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Abstract—An important aspect of preventing fake news dis-
semination is to proactively detect the likelihood of its spreading.
Research in the domain of fake news spreader detection has
not been explored much from a network analysis perspective. In
this paper, we propose a graph neural network based approach
to identify nodes that are likely to become spreaders of false
information. Using the community health assessment model and
interpersonal trust we propose an inductive representation learn-
ing framework to predict nodes of densely-connected community
structures that are most likely to spread fake news, thus making
the entire community vulnerable to the infection. Using topology
and interaction based trust properties of nodes in real-world
Twitter networks, we are able to predict false information
spreaders with an accuracy of over 90%.

I. INTRODUCTION

People use social networking platforms like Twitter, Face-
book and Whatsapp not only to consume and share infor-
mation but also their opinions about it. Ease of sharing has
made it possible to spread information quickly, often without
verifying it, resulting in fake news spreading. This has led
to increase in interest among social media researchers to
propose fake news spreading detection models. In this context,
it is not only important to detect false information but also
identify people who are most likely to believe and spread
the false information. This is so because detection of fake
news spreaders can help contain the rapid spreading of fake
news in social networks. While most of the related work in
fake news detection systems has modeled content of the news
itself, we propose a complementary approach that takes the
network topology and historical user activity into account. As
the CoViD-19 virus spread rapidly around the world in 2020,
so has false information regarding various aspects pertaining
to it1. The need for a spreader detection model for fake news
has never been more evident. Thus in this paper, we propose
a novel spreader detection model using an inductive repre-
sentation learning framework. The model quickly identifies

1https://en.wikipedia.org/wiki/Misinformation related to the 2019-
20 coronavirus pandemic

spreaders before the false information penetrates deeper into
a densely connected community and infects more nodes. The
main contributions of the paper are as follows:
1. We propose a fake news spreader detection framework
using the Community Health Assessment model [1] and in-
terpersonal trust [2]. To the best of our knowledge, this is the
first fake news spreader detection model proposed that relies
on features extracted from underlying network structure and
historical behavioral data instead of the content.
2. We implement our framework using inductive representation
learning [3] where we sample neighborhood of nodes in a
weighted network and aggregate their trust-based features.
3. We evaluate our proposed interpersonal trust based frame-
work using multiple real Twitter networks and show that trust
based modeling helps us identify false information spreaders
with high accuracy, which makes the technique useful for fake
news mitigation.
4. We further observe that our model’s accuracy when de-
tecting false information spreaders is higher than that for
true information spreaders. This indicates that people are
usually able to reason about true information from analyzing
the content, and thus trust in their neighbors is not a very
significant factor. However, determining the truth of false
information that is plausibly true from content itself is difficult
and hence we have to rely on sources we trust to believe in it
or not. This makes nodes that are fake news spreaders and at
the same time highly trusted by lots of people in the network,
especially dangerous. We acknowledge that not all such uber-
spreaders have ill intentions; some might be just ignorant.
They all, nonetheless, have power to spread false information
far and wide, with great speed. We believe this phenomenon
needs greater study.

The rest of the paper is organized as follows: We first
discuss related work, then describe a motivating example for
spreader detection from a network structure perspective, and
summarize past ideas that the proposed research builds upon.
We then explain the proposed framework and how we model
interpersonal trust with it followed by experimental analysis
and finally give our concluding remarks and proposed future
work.

II. RELATED WORK

In this section we first discuss related works on Graph
Neural network architectures. Next, we discuss works related
to the application of GNNs to social networks and informationIEEE/ACM ASONAM 2020, December 7-10, 2020
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dissemination. We then outline other works in the domain of
fake news detection, and we finally present works on Inductive
representation learning that we build on.

