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Abstract—In the last decade, humanity has faced many dif-
ferent pandemics such as SARS, H1N1, and presently novel
coronavirus (COVID-19). On one side, scientists are focusing
on vaccinations, and on the other side, there is a need to
propose models that can help in understanding the spread
of these pandemics as it can help governmental and other
concerned agencies to be well prepared, especially for pandemics,
which spreads faster like COVID-19. The main reason for some
epidemic turning into pandemics is the connectivity among
different regions of the world, which makes it easier to affect
a wider geographical area, often worldwide. Also, the population
distribution and social coherence in the different regions of the
world are non-uniform. Thus, once the epidemic enters a region,
then the local population distribution plays an important role.
Inspired by these ideas, we proposed a mobility-based SIR model
for epidemics, which especially takes into account pandemic
situations. To the best of our knowledge, this model is the first of
its kind, which takes into account the population distribution and
connectivity of different geographic locations across the globe.
In addition to presenting the mathematical proof of our model,
we have performed extensive simulations using synthetic data
to demonstrate our model’s generalizability. To demonstrate the
wider scope of our model, we used our model to forecast the
COVID-19 cases for Estonia.

Index Terms—COVID-19, Epidemic Based Modeling, SIR,
Pandemics, Epidemics.

I. INTRODUCTION

In this modern age, pandemics are not a rare phenomenon.
As in the last decade, we have seen several pandemics such
as H1N1, SARS, EBOLA, and presently in 2020 humanity
is facing its biggest crisis due to COVID-19. The severity
of these pandemics can be understood by the death toll
claimed by them. According to WHO, the pandemic H1N1/09
virus resulted in 18,036 deaths [1]. On the other hand, the
CDC estimate between 151,700 to 575,400 deaths due to
the pandemic H1N1/09 virus [2]. Currently, the coronavirus
(COVID-19) pandemic, which started in December 2019 from
Wuhan, China has infected 21,842,782 individuals and claimed
773,279 (as of 17th August 2020) deaths worldwide [3], [4].
Pandemics are different from epidemics in terms of their
geographic spread. An epidemic affects many people at the
same time. It spreads from person to person and remains local
to a specific region. In comparison, when an epidemic engulfs
an entire country, continent, or the whole world, it is termed
as pandemic.

In the past, various models have been proposed for under-
standing the epidemics spread. These models can be broadly
classified into two categories, that is agent-based modeling
[5]–[7] and compartmental models [8]–[10]. The agent-based
modeling is used for simulating the actions and interactions
of autonomous agents as a whole [11]. These agents can be
both individual or collective entities such as organizations
or groups. In contrast, differential equations are used in
compartmental models, where the population is divided into
different compartments such as suspected (S), infected (I), and
recovered (R) [8]. Several other variants of these models have
also been proposed such as SI [12], SIS [13], SIR [8], SIRS
[14], etc.

Agent-based model researchers often criticize compartmen-
tal models as these models struggle to capture the connectivity
between different regions of the globe, and different real-
world population characteristics, such as worldwide population
distribution [15], [16]. In this study, we propose a mobility-
based SIR model, an extension to the classical SIR based
epidemic model, which considers the real-world population
distribution across different regions of the world. Most im-
portantly, the model also takes into account the connectivity
factor among various regions over the world, which is the key
cause in accelerating the process of transforming epidemics
into pandemics. We model the regions in a 2-dimensional
lattice, where each cell represents the mobility parameter (or
direct connectivity) from one region to another. Along with
presenting the mathematical proof of our model, we have
performed extensive simulations on synthetic data and forecast
the COVID-19 cases in Estonia1 by inferring the interaction
among individuals through call data records between Estonian
counties to demonstrate the model’s ability to generalize on
different types of data.

The proposed model is composed of the (local) transmission
rate of the infection β, and to cover the mobility aspect, we
introduce parameters: 1) ‘α’ which is a social connectivity
parameter that signifies how well individuals are socially
linked with each other, and 2) ‘c(i,j)’ that represents individ-
uals mobility from a region j to another region i. Thus, the
infection can transfer within the region with the transmission
rate β and can also be introduced from other regions through

