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Abstract—In large graphs such as those representing social
or other affinity networks, one is often interested in finding
dense clusters, i.e., subgraphs with relatively high connectivity,
embedding in such graphs. Inspired by a classical approach called
Hierarchical Mode Analysis, which works only for data in metric
spaces, we introduce a novel algorithm called HIMAG (Hierarchi-
cal Incremental Mode Analysis for Graphs) that detects dense
subgraphs at multiple resolutions, while ignoring “non-dense”
areas. We also provide a powerful multi-resolution visualization
tool customized for the new algorithm. We present results on two
standard benchmark social graph datasets as well as a motivating
real-world application, to show the power of our approach and
compare it with some standard graph partitioning algorithms
that were retrofitted to produce dense clusters by pruning non-
dense data in a non-trivial manner. We are also open-sourcing
the new dense graph datasets and tools to the community.

Index Terms—graph learning, dense graphs, hierarchical clus-
ters, visualization, automated cluster selection, social graphs,
hierarchical mode analysis

I. INTRODUCTION

In this paper, the goal is to find “dense” subgraphs (perhaps
simultaneously at different resolutions) while pruning out a
large fraction of irrelevant background data that may not
cluster well. This setting was originally motivated by a real-
world problem that we encountered. To concretize the issues
being addressed, we describe this application before moving
to the technical sections.

A. Real-time Social Viral Marketing

This motivating, real-world application involves finding
clusters in a dataset of Instagram posts. The sparse graph
consists of Instagram posts pre-filtered by an upstream crawler
for a relevant product area (Wellness or Education). Each post
is a node in the graph, and the weight of the edge between two
posts depends on the degree of overlap in hashtags between
the two posts, and is thresholded by some value. The dense
clusters to be discovered either map to large groups of potential
customers with a smaller number of more organic posts and
shared interests, to whom we may want to send highly targeted
messaging campaigns, or belong to single active influencers
with a large number of highly related marketing posts, to
whom we want to reach out to help with social viral marketing.
Influencer and consumer groups naturally exist at varying
degrees of “density” or cohesiveness depending on the type

of consumers or influencers, but influencer clusters tend to be
smaller and denser. Also, a large fraction of the posts may
not cluster at all, and some of the clusters discovered may not
be relevant for the product area and are easy to remove when
separated out automatically.

B. Outline

To begin addressing the challenging setting described above,
we start by first defining a flow-based [1] notion of density
for nodes in a graph that we call flow density in Section III-C.
The resolution or scale of flow density can be controlled by
a similarity threshold. Then, we present a fast algorithm that
can incrementally grow the most dense regions of the graph
by varying this similarity threshold to discover subgraphs at
variable densities/resolutions, presented in Section IV. In Sec-
tion V-A, we present an edge-based measurement formulation
that allows us to evaluate clusterings of dense subgraphs,
including two new metrics: Edge ARI and Point Precision,
both specially designed to work with edge-based partially
labeled data. Our method enables pruning of “non-dense”
portions of a graph while simultaneously selecting the most
stable clusters at multiple resolutions, and this is the source
of the substantially better results observed for HIMAG in
our paper compared to other methods, on all five of the
datasets studied in Section V-B. To help one see the results,
we introduce a multi-resolution clustering visualization tool,
Gene DIVER 3.0, which provides a user interface to browse
the cluster hierarchy from HIMAG, in Section VI.

II. RELATED WORK

A. Spatial Methods

For data given in a metric space, DBSCAN [2] is perhaps
the most well known algorithm that can find dense clusters of
arbitrary shapes. It does so by placing a fixed-radius spherical
ball at each data point, and then counting the number of points
falling within this spherical neighborhood. It then prunes
all points that don’t have enough neighbors (passed as a
parameter) before performing clustering. However, DBSCAN
cannot discover dense clusters at multiple resolutions/densities
as it uses a single threshold for density; while nearby higher
density clusters tend to merge into one cluster, lower density
clusters tend to be fragmented or incomplete.IEEE/ACM ASONAM 2020, December 7-10, 2020
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This problem of simultaneously finding dense clusters at
multiple resolutions/densities was more successfully addressed
by [3], and further unified with other related algorithms by [4].
[3], [4] are based on the concept of Hierarchical Mode Anal-
ysis (HMA), first proposed in [5], and the methods involve
three major steps: (1) define density around each data point
using a sphere, where the radius controls density threshold; (2)
produce a hierarchy of clusters at multiple resolutions/densities
by varying the radius thresholds; (3) select the most robust
clusters identified over all resolutions by using the concept of
stability proposed in [3]. However, as with DBSCAN, all these
approaches require the availability of a meaningful embedding
of the data in a metric space, and cannot readily apply to
arbitrary similarity graphs.