Graph Neural Networks (GNNs) are powerful neural net-
work models that have received increased attention recently
because of their application to non-euclidean spaces such as
social networks. Numerous mathematical models for GNNs
have been proposed [4]. In recent times, there has been
research that has leveraged GNNs for complex tasks in so-
cial graphs like political perspective prediction and stance
detection. In the field of fake news detection, Bian et al. [5]
proposed a graph convolution network based model that uti-
lized propagation paths to detect fake news. Researchers have
also proposed architectures that integrate ideas from generative
adversarial networks to build graph-based detectors for rumor
identification [6]. Other studies have demonstrated the merit
of attention based graph models in modelling and detecting
rumors [7], [8]. Notably, Lu et al. [9] developed a graph-
aware attention network that uses user representations and
propagation paths taken by a piece of information to predict
fake news. Nguyen et al. [10] recently proposed FANG, an in-
ductive learning framework that uses GNNs for social structure
representation and fake news detection. Our work also utilizes
inductive representation learning in the form of GraphSage [3],
which generates embeddings by sampling and aggregating
features. GraphSage generalizes well to unseen and rapidly
changing data by dynamically adapting at inference time.

Characterizing the differences between the spread of false
and true news has also served as motivation for our research.
In this regard, Vosoughi et al’s. [11] work on the empirical
analysis of the propagation paths taken by false and true news
is of interest to us. Jooyeon et al. [12] also proposed a bayesian
nonparametric model to understand the role of content in
diffusion of true and false news and the differences therein.

Unlike most previous works that analyzes content features,
our approach uses the underlying social graph structures along
with users representations built from their historical data to
build an inductive learning based graph neural network to help
identify the most prevalent information spreaders.

III. MOTIVATION AND PRELIMINARIES

To understand the role of network structure in fake news
spreader detection, consider the scenario illustrated in Fig-
ure 1. The network contains 8 communities. Subscript of a
node denotes the community it belongs to. In the context of
Twitter, directed edge B1 → A1 represents B1 follows A1.
Thus, a tweet flows from A1 to B1. If B1 decides to retweet
A1’s tweet, we say that B1 has endorsed A1’s tweet, and that
B1 trusts A1. Communities in social networks are modular
groups, where within-group members are tightly connected,
and intra-community trust is higher, compared to trust between
members in different communities, who are at best loosely
connected. The more B trusts A, the higher the chance that
B will retweet A’s tweet, and thus propagate A’s message,
whether it is true or false. The figure illustrates the spread of
fake news starting from D1 as it spreads across the network

Fig. 1: Motivating example. Red nodes denote fake news
spreaders.

through A3 till A8. We consider two scenarios for spreader
detection:
1. Information reaches neighborhood of a community:
Consider the scenario when a message is propagated by D1,
a neighborhood node for community 3. Node A3 is exposed
and is likely to spread the information, thus beginning spread
of information into a densely connected community. Thus it
is important to predict nodes in the boundary of communities
that are likely to become information spreaders.
2. Information penetrates the community: Consider the
scenario where A3 decides to propagate a message. Nodes
B3, D3 and E3, which are immediate followers of A3 are
now exposed to the information. Due to their close proximity,
they are vulnerable to believing the endorser. The remaining
nodes of the community (C3, F3) are two steps away from
A3. Similarly for community 8 when the message has reached
node A8, nodes D8 and F8 are one step away and remaining
community members (E8, C8, B8) are two steps away. In-
tuitively, in a closely-knit community structure if one of the
nodes decides to spread a piece of information, the likelihood
of it spreading quickly within the entire community is very
high. Thus it is important to detect nodes within a community
that are likely to become information spreaders to protect the
health of the entire community.

Above motivation ideas were elaborated in [13]. Next we
discuss some concepts used by our proposed model.