1https://koroonakaart.ee/enIEEE/ACM ASONAM 2020, December 7-10, 2020
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Fig. 1: Local And Global Transmission Of Infection : Each
cell represents a separate region with some population density
(here regions are 1 to 16). Individuals in each cell are color-
coded: Black (Susceptible), Red (Infected), and Green (Re-
covered). The local transmission rate of infection is β for all
cells. For region 6, it’s social connectivity with other regions
is α. The mobility of individuals from region 4 to region 6 and
fraction of infected individuals at region 4 is represented as
c(6, 4) and I(4) respectively. Therefore, infection can transfer
from region 4 to 6 via global transmission rate αc(6, 4)I(4)β.
Similarly, αc(6, 13)I(13)β and αc(6, 16)I(16)β signifies the
global transmission rate from region 13 and 16 respectively to
region 6.

global transmission rate which depends upon α, c(i,j), Ij
(fraction of infected at region j) and β. With the help of Figure
1, we illustrate our proposed model for better understanding.
We applied our model on a synthetic network as well as on
a real network of Estonia considering the population density
and the connectivity among counties, which is created using
call data records (CDR) to investigate the following questions:

• How social connectivity parameter ‘α’ affects the fraction
of individuals in different compartments (susceptible,
infected and recovered)? We address this question by
carefully examining the effect of α while keeping all the
other parameters constant (Section IV-B).

• What are the outcomes of restricting mobility from the
top-X percentile of strongly connected regions? We ex-
plore the outcomes of mobility restriction with the model
and found that restricting the mobility of the top-10
percentile of strongly connected regions can reduce the
number of infected individuals between 18% to 27%
(Section IV-B). Here, strongly connected regions are
defined as the regions from which there is a higher
number of regular commuters.

• What is the relationship between social connectivity pa-
rameter ‘α’ and mobility restriction (of top-X percentile)
from strongly connected regions? To address this ques-
tion, we performed numerical simulation on the proposed

mean-field equations (Section IV-B, Figure 4).
• How efficiently this model can perform in real scenarios?

We answer this question by projecting the expected
COVID-19 cases in Estonia using the model and com-
pared the results with the real cases (Section IV-B3).

The limitation of classical compartmental epidemiological
models is that they do not take into account the importance of
reducing social connectivity (or isolation) and the significance
of mobility restriction during the spreading of a pandemic such
as COVID-19. This limitation is overcome in the proposed
model. We found that the reproduction number R0 for a
pandemic depends upon the social connectivity and mobil-
ity parameter. We also discovered that during a pandemic,
restricting mobility reduces the fraction of individuals in an
infected compartment, and reducing the social connectivity
(or isolation) delays the peak and also reduces the number
of infected individuals from the pandemic. We believe that
this model can help to adopt a balanced strategy to address a
pandemic crisis.

The rest of the paper is organized as follows. Next, we
discuss related works with respect to epidemic modeling.
We then describe the model preliminaries and derivations in
Section III. Section IV presents the evaluation results of our
model and we conclude with a discussion of future directions
in Section V.

II. RELATED WORK

In this section, we discuss relevant literature with respect to
epidemic modeling which involves two different lines of work.
First involving agent-based modeling and the second using
compartmental based modeling. In the agent-based modeling,
authors model epidemics by simulating the actions and inter-
actions of autonomous agents (both individual or collective
entities such as organizations or groups) with a view of
assessing their effects on the system as a whole [11] by using
transportation systems such as road networks [16], airways
[15] etc. These models have been used for understanding
various epidemics such as smallpox [17], influenza [18],
cholera [19], and very recently about COVID-19 [15].

In contrast to agent-based modeling, differential equation-
based compartmental models have also been used for under-
standing epidemics, which is the basis of this work. This
line of literature is mainly based on the classical SIR model
proposed by Kermack and McKendrick [8] followed by [20]
[21]. In [20], the authors considered the host population as
a dynamic variable rather than constant, as conventionally
assumed, which provides a broader understanding of the
population behavior during infectious disease. In their work
in [21], authors discuss the idea of the basic reproductive rate,
threshold about host densities, and modes of transmission.

Different variations of the SIR model have also been pro-
posed to capture various real-world scenarios. For example,
introducing a delay in the model to capture the incubation
period during the spreading [22]–[25] or the introduction of
interventions such as antiviral drugs [26]. In a different work
to represent the non-linear nature of epidemic spread, a SIR
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rumor spreading model was proposed in which tie strengths
were dependent on nodes’ degree [27]. Apart from SIR based
models, there exist different flavors of compartmental models,
which represent different scenarios such as SIS [13], where
individuals do not recover and can become susceptible again.
This model has also been studied using varying types of
underlying topologies [28].