B. Graph Partitioning Algorithms

While the algorithms mentioned above qualitatively provide
the kinds of capabilities needed, alas none of these methods
work on sparse graphs where only pairwise similarities be-
tween some data points is available. However, there do exist a
host of clustering approaches that are based on graph partition-
ing, including hMETIS [6], KaHIP [7], [8], KaHyPar [9], [10],
and PaToH [11]. hMETIS has stood the test of time and is still
one of the most popular graph partitioning methods. KaHIP
(Karlsruhe Fast Flow Partitioner) is a family of algorithms
using flow-based partitioning and also supports parallelism [7].
KaHyPar is also a multilevel hypergraph partitioning algorithm
utilizing an excess incremental breadth-first search (IBFS)
maximum flow algorithm [12] and Boykov–Kolmogorov max-
flow algorithm [13]. PaToH uses greedy hypergraph grow-
ing [14] and Boundary Fiduccia–Mattheyses algorithms [15].
Despite this rich literature and after extensive literature survey,
we could not find any graph clustering or partitioning methods
that could simultaneously discover clusters from graphs at
multiple resolutions, while also naturally pruning out a large
fraction of less cohesive parts of the graph. That was the mo-
tivation for the work presented herein. There are methods that
can produce a hierarchical partitioning on graphs [16], [17],
but cannot perform multi-resolution pruning of less cohesive
regions. There is also a class of methods known as motif
mining used to identify highly recurring small subgraphs [18],
but they cannot find topologies or large structures. In order to
make experimental comparisons, we took open-source versions
of some leading graph partitioning algorithms and modified
their results in a non-trivial way so that they could also prune
out low-cohesiveness points. The results (Section V-B) show
that even with these enhancements, the algorithms still do not
perform as well as the approach introduced in this paper.

III. PRELIMINARIES

A. Notation

Bold-faced lowercase variables, e.g. x, represent vec-
tors/arrays whose ith element are accessed as x(i) (1-indexed).
Arrays can contain sets as well as numbers. Calligraphic
upper-case alphabets such as X represent sets, and can be
notated with elements listed (e.g. {a, b, c}), with a predicate

(e.g. {x ∈ R|x < 7}), or enumerated with {xi}ni=1 where xi
are the individual elements. Z+ represents the domain of
positive integers. R and Rd represent the domain of real
numbers and a d-dimensional vector space, respectively. Bold-
faced capital letters such as M represent a two-dimensional
matrix, which is accessed as M(i, j) (for row i, column j; both
1-indexed). A tuple is denoted by parentheses (e.g. (a, b, c)).

B. Spatial Density Estimation

Let X = {xi}ni=1 ( Rd be a set of d-dimensional data
points that need to be clustered for a spatial dataset. Let
DS represent the corresponding n × n symmetric Euclidean
distance matrix such that DS(i, j) is the distance between xi
and xj . Given some rε ∈ R+, the Auto-HDS algorithm [3]
defines the spatial density ρrε(xi) that has the property
ρrε(x) ∝ |{y ∈ X |DS(x,y) ≤ rε}|.

This notion of density corresponds to a uniform sphere of
radius rε as the kernel, since the points within the sphere
contribute equally to the density irrespective of their distance
from the point.

C. Flow Density of Nodes in Graph

Let Sε, an n × n matrix, represent a sparse, weighted,
undirected graph with n nodes. Sε(i, j) = 0 if the sim-
ilarity S(i, j) is less than a threshold, sε. Thus, we have
sε < Sε(i, j) ≤ 1 representing the edge weight between
any two nodes i and j. Note that Sε is symmetric, and
there are no self-loops. The flow between any two nodes
a and b through a node i in the graph is computed as
Sε(a, i)Sε(i, b), and the total flow between nodes a and b,
which is a standard computation for graphs [1], [19], is given

by flowε(a, b) =
n∑
i=1

Sε(a, i)Sε(i, b).