A. Community Health Assessment (CHA) model

Consider the scenario described in Figure 1. If a community
member believes the information and becomes a spreader, the
likelihood of other community members becoming spreaders
would be high due to dense connectivity, and hence higher
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trust, among community members. Using the Community
Health Assessment model we propose the ideas of neighbor,
boundary and core nodes for every community in a social
network. The three types of nodes from community (com)
perspective that are affected during the process of news
spreading are explained below:
1. Neighbor nodes (Ncom): These nodes are directly connected
to at least one node of the community. They are not a part of
the community.
2. Boundary nodes (Bcom): These are community nodes that
are directly connected to at least one neighbor node. It is
important to note that only community nodes that have an
outgoing edge towards a neighbor node are in Bcom.
3. Core nodes (Ccom): Community nodes that are only con-
nected to members within the community.

The idea was proposed in [1] to show how trust plays a more
important role in spreading fake news compared to true news.
The neighbor, boundary, and core nodes for communities in
Figure 1 are listed in Table I.

TABLE I. Neighbor, boundary and core nodes for communities
in Figure 1.
com Ncom Bcom Ccom

1 D2 C1 A1,B1,E1,D1,F1,G1

2 A6,E6 C2,D2 A2,B2,E2,F2

3 D1,D5,E6 A3,C3 B3,D3,E3,F3

4 D3 C4 A4,B4,D4,E4,F4

5 D4,D8,E8 A5,C5,D5 B5,E5

6 A5 D6 A6,B6,C6,E6

7 B6 A7 B7,C7,D7,E7,F7, G7

8 F7 A8 B8,C8,D8,E8,F8

B. Trustingness and Trustworthiness

The Trust in Social Media (TSM) algorithm assigns a pair
of complementary trust scores to each node in a network called
Trustingness and Trustworthiness. Trustingness (ti) quantifies
the propensity of a node to trust its neighbors and Trustworthi-
ness (tw) quantifies the willingness of the neighbors to trust the
node. The TSM algorithm takes a user network, i.e., a directed
graph G(V, E), as input together with a specified convergence
criteria or a maximum permitted number of iterations. In
each iteration for every node in the network, trustingness and
trustworthiness are computed using the equations mentioned
below:

ti(v) =
∑

∀x∈out(v)

(
w(v, x)

1 + (tw(x))s

)
(1)

tw(u) =
∑

∀x∈in(u)

(
w(x, u)

1 + (ti(x))s

)
(2)

where u, v, x ∈ V are user nodes, ti(v) and tw(u) are trust-
ingness and trustworthiness scores of v and u, respectively,
w(v, x) is the weight of edge from v to x, out(v) is the set of
out-edges of v, in(u) is the set of in-edges of u, and s is the
involvement score of the network. Involvement is basically
the potential risk a node takes when creating a link in the

network, which is set to a constant empirically. The details of
the algorithm are excluded due to space constraints and can
be found in [2].

C. Believability

Believability is an edge score derived from Trustingness and
Trustworthiness scores. It quantifies how likely the receiver of
a message is to believe its sender. Believability for a directed
edge is naturally computed as a function of the trustworthiness
of the sender and the trustingness of the receiver. So, the
believability score is supposed to be proportional to the two
values above, which can be jointly determined and computed
as follows:

beluv = tw(u) ∗ ti(v) (3)

The idea has been applied in [14] where an RNN model was
proposed to identify rumor spreaders in Twitter networks.

IV. PROPOSED APPROACH

Problem Formulation: Given a directed social network
G(V, E) comprising disjoint modular communities (φ), with
each community (com ∈ φ) having well-defined neighbor
nodes (Ncom), boundary nodes (Bcom) and core nodes (Ccom).
Aggregating topology-based (top) and activity-based (act)
trust properties from nodes sampled from depth K (where
NbrK=1(b) ⊆ Ncom), we want to predict boundary nodes b
that are most likely to become information spreaders (bsp).
Similarly, we aggregate nodes sampled from depth K (where
NbrK=1(c) ⊆ Bcom) to predict core nodes c that are most
likely to become information spreaders (csp).