A set of works have also focused on exhibiting the epi-
demic spreading by using varying types of underlying network
structures. For example, authors in [29], [30], and [31] used
a scale-free network and in [32] a small-world evolving net-
works for evaluating their epidemiological framework. In their
work in [33], researchers combine a discrete, stochastic SEIR
(E stands for exposed) model with a three-scale community
network model to demonstrate that the different regional trends
may be explained by different community mixing rates. A
detailed study concerning various epidemic models on varying
topologies has been done in [34].

In another line of work, the authors proposed models to
understand epidemics based on the speed of growth. For exam-
ple, in [35], authors applied their generalized-growth model to
characterize the ascending phase of an outbreak on 20 different
epidemics. Their findings revealed that sub-exponential growth
is a common phenomenon, especially for pathogens that are
not airborne. In another work [36], researchers explained
the rapid spread of H1N1 in 2009 around the world by
using a flexible Bayesian, space-time, Susceptible-Infected-
Recovered (SIR) modeling approach. [37] developed a sim-
ulation model of a pandemic (H1N1) 2009 outbreak in a
structured population using demographic data from a medium-
sized city in Ontario and epidemiologic influenza pandemic
data. In comparison to previous works, the proposed model
introduces mobility and social connectivity parameters, the key
characteristics for turning epidemics into pandemics.

III. MODEL PRELIMINARIES AND DERIVATIONS

In this section, we first explain the classical SIR model
and then discuss its limitations with respect to the absence of
mobility and social connectivity parameters. Next, we describe
our proposed model to understand the spreading of an infection
during a pandemic.

In 1926, Kermack and McKendrick [8] proposed the clas-
sical SIR model as follows:

ds(t)

dt
= −βs(t)i(t) (1)

di(t)

dt
= βs(t)i(t)− µi(t) (2)

dr(t)

dt
= µi(t) (3)

where, s(t), i(t), r(t) is the fraction of susceptible, infected
and recovered population at time t. However, the classical
SIR epidemic model does not consider the heterogeneity
and topology of the real-world network. To overcome this
limitation, we introduce the mobility and social connectivity
parameters in our proposed model.

Let, ‘l’ represents the total number of locations, and ‘c’
denotes the connection (or individuals’ mobility) between
locations. The propagation of infection at each location is
explained as: each healthy individual can get the infection
either from an infected individual located in the same location
(local transmission) or from an individual visiting from other
connected locations (global transmission). The local transmis-
sion rate of infection is represented by β and the recovery
rate as µ and, β and µ ∈ [0,1]. Next, we discuss the local
transmission of infection, and then the global transmission is
discussed in detail in Section III-B.

A. Local Transmission

Let, Ni be the population at location i, where i ∈ l, and
the total population is divided into three compartments. The
compartments for location i at time t are as follows:

1) Si(t): the number of individuals susceptible or not yet
infected. This compartment is referred as susceptible
compartment.

2) Ii(t): the number of infected individuals which can
further spread the disease to the individuals present
in the susceptible compartment. This compartment is
referred to as infected compartment.

3) Ri(t): the number of individuals who have been recov-
ered from infected compartment. This compartment is
referred as recovered compartment.

Our assumptions regarding the transmission of an individual
from one compartment to another compartment are as follows:

1) A healthy individual after becoming infected moves
from susceptible to the infected compartment.

2) An individual can recover spontaneously at any time
with the recovery rate µ. The recovery of an individual
is independent of healthy and infected compartment
individuals.

3) Once the individual gets recovered, it will become
immune to the disease and thus, will not transmit the
infection to individuals in the susceptible compartment.

4) In addition, this model ignores the demography that
is birth or death of individuals. In other words, the
population remains constant.

B. Global Transmission

Let, j (j ⊂ l) represents a set of locations, which are
connected to location i. Therefore,

∑
j Nj is the maximum

possible number of individuals connected to location i, from
all the locations j. The parameter ci,j reflects the mobility of
individuals from locations j to location i. Global transmission
depends upon this mobility parameter of individuals from one
location to another. Similar to local transmission, Ij is the
number of individuals in the infected compartment in all the
locations j. Hence, total mobility of infected individuals from
all the other connected locations to location i is

∑
j ci,j

Ij
Nj

.
Considering the above description, the chances of transmis-

sion of infection from all the connected locations to location i
is
∑
j ci,j

Ij
Nj
β. This transmission further depends upon the
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(a) α = 1
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(b) α = 0.8
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(c) α = 0.6
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(d) α = 0.4
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(e) α = 0.2
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(f) α = 0.1