We now introduce a novel notion of density for a node in
a graph, that we call flow density, as simply the total flow to
the node from every other node:

ρflowε(i) =
n∑
j=1

flowε(i, j) (1)

This can be computed efficiently for a sparse graph, and can
also be computed incrementally for varying sε—a property
that is handy for HIMAG described in Section IV.

D. Properties & Motivation for Flow Density

If the non-zero edges in Sε were all set to 1 (an unweighted
graph), then the flow between two nodes a and b represents
the total number of shared neighbors between a and b. Though
flow is the more commonly used term for describing this rela-
tionship, other terms such as link count [20], connectivity [19],
and shared neighbor similarity [21] have also been used. These
flow-based methods [19]–[22] provide explanations why flow
is a better measure of true closeness between two nodes than
similarity, and this concept is also incorporated in some of the
graph partitioning methods we compare with (see Sections II
and V-B). The reason for the improvement in performance
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TABLE I
MARKETING EXPERIMENTS GRAPH SIZES AND PARAMETERS.

Segment Education Wellness
No. of nodes 54,836 35,308
No of edges 1,859,732 7,127,456

sEJ threshold Topic 0.25 0.25
Node sample fraction 1.0 0.5

when using flow as opposed to direct neighbors is that noisy
neighbors with strong similarity to a given node a that are not
well-connected to other neighbors of a get a small flow with
a. This results in easier discovery of true highly-connected
subgraphs in the data. The flow however, is still defined only
on pairs of nodes and not on nodes themselves, which is what
we need to be able to prune non-dense nodes. This dilemma
is resolved by the notion of flow density (Equation 1), which
is a measure of the flow neighborhood density of the node,
since it is performing a weighted count of the flow neighbors.

A crucial property of flow density, which we exploit in
HIMAG, is the ability of the flow density to capture local
flow density at a node when it is computed on a graph pre-
thresholded with sε. When sε is small, the total flow through
the many nodes that are not tightly connected to a dominates,
creating a smoothing effect on the density. In contrast, when
sε is large, the flow density of a is only contributed to
by nodes that have a large similarity to a, which can be
considered “nearby” nodes. Thus sε controls the resolution
and smoothness of flow density variations in the graph visible
to the clustering algorithm, and is exploited by HIMAG to
find clusters at multiple resolutions. This is akin to the radius
rε used to compute local density in the spatial HMA-style
algorithms.

E. Benchmark Graphs & Datasets

Sim-2 Graph: Sim-2 is a synthetic 2D dataset sampled
from 5 spherical Gaussians and an additional background
distribution, described in [3]. converting this to a similarity
graph using the distance between points gives us Sim-2 Graph.

Marketing Graphs: The real-world use-case that moti-
vated our paper was the problem of automatically discovering
influencers and potential consumer networks for any given
application domain for a digital marketing application. This
data is built using an upstream intelligent crawler that crawls
all public posts on Instagram (www.instagram.com) containing
a set of hashtags for a given segment, which is optimized
automatically by upstream AI that is beyond the scope of
this paper, but it is important to know that this results in
highly domain-specific Instagram posts for each segment. In
this paper we focus on two domains: Wellness and Education.
For our use-case, the final experiments were performed on
graphs with sizes shown in Table I.

We then use the Min-Max Similarity (MMSIM) [19], an
extension of the Jaccard coefficient, on posts to compute the
similarity graph. We also thresholded the graphs to sparsify
them a bit for computational speed and quality.

Standard social network benchmarks: We present re-
sults on two standard anonymized social network datasets:
Pokec [23], Slovakia’s largest social network, and the Live-
Journal social network [24]. These datasets provide us with
two independent signals that help us benchmark without
the need for human labeling. The first signal is the social
graph itself, which is an unweighted graph of connections
between users. The second signal is an independent undirected
weighted interests graph built by connecting people who share
“interests”. We use the community profile that the datasets
provide, namely “hobbies” and “communities” for Pokec and
LiveJournal respectively, to compute this graph. We build the
interests graph edges using Min-Max Similarity [19] on shared
interests between two users.