Inductive Representation Learning: As fake news spreads
rapidly, network structure around the spreaders also evolves
quickly. Thus, it is important to have a scalable model that
is able to quickly learn meaningful representations for newly
seen (i.e. exposed) nodes without relying on the complete net-
work structure. Most graph representation learning techniques,
however, employ a transductive approach to learning node rep-
resentations which optimizes the embeddings for nodes based
on the entire graph structure. We employ an inductive approach
inspired from GraphSAGE [3] to generate embeddings for the
nodes as the information spreading network gradually evolves.
It learns an aggregator function that generalizes to unseen
node structures which could become potential information
spreaders. The idea is to simultaneously learn the topological
structure and node features from the neighborhood (Nbr)
nodes, by training a set of aggregator functions instead of
individual node embeddings. Using an inductive representation
learning model we learn features of the exposed population
(i.e. followers of the spreaders) by aggregating trust-based
features from their neighborhood nodes. Figure 2 shows how
we model the proposed approach with community perspective.
Nodes outside the solid oval represent Ncom, between solid
and dotted oval represents Bcom and within the dotted oval
represents Ccom. (a) shows that false information spread has
reached the two neighbor nodes (highlighted in red). Three
boundary nodes (circled in red) are exposed to the information.
In (b) we learn representations for the exposed boundary
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(a) Information reaches Ncom (b) Information reaches Bcom (c) Information reaches Ccom

Fig. 2: Inductive representation learning model for detection of fake news spreaders.

nodes by aggregating features of their local neighborhood
structure (denoted by white nodes). Two out of the three
boundary nodes that become spreaders are highlighted and
the exposed core nodes are circled. Similarly, in (c) we learn
representations for the exposed core nodes by aggregating
their local neighborhood features. One core node becomes a
spreader and the community is now vulnerable to fake news
spreading.

The proposed framework is explained as follows: First we
generate a weighted information spreading network based
on interpersonal trust. We then sample neighborhood with
a probability proportional to the trust based edge weights.
For the sampled neighborhood we aggregate their feature
representations. Finally we explain the loss function used to
learn parameters of the model.

A. Generating weighted graph

Graph of the information spreading network has edge
weights that quantify the likelihood of trust formation between
senders and receivers. Once we compute these edge scores
using techniques mentioned in Table II, we normalize weights
for all out-edges connecting the boundary node.

ŵbx =
belbx∑

∀x∈out(b) belbx
(4)

Similarly we normalize weights for all in-edges connecting
the boundary node.

B. Sampling neighborhood

Instead of sampling neighborhood as a uniform distribution,
we sample a subset of neighbors proportional to the weights
of the edges connecting them. Sampling is done recursively
till depth K. The idea is to learn features from neighbors
proportional to the level of inter-personal trust. Algorithm 1
explains the sampling strategy.

C. Aggregating features

After sampling neighborhood as an unordered set, we aggre-
gate the embeddings of sampled nodes till depth K recursively
for each boundary node. The intuition is that at each depth, the
boundary nodes incrementally learn trust-based features from

Algorithm 1: Sample neighborhood (SA)
Input: G(V, E): Information spreading network,
K: Sampling depth, Bcom: Boundary nodes of

community.
Output: NbrK(b): Sampled neighborhood for b till
depth K.
φ← Disjoint modular communities in G;
for each com ∈ φ do

for each b ∈ Bcom do
Nbr0(b)← {b}
for k = 1 . . .K do

Nbrk(b)← Nbrk−1(b) ∪ SAk(b)Eq. 4

end for
end for

end for

the sampled neighborhood. Three aggregation architectures
namely mean, LSTM and pooling explained in [3] can be used.
For simplicity, we only apply the mean aggregator, which takes
the mean of representations hk−1

u where u ∈ Nbrk−1(b). The
aggregator is represented below:

hkb ← σ(W k
b .Mean({hk−1

b } ∪ {hk−1
u(∀u∈Nbr(b)))}) (5)

Algorithm 2 explains the aggregation strategy.

D. Learning parameters

The weight matrices in Algorithm 2 are tuned using stochas-
tic gradient descent on a loss function in order to learn the
parameters. We train the model to minimize cross-entropy.