Fig. 2: Pandemic Origin From Random Location: Effect of
Social Connectivity Parameter ‘α’

social connectivity (α) of all the individuals at location i.
Therefore, the proportion of healthy individuals at location i
which can get infected from infected individuals from location

j is
α
∑
j ci,j

Ij
Nj
β

Ni+
∑
j ci,j

. Thus, the mean-field equations for the
dynamics of the pandemic, based on the above discussed
interactions are the following:

dSi(t)

dt
= −βSi(t)Ii(t)

Ni(t)
−
αSi(t)

∑
j ci,j

Ij(t)
Nj(t)

β

Ni(t) +
∑
j ci,j

(4)

dIi(t)

dt
=

βSi(t)Ii(t)

Ni(t)
+
αSi(t)

∑
j ci,j

Ij(t)
Nj(t)

β

Ni(t) +
∑
j ci,j

− µIi(t)

Ni(t)
(5)

dRi(t)

dt
=

µIi(t)

Ni(t)
(6)

Where, Eq. 4 describes the rate of change of susceptible
individuals at location i, and Eq. 5 refers to rate of change
of infected individuals, and Eq. 6 explains the rate of change
of recovered individuals at location i. Please refer Table I for
notations and their meaning.

C. Dynamical Behaviour Of The Model
Eq. (4-6) represents nonlinear dynamical system of pan-

demic spreading, where at any time t,

TABLE I: Parameters description

Notations Meaning
l Number of locations
c Connection between locations
Si(t) Number of susceptible individual at location i at time t
Ii(t) Number of infected individual at location i at time t
Ri(t) Number of recovered individual at location i at time t
Ni(t) Population at location at time t i
α Social connectivity parameter
β Infection rate
µ Recovery rate
ci,j Individuals mobility from location j to i

Si(t) + Ii(t) +Ri(t) = Ni(t) (7)

In order to solve mean-field Eq. (4-6), following assump-
tions are made (Please note that these assumptions are not
considered during our experiments):

1) Initially, the population at all locations is equal to N(t)
at time t.

2) Individuals in infected compartments are equal to I(t) at
all locations at time t and

∑
j Ij = |j|.Ij = kIj , where,

k is the number of locations connected to location i, that
is, k = |j|.

3) The mobility of individuals from one location to another
location is a fraction of total population N . Let, the sum
of fraction of population mobility from |k| locations is n.
Then, the total individuals mobility from set of locations
j to i is n ∗N . Therefore,

∑
j ci,j = nN .

By considering the above assumptions, Eq. 4 and 6 can be
written as

dSi(t)

dt
= −βSi(t)I(t)

N(t)
−
αSi(t)nN(t)k I(t)N(t)β

N(t) + nN(t)
(8)

dRi(t)

dt
=

µI(t)

N(t)
(9)

From Eq. 8 and 9

dSi(t)

dRi(t)
= −βSi(t)

µ
− αSi(t)nkβ

µ(1 + n)
(10)

= −βSi(t)
µ

[
1 +

αnk

1 + n

]
(11)

= −βSi(t)
µ

[
1 + (1 + αk)n

1 + n

]
(12)

For simplicity, Eq. 12 can be written as:

dS(t)

dR(t)
= −βS(t)

µ

[
1 + (1 + αk)n

1 + n

]
(13)

Eq. 13 can be rewritten as

S = S0e
− βµR[

1+(1+αk)n
1+n ] (14)

dR

dt
= µ(N −R− S0e

− βµR[
1+(1+αk)n

1+n ]) (15)
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Solving the Eq. 15, we get

t =
1

µ

∫ R

0

dR

N −R− S0e
− βµR[

1+(1+αk)n
1+n ]

(16)

As pandemic arrives at steady state when t −→ ∞ hence
dR
dt = 0 and R∞ = constant

N −R∞ = S0e
− βµR∞[ 1+(1+αk)n

1+n ] (17)

Let initial conditions are R(0) = 0, I(0) = I and S(0) =
N − I ≈ N . Therefore, Eq. 17 can be written as

R∞ = N −Ne−
β
µR∞[ 1+(1+αk)n

1+n ] (18)

Normalizing the Eq. 18

r∞ = 1− 1e−R0r∞ (19)

Therefore, the reproduction number R0 is

R0 =
β

µ

[
1 + (1 + αk)n

1 + n

]
(20)

In case there is no social connectivity to other locations
(α = 0 or k = 0 or n = 0) then the mobility SIR model will
become the standard SIR model and the reproduction number
is R0 = β

µ . Therefore, the reproduction number is directly
proportional to social connectivity parameter α, number of
connected locations k, and depends upon individuals’ mobility
during a pandemic.
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(a) 0% Locations Quarantine
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(b) 10% Locations Quarantine
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(c) 20% Locations Quarantine
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(d) 30% Locations Quarantine

Fig. 3: Pandemic Origin From Random Location: Effect of
Quarantine Strongly Connected Locations

IV. EVALUATION

In this section, we first explain our experimental setup, and
next, we discuss the results of our simulation conducted using
the proposed model on synthetic networks. In addition, we
also show results of our model when applied for predicting
the real-time Estonian COVID-19 cases.