To set up the prediction problem, we first intersected the
social graph nodes with the interests graph nodes, and then
split the social graph into a training and measurement set; the
training set is 2% subset of random edges sampled from the
full social graph, while we hold the remaining 98% of the
remaining social graph blind to our clustering algorithms to
see how well they can predict these missing connections. We
also make the training graph weighted (as the social graph
is unweighted) by simply averaging the edge weights with
the interests graph. This provides us with a partially weighted
training graph where the edges range between 0.5 and to 1.0
depending upon how many interests the connections have in
common. Table II details some of the different intermediate
graphs extracted from the external datasets, and Table III
summarizes the final graphs generated from our datasets.

Note that we expected not all friends to necessarily have
many hobbies in common, and conversely, many of the con-
nections being predicted are likely good matches, but may not
be already connected in the measurement set. Of course, for
our setup, we can only measure against people who are already
connected in the measurement set; it would be interesting
to use this method as a powerful setup for recommending
new connections for popular social networks such as LinkedIn
(www.linkedin.com) or Facebook (www.facebook.com), and
see how it performs.

IV. HIMAG

Our new Hierarchical Incremental Mode Analysis for
Graphs algorithm outputs an HMA matrix like the one de-
scribed in [3], then we follow a similar process to [3] to
identify clusters across resolutions and relabel them, dictionary
sort the rows (nodes) for better visualization, and assign
clusters a stability using Equation 2.

For experimental evaluation of our algorithm, we removed
specific clusters based on the stability values to get a non-
overlapping clustering, but if one desires a hierarchical clus-
tering this step can be omitted.

A. Graph HMA

HIMAG works by redefining the key notions of spatial
radius (rε), spatial density (ρε), and density threshold (nε)
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TABLE II
SOCIAL EXPERIMENTS GRAPH SIZES AND PARAMETERS.

Social Network Pokec LiveJournal
No. of interests 76,914 hobbies 287,512 communities
Top Interests Count Freq. Thresh. Count Freq. Thresh.
Top Interests 12,285 2 1,489 500
Graph sizes Node count Edge count Node count Edge count

Social Graph 1,632,803 30,622,564 3,997,962 34,681,189
Top Interests Graph 758,054 10 billion+ 612,577 20 billion+
Intersected Graph 736,120 22,411,849 612,577 10,070,149

Training Graph 208,620 151,336 212,076 201,158
Measurement Graph 711,950 7,420,344 612,007 9,868,991

Training Social Graph Fraction 2% 2%

(1) (2) (3) (4)
Fig. 1. A simplified illustration of one level of HIMAG Graph clustering showing (1) a sparse undirected weighted graph, (2) kept all edges for sε > 0.2,
compute edge flow, (3) compute node density ρflow and prune non-dense points with ρflow < nflowε , (4) cluster all connected dense components and
prune non-dense points..

TABLE III
BENCHMARK GRAPH DATASETS, THEIR APPLICATION DOMAIN, AND THE

SIZES OF GRAPHS CONSTRUCTED FROM THEM.

Dataset Application No. of nodes No. of edges
Sim-2 Graph Simulated 1,304 848,253
Wellness Marketing 35,308 7,127,456
Education Marketing 54,836 1,859,732
Pokec Social 758,054 10 billion+
LiveJournal Social 612,577 10 billion+

used in the Spatial HMA algorithms [3], [4], [25]. As de-
scribed in Section III-D, and illustrated in Figure 1, given a
weighted, normalized, undirected similarity graph S with n
nodes, we first compute the total flow ρflowε to each node in
a thresholded similarity graph Sε using the similarity threshold
sε. Then, we take all nodes i with ρflowε(i) > nflowε , and
cluster them using the well-known flood fill method, where
nodes i and j cluster together if Sε(i, j) > 0. Thus, each
connected component of Sε (with non-dense nodes removed)
becomes a cluster.

We compute clusterings at multiple resolutions by varying
sε. This gives us an n × l HMA matrix LHMA, where each
row represents a node, and each column corresponds to one
clustering level, associated with a specific threshold sε. The
values in the matrix are cluster IDs, which are generated
independently for each level.

The list of values to use for sε is generated based on the
input similarity matrix S. [3] calculates values of rε so that
the ratio of points clustered between two successive levels
remains a constant rshave. For a graph this would be difficult

to compute, so we instead calculate the values of sε so that
the ratio of the number of nonzero edges in the thresholded
similarity matrix Sε between two successive levels remains a
constant rshave.

