are easy to identify. We also include colour as 
one method of highlighting community membership, so as to 
also consider a prominent pre-attentive feature. In our 

experiment, participants were asked to count the number of 
communities in several graph drawings. We wish to 
determine which layout algorithm better supports 
identification of communities, and whether this differs 
according to the size of the graph. 

A. The Graphs 

Many network community finding algorithms could have 
been used to detect communities in a set of given 
experimental graphs, but the results of these approaches 
vary, and may give different answers. Since we require 
‘ground truth’ (ie: we need to know exactly which 
community each node is associated with), we used the LFR 
benchmark [7]. This had the advantage in that it generated 
our experimental graphs (in accordance with given 
parameters) as well as providing community membership 
ground truth for each of them. In addition, LFR generates 
graphs that have similar statistical properties to social 
networks in the real world. The graphs were created using 
LFR with respect to the following parameters: 

 number of nodes: 30, 45, 60, 75. 

 minimum number of nodes per community: 5 

 number of communities: 3, 4, 5, 6 
1 

 mean degree: 4 

 maximum degree: 20 

 muw (the mixing parameter for the weights): 0.1 (as 
used in Olsen [34]) 

All other parameters had default value. There was no 
requirement that the graphs be connected, but we did insist 
that non-overlapping communities be defined.  

For each graph, we then created a copy, and randomly 
changed community node membership, keeping the same 
number and the same size of communities per graph. Doing 
this provided experimental stimuli for which we know that 
the communities are not necessarily in close structural 
proximity – in this latter case, community membership is 
thus indicated by the attributes of the nodes (AT) rather than 
by the graph structure (ST), as defined in the original graphs. 

This gave us two sets of 16 graphs that include 
information about non-overlapping community membership 
for each node: a total of 32 experimental graphs. We use the 
following notation: [nodes]-[communities]-[principle]. For 
example, 30-4-st refers to the graph of 30 nodes and 4 
communities, where community membership is determined 
by graph structure; 75-3-at refers to the graph of 75 nodes 
and 3 communities, where community membership is 
determined by node attribute. 

B. The Layout Algorithms 

We take as our starting point a common force-directed 
graph layout algorithm in the knowledge that such 
algorithms already make an effort to depict nodes that are 
highly connected in close proximity. We then adapted the 
algorithm to create versions where community is further 

                                                         
1 It proved impossible to create a graph with 30 nodes and 6 

communities of size 5 using LFR. We adapted a 30 node-5 

community graph (moving 5 edges, adding 2 edges) to create a 

30 node graph that the Louvian Community Detection 

Algorithm [4] confirmed as having 6 communities. 
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emphasised by creating additional attractive and repulsive 
forces in the programming code. This approach is clearly 
based on the results of the experimental work of McGrath et 
al [30] and Huang et al [32], which indicate the importance 
of structural proximity to visual community detection. We 
also included a version of the algorithm that colours each 
node according to its known community membership (with 
no other changes made to the layout algorithm). The 
algorithms are as follows (see Fig 3): 

 F&R: This is the ‘control’ algorithm: the force-
directed Fruchterman & Reingold algorithm [31] with 
attractive forces between pairs of nodes connected by 
an edge and repulsive forces between all pairs of 
nodes. All nodes are the same colour. 

 COL: This is the F&R algorithm, with the nodes in 
each community given a different distinct colour.  

 ATT: This is the ‘attractive forces’ algorithm. 
Additional attractive forces are added to the graph 
between all nodes in the same community, even if 
they already have an edge (and therefore an attractive 
force) between them. The extended graph is then laid 
out using the F&R algorithm. All nodes are the same 
colour.  

 REP: This is the ‘repulsive forces’ algorithm. 
Additional repulsive forces are added to the graph 
between nodes in different communities, in addition 
to the repulsive force that already exists between 
them. The extended graph is then laid out using the 
F&R algorithm. All nodes are the same colour. 