A. Experimental Setup

For the analysis, we created an aggregated flow matrix of
individuals per day from Origin to Destination (OD), which
follows the random distribution. Furthermore, three different
techniques are considered for selecting the seed infection
location:

1) Pandemics origin from a random location: In this, a
random location is selected as seed infection location,
and a small fraction of individuals were infected at that
location.

2) Pandemics origin from a weakly connected location:
Here, seed location is selected strategically, which is
weakly connected to other locations. This implies the
least mobility of individuals from this location to other
locations.

3) Pandemics origin from a strongly connected location: In
this also, seed location is selected strategically, which
is strongly connected to other locations. This signifies
that, highest mobility of individuals from this location
to other locations.

Our simulation is oriented towards addressing the following
questions:
• How social connectivity parameter ‘α’ affects the frac-

tion of individuals in different compartments (susceptible,
infected and recovered) during a pandemic?

• What are the outcomes of restricting the mobility (for
top-X percentile) of strongly connected locations?

• What is the relationship between social connectivity pa-
rameter ‘α’ and the mobility restriction (top-X percentile
of strongly connected locations?

• How efficiently this model can perform in real scenarios?
We answer this question by projecting the expected
COVID-19 cases in Estonia.

B. Results

We perform various simulation experiments to explain the
proposed model on OD network by using previously discussed
techniques for selecting the seed infection location. It is to
be noted that, if α = 0, then the model will behave as
a standard SIR model. Also, if the mobility is reduced to
100 percentile (that is no mobility allowed) from strongly
connected locations, then also model will act as a standard
SIR model.

1) Pandemic Origins From a Random Location: Fig. 2
displays the influence of the social connectivity parameter
’α’ while keeping the other parameters constant. Fig. 2a to
2f shows the pandemic dynamics with different values of
α starting with α = 1 to α = 0.1. We observe that the
peak of the infected compartment decreases significantly, as
the α decreases, and it also takes longer to reach its peak.
This indicates that there is a positive impact of lock-down in
controlling a pandemic.

The effect of restricting the mobility from the top-X per-
centile of highly connected locations with other locations
is shown in Fig. 3. Fig. 3a to 3d displays the pandemic
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(a) Susceptible Compartment (b) Infected Compartment (c) Recovered Compartment

Fig. 4: Pandemic Origin From Random Location: Numerical simulation of relationship between α and quarantine

dynamics with different percentile of mobility restrictions of
highly connected locations starting with 0% to 30% (keeping
α = 0.5). We observe that in the case of a pandemic,
restricting the mobility from the top-10 percentile of highly
connected locations can reduce the number of individuals who
can get infected to 27%. Therefore, quarantine plays a vital
role during pandemics.
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Fig. 5: For different combinations of α and quarantine
percentile, number of days required to reach peak of infected
compartment.

In order to understand the relationship between α and
mobility restriction from strongly connected locations, we per-
formed the numerical simulation of the proposed mean-field
equations (see Figure 4). We can infer that the social connec-
tivity parameter ‘α’ and mobility both plays an important role
during pandemics. Therefore, it is advisable to follow a dual
strategy approach during a pandemic outbreak as controlling
mobility reduces the fraction of infected individuals, and α
delays the peak. Furthermore, we analyzed the number of
days required to reach the point where the highest fraction
of individuals get infected (see Figure 5). This indicates that
mobility restrictions and minimal social contact will postpone
the pandemic’s peak and will give sufficient time for the
preparations, especially for the health sector.

2) Pandemic Origins From a Weakly and Strongly Con-
nected Locations: Fig. 6 displays the influence of the so-
cial communication parameter ’α’ while keeping the other
parameters constant for both weakly and strongly connected
locations. Fig. 6a to 6l shows the pandemic dynamics with
different values of α starting with α = 1 to α = 0.1.