B. HIMAG Algorithm

The HIMAG algorithm provides a computationally efficient
way to compute the Graph HMA matrix.

We store the graphs not as matrices, but as sets of edge
tuples (i, j, s), each of which represents an edge between
nodes i and j with weight s. This sparse representation saves
memory and allows us to perform some optimizations.

First, to compute the list of values of sε to be used, we sort
all the edges in the input graph S into a list, and take evenly
spaced samples (and remove duplicates). This list can also
easily be partitioned to produce buckets of edges between suc-
cessive thresholds. Thus, as we lower the similarity threshold
sε, we have stored in memory the set of new edges introduced
to Sε at each level.

We then compute the total flow to each node (ρflowε(i))
incrementally as we lower sε and add new edges to Sε. We also
keep track of the neighbors of each node i in a data structure
enbr where enbr(i) = {j ∈ Z+|j < n ∧ Sε(i, j) > 0}, and
we keep track of the nodes that are clustered (i.e. their flow
density is above the threshold nflowε ) in a set of clusters C.

Let’s look at the addition of a single new edge (a, b, s),
and how it affects the values of ρflowε and enbr. This edge
connects nodes a and b with a weight of s. All of a’s current
neighbors will gain flow with node b through a, and vice versa.
So ∀i ∈ enbr(a), we increment ρflowε(i) and ρflowε(b) by
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Sε(i, a)Sε(a, b), and vice versa for b’s neighbors. Finally, we
add node a to enbr(b) and node b to enbr(a).

As we add edges, we keep track of which nodes’ flow
density increased that were not already clustered. After adding
all the edges in one bucket, we check if any of these nodes
i now have a flow density ρflowε(i) above the flow density
threshold nflowε . If they do, we add them to a cluster in C
according to the connected components rules, merging clusters
when they get connected, or creating new ones as necessary.

After this, the clustering C at the current level k is saved
into the HMA matrix LHMA. Each of the clusters in C is
assigned a positive integer ID, and then each node i in the
cluster has LHMA(i, k) set to this ID. Nodes i that are not
clustered at level k therefore have LHMA(i, k) = 0.

Since this creates the HMA hierarchy by growing and
merging clusters, as opposed to shaving and splitting them,
the process can be stopped early and still yield meaningful
results, further saving computation time. This is useful for
many practical applications where the denser subset of the
topology discovered is more important.

C. HMA Visualization & Cluster Selection

Since the HMA matrix from HIMAG has an identical form
to spatial Auto-HDS, we follow mostly the same process as
[3] for visualization, but cluster stability is defined slightly
differently; it measures the stability of a cluster as proportional
to the fraction of data (nodes) shaving a cluster survives.
If fC(starti) and fC(endi) represent the fraction of nodes
clustered in total when the cluster Ci first comes into existence
and when it disappears, in the order from left to right in the
LHMA matrix (shrinking clusters), then we define stability as:

Stab(Ci) =
log(fC(starti))− log(fC(endi))

log(0.99)
(2)

This notion of stability improves [3] in that the denominator
is set to log(0.99), corresponding to an rshave of 1%—an
arbitrary normalization, instead of the variable log(1−rshave).
As noted in [26], this makes the notion of stability independent
of the node shaving rate, which is necessary for HIMAG
given its edge-based rshave. Note that it is trivial to modify
HIMAG to compute all the levels, as the incremental nature
of the algorithm minimizes computational overhead for this.
However, the larger HMA matrix would hurt the algorithm’s
space complexity, for only a small gain in cluster resolution.

D. Time & Space Complexity

The time complexity of HIMAG can be shown to be
O(E log(E) + Ekn), where E is the number of edges in the
graph, and kn is a node’s average number of neighbors.

The space complexity of HIMAG when storing the HMA
matrix in memory is O(E+n log(E)), where n is the number
of nodes in the graph. If the HMA matrix is streamed directly
to secondary storage, storing only two columns at a time in
memory, the space complexity drops to O(E + n).