 A&R: Both the attractive forces of ATT and the 
repulsive forces of REP are added to the graph; the 
extended graph is then laid out using the F&R 
algorithm. All nodes are the same colour  

 NOD: An invisible ‘community-node’ is created for 
each community, and attractive forces are created that 
link each node to its own invisible community node. 
The extended graph is then laid out using the F&R 
algorithm, treating this invisible node in the same 
way as all other nodes. This is similar to the work of 
Eades and Huang [28], although their method 
deliberately placed the virtual node in the middle of 
the rectangle formed by the 2D extent of the 
community. All nodes are the same colour. 

In all cases (including the original F&R algorithm), the 
existing and additional forces were all characterised by 
exactly the same default parameter values to ensure valid 
comparison, the only difference being the force direction for 
attractive and repulsive forces. Keeping the parameters the 
same allows for valid comparison. 

These six algorithms were applied to all 32 graphs, 
creating 180 graph drawings. Our notation is [alg]-[nodes]-
[communities]-[principle]. Thus, A&R-45-3-at refers to the 
graph with 45 nodes and 3 communities, where communities 
are identified by node attribute, and the graph layout includes 
both additional attractive and repulsive forces. Since the 
visual form of F&R-x-y-st is identical to F&R-x-y-at, the 16 
stimuli that matched the latter form were removed, leaving 
176 stimuli. Before being presented to the participants, each 
stimulus was rotated randomly(0

o
,90

o
,180

o
,270

o
), minimising 

the potential for participants recognising repeated stimuli. 

  

Fig. 3. The forces used in each algorithm. (a) Fruchterman and 
Reingold layout of the graph. (b) The attractive (green) and repulsive (red) 
forces used in F&R (F&R). (c) F&R layout showing the two communities 
by colour (COL). (d) Attractive forces in the ATT algorithm: some 
attractive forces are reinforced – the repulsive forces in (b) are still there, 
but not shown. (e) Repulsive forces in the REP algorithm: some repulsive 
forces are reinforced – the attractive forces in (b) are still there, but not 
shown. (f) Forces in the combination of ATT and REP (A&R). (g) Two 
invisible community nodes and attractive forces (NOD). 

                                           

Fig. 4. The nodes in each community are placed in close proximity, 
despite not forming structural clusters. (Reproduced from McGrath et al, 
with permission [30]). 

C. Structural vs Attribute Grouping 

Each graph has two versions based on two different 
community principles: a ‘structural’ version (ST) where the 
membership of each node is determined by the structure of 
the graph (as dictated by the LFR algorithm), and an 
‘attribute’ version (AT) where the membership of each node 
is unrelated to the structure, having been allocated randomly. 
There are 96 ST versions and 80 AT versions (since F&R 
applied to the ST and AT versions are identical.).  

Each version will behave differently under the four 
algorithms that deliberately try to bring communities 
together, that is, ATT, REP, A&R and NOD. Since the nodes 
in the ST version are structurally determined, the 
communities should be structurally accentuated. In contrast, 
the communities that are unrelated to structure in the AT 
versions will be brought together, despite not having natural 
structural proximity. This is not unlike one of the conditions 
in the McGrath experiment [30], which shows an extreme 
(hand-drawn) version of communities that are visually 
spatially distinct, but not structurally connected (see Fig 4). 

The coloured nodes (COL) algorithm is, of course, 
important for AT graphs, since without the colours it would 
be impossible to determine the community membership of 
any node – the graph structure will not help. Thus, we have 
proximity and colour as our visual cues, and structure and 
attributes as our community membership indicators. 

Table 1 shows examples of experimental stimuli; the full 
set can be seen at www.dcs.gla.ac.uk/~hcp/ASONAM2020. 

D. Experimental Process 

We used a custom-made online system for a within-
participants experiment. This allowed us to collect a lot of 
data quickly and easily, and was suitable as the advantages of 
lab-based experiments (e.g. training, task complexity etc.) 
are not relevant for pre-attentive tasks. As a within-
participants study, any variation in visual display technology 
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TABLE 1. EXAMPLE EXPERIMENTAL STIMULI: A 60-NODE GRAPH WITH FIVE COMMUNITIES AND A 45-NODE GRAPH WITH THREE COMMUNITIES.