It can be noted that when a pandemic originates from a
weakly connected location, it takes longer to reach its peak
compared to when it starts from a strongly connected location.
This shows that the location of origin also plays an important
role during a pandemic. Similar to a random location, reducing
mobility from the highly connected locations by 10 percentile
can reduce the number of infected individuals between 18%
to 27% for weakly and strongly connected locations.

3) Case Study Of Estonia: To demonstrate the usability
of the model, we applied it to real-time data of Estonia’s
COVID-19 cases. Fig. 7 shows the actual number of cases
and the cases forecast by the model using different values for
α and mobility percentile. For example, α = 0.95, indicates
that the social connectivity of individuals is reduced by 5%
and also top-5 percentile of strongly connected locations are
restricted from mobility. Similarly, α = 0.7, implies that the
social connectivity of individuals is reduced by 30%, and also
the top-30 percentile of strongly connected locations have
introduced restricted mobility.

For simulation, we created the OD matrix between counties
of Estonia using call data records [38]. Furthermore, these call
interactions are converted into population mobility between
counties using Estonian population data [39]. For the local
transmission of the virus (within the county), we consider the
reproduction number R0 = 2.5 [40].

Cases reported until 11th March, 2020 are considered as an
initial condition for the model. The reason behind selecting
11th March, 2020 as initial condition is that, till this date
no local transmission of the virus was reported2. Till the day
of initial condition, the Estonian Health Board confirmed 13
cases in Harju and two cases in Tartumaa and Saaremaa
each3. During the simulation, the number of cases in all
other counties are initialized to zero. The infection rate β and

2https://www.err.ee/1063204/terviseamet-eestis-on-kinnitatud-27-
koroonajuhtu-ja-kohalik-levik

3https://www.terviseamet.ee/et/uuskoroonaviirus
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(a) Weakly connected (α = 1)
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(b) Strongly connected (α = 1)
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(c) Weakly connected (α = 0.8)
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(d) Strongly connected (α = 0.8)
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(e) Weakly connected (α = 0.5)
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(f) Strongly connected (α = 0.5)
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(g) Weakly connected (α = 0.4)
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(h) Strongly connected (α = 0.4)
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(i) Weakly connected (α = 0.2)
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(j) Strongly connected (α = 0.2)
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(k) Weakly connected (α = 0.1)
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(l) Strongly connected (α = 0.1)

Fig. 6: Pandemic Origin From Weak and Strongly Location:
Effect of Social Connectivity Parameter ‘α’
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Fig. 7: COVID-19 Cases In Estonia

recovery rate µ are adjusted according to the value of R0 for
COVID-19. By 10th April 2020, reported cases in Estonia
and forecast cases using the model are shown in Fig. 7. It
can be noticed that the model predicted much higher cases of
COVID-19 if no restrictions are introduced (α = 1). However,
as the restrictions were introduced by the Government4 the
number of cases got damped (Actual). Thus, the applicability
of this model is to forecast a range of predicted number of
cases which can help the government and health agencies to
understand the impact and introduce proportional interventions
to restrict the spread of the epidemic.

V. CONCLUSION

Classical compartmental epidemic models are unable to
describe the spreading pattern of pandemics such as COVID-
19 as they do not take into account the effect of social
connectivity and mobility in the spreading of the virus. Our
proposed mobility based SIR model shows the significance of
social connectivity and mobility during pandemics by taking
into consideration the local and the global transmission rate
of the infection. We have simulated the proposed model by
considering three different origins of the infection, namely
random location, weakly connected location, and strongly
connected location. Our simulation shows that limiting the
social connectivity reduces and delays the peak of the infected
compartment. Our analysis also shows that restricting the
mobility from the top-10 percentile of connected locations can
reduce the number of infected individuals between 18% to
27%. From the mathematical proof for our proposed model,
we obtained that the reproduction number R0 directly depends
upon social connectivity of individuals, number of connected
locations and individuals mobility between locations which
is in line with our simulation’s results. This indicates that
introducing isolation and quarantine is effective in fighting a
pandemic crisis. Using the proposed model, we also simulated

4https://www.valitsus.ee/en/news
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the real-world scenario by considering the COVID-19 cases in
Estonia. Simulation reveals that the mobility-based SIR model
can be helpful to forecast the expected number of cases after
some proportion of isolation and quarantine is introduced in
the society.

We plan to include various future directions for this work
such as by simulating the model using additional dynamic net-
works. Another direction would be to use additional mobility
data such as transportation networks for better understanding
the pandemic behavior. Importantly, we plan to introduce
infection delay and recovery delay simultaneously in our future
studies.
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