TABLE IV
POINT PRECISION PERFORMANCE COMPARISON FOR THE MARKETING

SEGMENTS COMPARING HIMAG WITH FLOW (F) VARIATION OF HMETIS
FOR THE TOP 50 (BY STABILITY) AND ALL JUDGED CLUSTERS. HIMAG
RECALL FOR ALL CLUSTERS FOR WELLNESS WAS 0.201 WITH k = 162

CLUSTERS, WHILE FOR EDUCATION THE RECALL WAS 0.218 WITH k = 424
CLUSTERS. FOR HMETIS, THE NUMBER OF CLUSTERS WAS DOUBLE WITH

THE SAME RECALL. ALSO SHOWN IS THE NUMBER OF POINTS IN THE
SMALLEST CLUSTER (S) AND THE LARGEST CLUSTER (B).

Algorithm Wellness Education
Top 50 All S B Top 50 All S B

HIMAG .9394 .9438 7 1388 .9973 .9748 2 248
hMETIS 2k, F .7665 .718 7 159 .8953 .7336 2 87

V. EXPERIMENTAL EVALUATION

A. Evaluation Metrics

We present results using two metrics: Edge ARI and Point
Precision. The Edge ARI used in this paper is a modification
of the standard Adjusted Rand Index [27] that was designed
for partitional clustering with edge-based labels.

Given a clustering C containing clusters Ci which each
contain all pairs (a, b) representing an edge between two
nodes a and b where a and b are clustered together in cluster
i, and an exhaustive edge-based label set LS containing all
pairs (a, b) that are linked (“must-link”), we define Cp =
{(a, b)|∃Ci ∈ C; (a, b) ∈ Ci} as the set of all edges predicted
as linked in a clustering C.

If all the must-link edges found within a cluster Ci are
assumed to be coming from a single label cluster of size
c, then the number of must-link edges would be given by(
c
2

)
= c(c−1)

2 . Conversely, given the set of must-link edges
within a cluster (Ci ∩ LS), this hypothetical c can be cal-
culated with c = 1

2

(
1 +

√
8 |Ci ∩ LS |+ 1

)
, the inverse of

the quadratic equation for c. Point Precision can then be
calculated as the weighted sum of the precision of the clusters,

as Pp (C,LS) =
∑
Ci∈C

1
2

(
1 +

√
8 |Ci ∩ LS |+ 1

)
|Ci|

.

For computing Edge ARI, an exhaustive label set is
also required. Any edge not in LS is assumed to be
“cannot-link” (should not link). The formula takes the form

Index−E(Index)
Max(Index)−E(Index) , like the Adjusted Rand Index [27].
The index is simply the number of edges that are “must-
link” and are predicted in the clustering C. The expected
index is the number of edges predicted multiplied by the
proportion of total edges that are “must-link”. The max index
is whichever is smallest between the number of edges that
are “must-link”, and the number of edges predicted in the
clustering C, as both of these would have to be true for the
edge to count towards the index. This gives us the formula,
where n is the total number of nodes in the labeled graph:

ARIE (C,LS) =
|Cp ∩ LS | − |Cp|

|LS |(
n
2

)
min (|Cp| , |LS |)− |Cp|

|LS |(
n
2

) .
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B. Results
Note that all methods received exactly the same input graph

for each dataset. More details, along with the source code for
all algorithms and measurements are provided with a supple-
ment link to ensure these experiments are fully reproducible.

The number of clusters to predict (k) and the fraction
of data clustered are passed to other methods based on the
output of HIMAG to make the comparison fair. We also ran
other methods with double the clusters (2k) to improve their
performance in cases where they performed poorly compared
to HIMAG otherwise. Since HIMAG clusters only a fraction of
data, two different methods were used to make the partitional
algorithms behave similarly. RAND represents randomly se-
lecting a fraction of the points from each cluster, while FLOW
represents shaving each cluster by removing the least flow-
dense nodes until the desired number of nodes remain.

Table IV shows results on our new Marketing dataset,
while Table V shows results on the other datasets. Note how
HIMAG finds clusters of a more diverse size, and consistently
outperforms other algorithms in the metrics, at various levels
of clustering, which is also clearly shown in Figure 2.