60-5 F&R COL ATT REP A&R NOD 

ST 

60-5 

      
AT 

60-5 

Not  

Applicable 

     
ST 

45-3 

      
AT 

45-3 

Not  
Applicable 

     

 
would have no effect on the results. After reading 
introductory information and indicating consent, participants 
were told that “a single circle represents a person in a social 
network” and “a connection between two circles indicates a 
friendship between two people”, with appropriate small 
diagrams to illustrate these concepts. Twelve practice tasks 
similar in form to the experimental tasks (and for which data 
were not collected) were presented first, so that the 
participants could familiarise themselves with the system, 
and to mitigate against the learning effect. Participants were 
allowed to take a self-timed break after every 12 trials.  

For each of the experimental stimuli, the participants 
were asked “How many groups of people can you see?” 
Participants selected one answer from a range of possible 
answers: 2,3,4,5,6,7, covering all the correct answers 
(3,4,5,6) with one additional possibility at each extreme. We 
did not collect response time, since counting six communities 
will naturally take longer than counting two communities. To 
move onto the next trial, participants pressed either a button 
labelled ‘I am confident’ or ‘I am not confident’. We 
deliberately did not explain what was meant by a ‘group’, 
since we wanted to participants to form their own ideas, 
using proximity, colour or structure as they saw fit. At the 
end of the experiment, demographic information was 
collected, and we asked participants to tell us what made it 
easy or hard to identify the groups. 

The link to the experiment online system was distributed 
to friends, family members, associates and colleagues of the 
authors; as a within-participants experiment, any variation in 
the nature and expertise of the participants does not affect the 
results. 42 people took part over 10 days.  We removed 3 
outliers whose overall accuracy was less than 30%. Our data 
distribution is such that, in the most extreme case, 
persistently answering with the same number (e.g. 3) would 
result in 29% accuracy (thus justifying this 30% cut-off). The 
majority of the participants (25) were in the age range 18-25; 
while 17 had background in Mathematics or Computing 
Science, only three described themselves as experienced in 
having seen social networks drawn as graphs, with 25 saying 
that they had ‘never seen’ them like this. 

DATA AND ANALYSIS 

For each trial, we collected the participant’s answer and 
their confidence, and derived four dependent variables: 

 ABV: absolute difference between ‘ground truth’ 
(GT) number of communities and the answer [0-4] 

 SGN: error direction; ie: sign of difference [-1,0,+1] 

 ACC: accuracy [0,1] 

 CON: confidence: 1 for confident, 0 for not [0,1] 

We aggregated these dependent variables (taking the 
mean) over all variations of the ‘ground truth’ number of 
communities within each graph size.  

We analyse the ST and AT data separately, using SPSS; 
our research questions are independently addressed for 
networks where communities are defined by structure (ST) 
and for those where community membership is independent 
of structure (AT) (Table 2). Normality tests (skewness, 
kurtosis and Shapiro-Wilk) revealed that the data is not 
normally distributed, and so the non-parametric ANOVA 
alternative was used: Friedman followed by pair-wise 
comparisons with appropriate p-value adjustments. The 
median and interquartile ranges for each algorithm for each 
dependent variable are shown in Table 2 (ST), Table 3 (AT), 
with the Friedman statistic (n=39, df=5). Pairwise 
differences (with adjusted p-values) are in Table 4. As noted 
above, the F&R algorithm was not relevant for the AT study. 

We performed the same analysis on the 30-node graphs 
and the 75-node graphs separately, to see whether the results 
differed by graph size. There were no notable significant 
differences – the separate results mostly matched the results 
for all graphs when aggregated together, suggesting no effect 
of graph size. 

These results indicate poor performance for some of our 
new algorithms, with very good performance for others. It 
appears that the inclusion of additional attractive edges is a 
positive enhancement, while extra repulsive edges are not 
useful unless combined with additional attractive edges – 
although this generalization is not always true when node 
attributes (rather than structure) indicate community 
membership. We also note that the drawings produced by the 
new algorithms are all much more bunched up than the 
original Fruchterman and Reingold version, with much node 
occlusion and much smaller bounding boxes. In all cases, the 
results for the version that used colour are exceptionally 
good, with these answers provided with high confidence . 
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TABLE 2. ST RESULTS: THUMBNAIL BOXPLOT OVERVIEWS, MEANS, INTER-QUARTILE RANGES. THE CONDITIONS IN THE BOXPLOTS ARE ORDERED LEFT-TO-
RIGHT: F&R, COL, ATT, REP, A&R, NOD; THE RANGE OF THE VERTICAL AXIS IS INDICATED AT THE TOP OF EACH COLUMN.  