Loss(ŷ, y) = −
∑

∀b∈Bcom

∑
i∈{bSp,bS̄p}

yilogŷi (6)

The loss function is modeled to predict whether the boundary
node is an information spreader (bSp) or a non-spreader
(bS̄p). y represents the actual class (2-dimensional multinomial
distribution of [1,0] for spreader and [0,1] for non-spreader)
and ŷ represents the predicted class.

We extend the model for Ccom to identify the core node
spreaders (cSp) and non-spreaders (cS̄p). Considering bound-
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Algorithm 2: Aggregate features (GE)
Input: G(V, E): Information spreading network,
K: Sampling depth, Bcom: Boundary nodes of
community, xv(∀v∈V): Node features.

Output: zkb : Embedding vector for b.
φ← Disjoint communities in G;
for each com ∈ φ do

for each b ∈ Bcom do
h0
b ← xb

for k = 1 . . .K do
hkNbr(b) ← GEk(h

k−1
u(∀u∈Nbr(b)))

hkb ← σ(W k
b .Concat(h

k−1
b , hkNbr(b)))Eq. 5

end for
hkb ← hkb/||hkb ||2

end for
zkb ← hkb

end for

ary nodes have denser neighborhood compared to core nodes,
we later analyze whether the proposed model is more sen-
sitive to density of neighborhood structure or the aggregated
features. The implementation code is made publicly available2.

E. Modeling interpersonal trust

As explained in the preliminaries section, interpersonal trust
has been applied successfully in the past to model spreading
of fake news. Thus we model our node representation learning
problem using interpersonal trust to predict whether a node is
a spreader or not. We first apply a non-uniform neighborhood
sampling strategy using weighted graph (where edge weights
quantify the likelihood of trust formation). We then aggregate
two trust features: 1) The likelihood of trusting others and 2)
The likelihood of being trusted by others. We use two kinds of
interpersonal-trust: Topology-based (top) computed from the
social network topology and Activity-based (act) computed
using timeline activity data collected for every node using
Twitter API. We use trustingness (ti(x)) and trustworthiness
(tw(x)) scores of node x obtained from TSM as proxy for
topology-based trust features and the fraction of timeline
statuses of x that are retweets (RTx) denoted by

∑
∀i∈t{1 if

i = RTx else 0}/n(t) and average number of times x’s tweets
are retweeted (n(RTx)) denoted by

∑
∀i∈t in(RTx)/n(t) as

activity-based trust features (t represents most recent tweets
posted on x’s timeline3). For an edge from x to v, the
topology-based edge weight is the believability score (belxv)
and activity-based edge weight is the number of times x is
retweeted by v (RTxv). Trust-based sampling and aggregation
strategy is summarized in Table II.

2https://github.com/BhavtoshRath/Proactive Spreader Detection
3Due to time restrictions we collected only 10 most recent tweets for

every node in the network.

TABLE II. Trust based strategy for sampling and aggregating.
Topology (top) Activity (act)

Sample wxv belxv RTxv

Aggregate
trusting others ti(x)

∑
∀i∈t

1 if i = RTx,
0 otherwise.

n(t)

trusted by others tw(x)
∑

∀i∈t in(RTx)

n(t)

V. EXPERIMENTS AND RESULTS

A. Ground truth and data collection

We evaluate our proposed model using real world Twitter
datasets. We obtained the ground truth of false information
and the refuting true information from altnews.in, a popu-
lar fact checking website. The source tweet related to the
information was obtained directly as a tweet embedded in
the website or through a keyword based search on Twitter.
From the source tweet we generated the source tweeter and the
retweeters (proxy for spreaders), follower-following network
of the spreaders (proxy for network) and the timeline data
for all nodes in the network (to generate trust-based features)
using the Twitter API. Besides evaluating our model on
false information (F) and the refuting true information (T)
networks separately, we also evaluated on network obtained
by combining them (F ∪ T). Metadata for the network dataset
aggregated for all news events is summarized in Table III.