VI. GENE DIVER VISUALIZATION & TOOLS

We developed Gene DIVER 3.0 for our experimental eval-
uation, as an extension to Gene DIVER 2.0 released in [3]. It
now visualizes the cluster hierarchy produced by HIMAG, in
addition to the spatial Auto-HDS already supported by Gene
DIVER 2.0. It also comes with some other new capabilities.
The source code for Gene DIVER 3.0 along with all our tools
for the experimental setup, more detailed discussion of the
results, and the four new datasets are available on GitHub1.

The HMA hierarchy created by HIMAG, visualized by Gene
DIVER, shows the clusters at various densities. The y-axis
represents the different points, while the x-axis represents
the shaving level or resolution/density. At each resolution,
the colored areas represent the clusters while the black areas
represent the pruned background points that do not cluster.

A. Sim-2
As described in Section III-E, the Sim-2 dataset is a

synthetic 2D dataset sampled from 5 spherical Gaussians and
an additional background distribution (Figure 3 (a) & (d)). The
Sim-2 Graph dataset (Figure 3 (b)) is generated from Sim-2
with a simple transformation. This dataset not only allows us
to more easily test and validate the HIMAG algorithm, but it
is also useful for illustrative purposes.

On the HMA hierarchy produced by HIMAG for the Sim-2
Graph dataset (Figure 3 (c)), the small teal cluster at the very
bottom corresponds to the magenta cluster in the spatial labels
(Figure 3 (d)). Meanwhile, the long and thin light green cluster
in the HMA hierarchy corresponds to the very dense dark blue
cluster in the labels. This illustrates HIMAG’s ability to detect
clusters at varying resolutions. Gene DIVER can also show the
high cluster precision of each cluster, which can be viewed by
clicking on the clusters in the hierarchy.

1github.com/nog642/himag-release-asonam

B. Marketing

A good example of the topological relationships between the
clusters is shown in Figure 4 (c). The parent cluster (outlined
in white) contains 178 posts about the Law School Admis-
sions Test (LSAT). The bottom gold child cluster contains
12 posts about practice LSAT questions. The light purple
cluster directly above the gold cluster 27 posts with the
hashtag “#lsatprep”. The dark purple cluster directly above
the light purple cluster contains 33 posts with the hashtag
“#lsatstudying”. The light brown child cluster on the top
could not be analyzed because the posts have since been
removed. These topological relationships cannot be found with
traditional graph partitioning algorithms.

Running the HIMAG algorithm on the Wellness dataset
produced pure clusters of various sizes. Images e–h of Figure 4
illustrate the different classifications of marketing clusters in
the Wellness segment. Some clusters can be classified as
commercial influencers—for example, one cluster of this kind
contains posts from a company marketing their weight-loss
tea supplement (example shown in Figure 4 (f)), with 15
points, and a cluster precision of 100%. Other clusters can be
classified as individual influencers, such as one cluster of info-
graphic posts from a diet and workout coach (example shown
in Figure 4 (g)), with 60 points, and a purity of 100%. Lastly,
some clusters can be classified as large communities with posts
from many different users, like a cluster of posts of weight-
loss tips in Portuguese (example shown in Figure 4 (h)), with
46 points, and a cluster precision of 100%.

The Instagram URL of each post is embedded in the dataset.
Clicking the data point in Gene DIVER opens the Instagram
post in a web browser, allowing for fast analysis.

VII. CONCLUSION

When we started this research, we had to find a way
to discover dense clusters at multiple resolutions in an un-
supervised manner, especially for the marketing real-world
application, as new clusters arise in such data every week.
The clusters had to be reasonably complete (high recall) and
accurate (high precision). As can be seen clearly, our method’s
performance far exceeds those of other methods, even after
adapting them to prune out non-dense regions in a principled
way. With HIMAG, we find a large and diverse set of clusters
of varying sizes and cohesiveness. We believe that what we
have discovered with flow density is a deceptively simple
concept, but one which is a fundamental breakthrough in
several ways—how we should think about dense regions in
graphs to elucidate dense clusters at multiple resolutions, why
such a notion is not just the dominion of spatial density based
methods derived from HMA, and why we don’t have to think
about flow on graphs only in terms of edges and pairwise
nodes as graph partitioning methods have done until now.
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TABLE V
RESULTS ON POKEC, LIVEJOURNAL, & SIM-2 GRAPH BY POINT PRECISION (PP) AND EDGE ARI (E-ARI). THE RUNTIMES (RT) OF THE ALGORITHMS

ARE SHOWN IN SECONDS ON AN 8-CORE LENOVO THINKSERVER MACHINE WITH 32 GB RAM. ALSO SHOWN IS THE NUMBER OF POINTS IN THE
SMALLEST CLUSTER (S) AND THE LARGEST CLUSTER (B), AND THE NUMBER OF CLUSTERS (C). F IS SHORT FOR FLOW AND R IS SHORT FOR RAND IN

THE ALGORITHM NAMES.