 ABV 

y-axis: [0,3] 

SGN 

y-axis: [-1,1] 

ACC 

y-axis: [0,1] 

CON 

y-axis: [0,1] 

 

    
 F&R 0.50  [0.37] -0.06 [0.06] 0.63 [0.13] 0.56 [0.31] 

 COL 0.19  [0.19] -0.06 [0.06] 0.88 [0.13] 0.94 [0.25] 

ATT 0.06  [0.07] -0.06 [0.06] 0.94 [0.06] 0.94 [0.12] 

REP 0.75  [0.37] -0.31 [0.19] 0.44 [0.18] 0.44 [0.37] 

A&R 0.13  [0.13] -0.06 [0.07] 0.94 [0.06] 1.00 [0.06] 

NOD 0.75  [0.31] -0.50 [0.32] 0.44 [0.25] 0.50 [0.38] 

Friedman 164.0,p<0.001 115.6,p<0.001 166.7,p<0.001 133.5,p<0.001 

TABLE 3. AT RESULTS: THUMBNAIL BOXPLOT OVERVIEWS, MEANS, INTER-QUARTILE RANGES. THE CONDITIONS IN THE BOXPLOTS ARE ORDERED LEFT-TO-
RIGHT: F&R, COL, ATT, REP, A&R, NOD; THE RANGE OF THE VERTICAL AXIS IS INDICATED AT THE TOP OF EACH COLUMN. 

 ABV 

y-axis: [0,3] 

SGN 

y-axis: [-1,1] 

ACC 

y-axis: [0,1] 

CON 

y-axis: [0,1] 

 

    
COL 0.31 [0.43] 0.00 [0.25] 0.69 [0.32] 0.50 [0.63] 

ATT 0.88 [0.38] -0.56 [0.19] 0.38 [0.12] 0.56 [0.32] 

REP 1.05 [0.25] -0.44 [0.19] 0.38 [0.13] 0.44 [0.37] 

A&R 0.75 [0.31] -0.44 [0.19] 0.50 [0.06] 0.56 [0.31] 

NOD 1.63 [0.56] -0.63 [0.25] 0.19 [0.12] 0.13 [0.18] 

Friedman 129.3,p<0.001 86.3, p<0.001 129.4,p<0.001 63.1,p<0.001 

TABLE 4. ADJUSTED PAIRWISE P-VALUES BETWEEN THE LAYOUT CONDITIONS. ONLY SIGNIFICANT DIFFERENCES ARE SHOWN. 

 ST AT 

 ABV SGN ACC CON ABV SGN ACC CON 

F&R/ COL 0.001  <0.001 <0.001 n/a n/a n/a n/a 

F&R/ ATT <0.001  <0.001 <0.001 n/a n/a n/a n/a 
F&R/ REP  <0.001   n/a n/a n/a n/a 
F&R/ A&R <0.001  <0.001 <0.001 n/a n/a n/a n/a 
F&R/ NOD 0.025 <0.001 0.015  n/a n/a n/a n/a 
COL/ ATT     <0.001 <0.001 <0.001  

COL/ REP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  

COL/ A&R      0.001   

COL/ NOD <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

ATT/ REP <0.001 <0.001 <0.001 <0.001     

ATT/ A&R      0.004 0.016  

ATT/ NOD <0.001 <0.001 <0.001 <0.001 <0.001  <0.001 <0.001 

REP/ A&R <0.001 <0.001 <0.001 <0.001 0.003  0.003  

REP/ NOD     <0.001 0.016 <0.001 <0.001 

A&R/ NOD <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 

DISCUSSION 

In the structural membership (ST) case, the results 
suggest [ATT, COL, A&R] as the best, [REP, NOD] as the 
worst, and [F&R] in the middle; the confidence results 
mirror the accuracy data. The algorithms that performed well 
(ATT, A&R) clearly depict large inter-community distances. 
These two algorithms add additional intra-community 
attractive forces between groups of nodes within each 
community where there is already a high proportion of 
attractive forces (as dictated by edge connectivity). Given 
that there are few attractive edges between communities, this 
high concentration of attractive forces within communities 
overwhelms the effect of repulsive forces between them, 
providing good separation between individual groups.  The 
only repulsive forces with any noticeable effect are those 
between communities, thus increasing this separation. 