TABLE III. Network dataset statistics.
F T F ∪ T

No. of nodes 1,709,246 1,161,607 2,554,061
No. of edges 3,770,532 2,086,672 5,857,205
No. of spreaders 2,246 643 2,862
No. of communities 58 39 52
No. of nodes in N 209,311 94,884 276,567
No. of spreaders in N 19,403 5,350 22,868
No. of nodes in B 217,373 136,350 345,312
No. of spreaders in B 2,152 611 2,738
No. of nodes in C 1,278,885 862,778 1,893,493
No. of spreaders in C 94 31 98

B. Settings and Protocols

We obtained the topology-based measures by running
TSM algorithm on the network to obtained ti, tw for all
nodes and bel for all edges. We used the generic settings for
TSM parameters (number of iterations = 100, involvement
score = 0.391) by refering to [2]. We found the disjoint
modular communities using Louvain community detection
algorithm [15] and identified the neighbor, boundary and
core nodes for every community using Community Health
Assessment model. We then generated the activity-based
measures from timeline data of the nodes. The embeddings
are generated using the forward propagation method shown in
Algorithm 2, assuming that the model parameters are learnt
using Equation 6. Due to class imbalance we undersample the
majority class to obtain balanced spreader and non-spreader
class distribution. The size of hidden units is set to 128 and
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TABLE IV. Results comparison of different models for boundary node spreader prediction.
F T F ∪ T

Accu. Prec. Rec. F1 Accu. Prec. Rec. F1 Accu. Prec. Rec. F1
Trusting others 0.58 0.612 0.329 0.396 0.615 0.697 0.450 0.519 0.510 0.522 0.888 0.603
Trusted by others 0.608 0.631 0.384 0.455 0.646 0.713 0.500 0.585 0.518 0.513 0.916 0.638
Interpolation 0.622 0.635 0.426 0.498 0.661 0.768 0.496 0.588 0.524 0.526 0.846 0.611
LINE 0.709 0.784 0.593 0.669 0.692 0.763 0.567 0.647 0.589 0.602 0.517 0.554
GCNtop 0.839 0.887 0.784 0.832 0.775 0.921 0.595 0.723 0.592 0.649 0.646 0.647
GCNact 0.807 0.849 0.750 0.796 0.740 0.835 0.591 0.693 0.576 0.640 0.612 0.626
SArandGEtop 0.870 0.879 0.862 0.866 0.776 0.858 0.667 0.748 0.599 0.605 0.570 0.583
SArandGEact 0.777 0.845 0.689 0.754 0.728 0.814 0.612 0.688 0.566 0.572 0.539 0.547
SAtopGEtop 0.937 0.918 0.965 0.939 0.834 0.927 0.732 0.815 0.616 0.630 0.561 0.592
SAtopGEact 0.912 0.899 0.935 0.915 0.800 0.884 0.699 0.777 0.584 0.601 0.504 0.545
SAactGEtop 0.838 0.854 0.816 0.833 0.763 0.817 0.686 0.743 0.582 0.589 0.542 0.559
SAactGEact 0.804 0.853 0.737 0.786 0.735 0.800 0.634 0.706 0.561 0.570 0.542 0.539

Fig. 3: Metric performance of boundary node prediction by SAtopGEtop model for news N1 to N10.

the learning rate is set to 0.001. We used rectified linear
units as the non-linear activation function. The batch size
was adjusted for optimal performance depending on the size
of training dataset. Due to the heavy-tailed nature of degree
distributions of edges in social networks we downsample
before modeling, which ensured that the neighborhood
information is stored in dense adjaceny lists. This drastically
reduces our run time, which is ideal for early detection of
spreaders. We also set sampling depth K=1 because the
network constitutes only immediate follower-following nodes
of the spreaders. We compared results for the following
models, including baselines:
1) Trusting others: Intuitively, users with high likelihood
to trust others tend to be spreaders of false information.
This model learns a threshold based on correlation between
’trusting others’ features (both topology- and activity- based)
and user ground truth.
2) Trusted by others: Intuitively, users with high likelihood
to be trusted by others tend to be spreaders of false
information. Like the previous model, this model learns a
threshold based on correlation between ’trusted by others’
features (both topology- and activity- based) and user ground
truth.
3) Interpolation: This model linearly combines ’trusting
others’ and ’trusted by others’ features to find an optimal
threshold.