Algorithm Pokec LiveJournal Sim-2
PP E-ARI RT S B C PP E-ARI RT S B C PP E-ARI RT S B C

HIMAG .121 .0214 147.88 3 74 8769 .201 .2541 343.18 3 488 6002 .770 .5919 68.4 20 223 6
hMETIS 2k, F .031 .0102 58.34 2 13 17538 .055 .0229 77.168 2 71 11994 .479 .3107 52.9 36 76 10
KaHIP 2k, F .026 .0089 28.09 2 5 17538 .048 .0187 92.58 2 6 12004 .482 .2395 45.71 43 44 10
hMETIS k, F .035 .0057 58.34 2 25 8769 .059 .0167 77.16 2 108 6002 .493 .3307 52.9 46 211 5
KaHIP k, F .034 .0055 28.09 3 9 8769 .057 .0141 92.58 3 10 6002 .500 .2695 45.71 95 109 5

hMETIS k, R .032 .0052 58.34 2 24 8769 .055 .0157 77.16 2 108 6002 .380 .1660 52.9 45 212 5
KaHIP k, R .031 .0050 28.09 4 9 8769 .056 .0142 92.58 3 10 6002 .449 .2024 45.71 96 109 5

KaHyPar 2k, F .027 .0097 161.58 2 4 17538 .049 .0198 177.38 2 5 12004 .497 .2477 199.02 51 54 10
PaTOH 2k, F .026 .0091 15.40 2 4 17538 .044 .0178 13.02 2 5 12004 .508 .2662 2.54 51 54 10
KaHyPar k, F .035 .0057 161.58 4 8 8769 .057 .0142 177.38 4 9 6002 .509 .2136 199.02 104 107 5
PaTOH k, F .033 .0054 15.40 4 8 8769 .056 .0137 13.02 4 9 6002 .464 .2176 2.54 104 107 5

KaHyPar k, R .031 .0051 161.58 4 8 8769 .053 .0133 177.38 4 9 6002 .439 .1537 199.02 104 107 5
PaTOH k, R .030 .0048 15.40 4 8 8769 .052 .0134 13.02 4 9 6002 .464 .2207 2.54 103 107 5

(Sim-2 Point Precision) (Sim-2 Edge ARI) (Wellness Point Precision)

(Education Point Precision) (Pokec Point Precision) (LiveJournal Point Precision)
Fig. 2. Edge ARI and Point Precision plots for Sim-2, Marketing, Pokec, & LiveJournal datasets. x-axis is recall when sorting and selecting most stable
clusters using flow method for all algorithms, except for HIMAG which has its own stability.

(a) (b) (c) (d)
Fig. 3. Sim-2 synthetic dataset. (a) Unlabeled points in 2D euclidean space as seen by spatial clustering algorithm; (b) a sample of edges with sε ≥ 0.9
from the Sim-2 Graph data; (c) full Gene DIVER view of HMA hierarchy produced by HIMAG shows visually identical topology and clusters to spatial
clustering; (d) labeled 2D data points used for measurements showing 5 labeled dense clusters in color, and the background (noise) points in black.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4. Marketing Education dataset: (a) full HMA hierarchy produced by HIMAG for the Marketing Education dataset; (b) zoomed in full Gene DIVER view
of HMA hierarchy produced by HIMAG; (c) example of the LSAT topology in HMA hierarchy; (d) post that is part of the “LSAT practice question” child
cluster of the LSAT cluster. Marketing Wellness dataset: (e) full HMA hierarchy produced by HIMAG for the Marketing Wellness dataset; (f) advertisement
for an Easter sale for a weight-loss supplement; (g) infographic by a diet and workout coach explaining the best types of compound lifts to build muscle; (h)
promotion of a weight-loss powder in Portuguese.
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