The two algorithms that performed worse (NOD, REP) 
both separate communities, but emphasise intra-community 
proximity at the expense of inter-community distance. In 
REP, repulsive forces are added between nodes of different 
communities; applying these forces to all nodes in a single 
community has the effect of pushing communities apart; 
there is little intra-community attraction to bring the nodes 
together. Thus, the spacing between nodes within a 
community and between communities becomes uniform, 
causing participants to visually merge them into one 
community. 

Finally, the NOD condition adds a large number of 
attractive forces pulling nodes in communities together, but 
these overwhelm the existing repulsive forces, so 
communities tend to occlude each other.  
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Neither F&R nor COL emphasise community distance as 
clearly as ATT and A&R – they have a spatial balance 
between connectivity and distance; it is not surprising F&R 
performed worse than ATT and A&R. COL outperforms 
F&R because of additional visual coding – even though we 
did not suggest to our participants that colour relates to group 
membership.  

These results suggest that adaptations to algorithms that 
clearly emphasise the distinction between communities 
through increased inter-community distances (thereby 
reducing the intra-community node distances) is preferable to 
a neutral algorithm that does not attempt to emphasise 
structure - unless colour is used. F&R performs in the 
middle, suggesting it provides a good compromise between 
community representation and other readability tasks. 

For non-structural membership (AT), the results suggest 
[COL, A&R] as the best, [NOD] as the worst, [ATT, REP] in 
the middle, and equal confidence for all conditions apart 
from NOD (about which participants were very unconfident). 
It is clear that the A&R algorithm’s use of both additional 
repulsive and attractive forces means that each community’s 
nodes are depicted in close proximity, almost independently 
of any of the existing forces in the basic force-directed 
algorithm. It maintains intra-community forces (even if there 
are no edges between the nodes) while also emphasising 
inter-community distances (even if there are edges between 
nodes from different communities). The output of this 
algorithm is similar to the hand-drawn network shown in Fig. 
4, where a person’s membership of a community (as 
indicated by attribute) is prioritised over her relationships 
with others (as indicated by edges). 

ATT and REP each only add one type of force (unlike 
A&R) and so are unable to balance the need to pull intra-
community nodes together at the same time as pushing inter-
community nodes apart.  

NOD’s performance is very poor indeed, and all 
participants were less confident with this condition than 
others. Here a large number of attractive forces are being 
added, often between nodes that did not originally have an 
edge (and therefore an attractive force) between them. This 
results in the sort of ‘hairball’ that usually arises from 
application of a force-directed algorithm to a large, dense 
graph – and in this case, the communities occlude each other 
to the extent that they are indistinguishable.  

COL again performs well; it appears that for this 
condition, participants simply counted the colours, ignoring 
structure. This is surprising since for all other conditions 
colour was clearly irrelevant, and node proximity was the 
key to finding the answer. Indeed, the high performance of 
the COL condition suggests that any tweak made to a layout 
algorithm to emphasise non-structural community 
membership using proximity is not as effective as simply 
using a neutral layout and colour. 

In all cases (ST and AT), the mean estimation error was 
negative: participants tended to underestimate rather than 
overestimate the number of communities. This is not 
surprising, since in no conditions are the intra-community 
distances (that is, proximity between nodes in the same 
community) dispersed, visually breaking up a single 
community into multiple communities; thus, it is unlikely 
participants would see two clusters where there is only one. 

When focusing on comparing the F&R and COL 
conditions, we calculated the correlation co-efficient between 
the answers given to both (for each stimulus and participant), 
regardless of the accuracy of the answers. We expected a 
high correlation for the ST data (the colour in COL 
reinforcing the response given to F&R), and a lower one for 
the AT data (F&R responses determined by structure; COL 
responses deter-mined by colour), but found that they were 
not very different from each other (ST correlation = 0.591, 
AT correlation = 0.589, both with p<0.001). It appears that 
the COL condition performed well for both the ST and AT 
stimuli regardless of the underlying structure imposed by the 
F&R algorithm that it was based on. 

The qualitative data revealed that, when identifying 
groups, participants relied on ‘clusters’ and ‘clumps’ (16),  
‘proximity’ and ‘distance’ (15), and colour (16). Mention 
was also made of ‘edge density’ or ‘number of connections’ 
(8), and one participant “ignored colour”. 26 participants 
mentioned colours when asked what made it easier to 
identify the groups; 8 people specifically said that ‘random 
colours’ made the task more difficult. The feature that most 
participants said confused them was ‘dense clusters’ or 
‘overlapping of groups’. 

A. Subjective data 

In an attempt to further distinguish between the utility of 
the A&R and COL algorithms (which performed equally 
well in the objective measures), we conducted a 
supplementary experiment with 25 new participants, 
collecting subjective opinion data. Participants were 
presented with two layouts of each graph (A&R and COL) 
and asked “Which social network best represents 
communities?” The graphs were separated according to ST 
and AT versions, the pairs were matched with respect to size 
and number of communities, each pair was presented twice 
(alternating left with right) and shown in random order, and 
each graph drawing was randomly rotated by a multiple of 
90 degrees before being displayed. 

Using a Binomial test of frequencies, we found that the 
A&R algorithm was chosen as best for representing 
communities for both structural (ST) and attribute (AT) 
communities, over all the graphs (p<0.001 for ST, p<0.01 for 
AT). When separated by graph size and number of 
communities, we found only one significant result for the ST 
graphs (75-3, in favour of A&R), but eleven significant 
results for the AT graphs (five in favour of COL (30-4, 30-5, 
45-5, 45-6, 60-6) and six in favour of A&R (45-3, 45-4, 60-
3, 60-4, 75-3, 75-4), all p<0.01. These results suggest that, in 
general, the Gestalt structural grouping properties of A&R 
are preferred to the pre-attentive colour properties of COL.

2
 

CONCLUSION 

Our adaptations to the common Fruchterman & Reingold 
algorithm are simple, both in concept and implementation, 
and were clearly designed to decrease the distance between 
nodes in the same community and to increase the distance 
between nodes in different communities, using additional 
attractive and repulsive forces. We find that some are more 
successful than others, and that their utility differs depending 
on whether ‘communities’ in a social network are defined by 

                                                         
2 A result that will, of course, also apply if colour-blindness or 

cultural colour associations were to be taken into account – two 

issues that are beyond the scope of this current study. 
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structure (relationships between people) or attributes 
(characteristics of people). 

If community membership is defined by structure, 
algorithms that include forces that deliberately bring nodes in 
the same community in close proximity are more successful 
than those that simply attempt to push members of disparate 
communities apart. Using colour for depicting community 
membership is also effective in this case. 

If communities are defined by attributes, colour is by far 
the most effective means of portraying membership, and the 
results suggest that it might be better to abandon any attempt 
to manipulate the layout algorithm, and to simply use colour 
coding if possible. Otherwise, the combination of pulling 
related nodes together at the same time as pushing unrelated 
ones away also shows promise. 

In both cases, gathering all the nodes in a community 
around an invisible anchor node produced poor performance, 
since such an algorithm leads to overlapping communities. 

The generalizability of these results is, of course, limited 
by the extent of our experimental parameters, in particular 
the nature and size of the graphs, and the participants. Our 
use of LFR means that our graphs are comparable in 
structure to real-world social networks, and our analysis 
shows no difference in performance between the 30-node 
and 75-node graphs. Investigating larger graphs could be a 
further study, although given our results, such a study should 
likely focus on ATT, REP and A&R only. Investigating 
algorithms that define groups by the combination of structure 
and attributes is an obvious next step for this work. While the 
participants’ age range was rather narrow, they were 
overwhelmingly novices in reading social networks as 
graphs, and so our results are not tainted by experience. 

This study has demonstrated the utility of making simple 
adaptations to a common force-directed algorithm for the 
purposes of visual community detection. Our experimental 
data confirms that the use of both colour and easily perceived 
Euclidean proximity as visual cues are crucial for identifying 
communities, with colour proving more prominent. 
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