4) LINE: This model applies LINE [16] which serves as
transductive learning baseline.
5) GCNtop: This model implements graph convolutional
networks [17] based transductive learning model that
aggregates topology features from neighborhood.
6) GCNact: This is the graph convolutional networks based
model that aggregates activity features from neighborhood.
7) SArandGEtop: This model applies the inductive learning
by sampling neighborhood considered as uniform distribution
and aggregating only topology based features.
8) SArandGEact: This model applies the inductive learning
by sampling neighborhood considered as uniform distribution
and aggregating only activity based features.
9) SAtopGEtop: Instead of random sampling, we sample on
the believability (bel) weighted network and aggregate their
topology based features.
10) SAtopGEact: Sampling approach is identical to 11) but
we aggregate neighborhood’s activity based features.
12) SAactGEtop: We sample neighborhood non-uniformly
on the retweet count (RT ) weighted network and aggregate
their topology based features.
13) SAactGEact: Sampling approach is identical to 14) but
we aggregate neighborhood’s activity based features.

Baseline models 1) - 3) are inspired from [14] that considers
features based on trust. Baseline model 4) considers features
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TABLE V. Results comparison of different models for core node spreader prediction.
F T F ∪ T

Accu. Prec. Rec. F1 Accu. Prec. Rec. F1 Accu. Prec. Rec. F1
Trusting others 0.553 0.643 0.298 0.388 0.569 0.585 0.338 0.414 0.521 0.511 0.95 0.659
Trusted by others 0.569 0.628 0.411 0.481 0.614 0.694 0.503 0.508 0.540 0.523 0.952 0.673
Interpolation 0.609 0.730 0.400 0.492 0.640 0.681 0.438 0.521 0.550 0.548 0.764 0.608
LINE 0.721 0.821 0.625 0.681 0.672 0.870 0.467 0.579 0.577 0.572 0.676 0.602
GCNtop 0.755 0.972 0.524 0.681 0.739 0.698 0.839 0.762 0.683 0.731 0.537 0.619
GCNact 0.731 0.741 0.705 0.722 0.701 0.735 0.641 0.684 0.657 0.691 0.561 0.619
SArandGEtop 0.842 0.900 0.802 0.838 0.726 0.880 0.574 0.664 0.656 0.651 0.707 0.665
SArandGEact 0.798 0.893 0.700 0.764 0.658 0.742 0.448 0.523 0.597 0.631 0.512 0.548
SAtopGEtop 0.916 0.940 0.892 0.912 0.836 0.895 0.787 0.825 0.734 0.725 0.823 0.750
SAtopGEact 0.891 0.929 0.849 0.884 0.800 0.931 0.684 0.769 0.685 0.703 0.677 0.682
SAactGEtop 0.868 0.941 0.788 0.854 0.771 0.962 0.598 0.712 0.648 0.688 0.651 0.641
SAactGEact 0.846 0.847 0.858 0.846 0.707 0.827 0.581 0.661 0.619 0.694 0.522 0.567

Fig. 4: Metric performance of core node prediction by SAtopGEtop model for news events N1 to N10.

based on network structure only. Proposed models 5) - 13)
integrate both neighborhood structure and node features. We
analyze the best combination of sampling and aggregating
strategy that predicts spreader node with highest accuracy. For
evaluation we did a 80-10-10 train-validation-test split of the
dataset. We used 5-fold cross validation and four common
metrics: Accuracy, Precision, Recall and F1 score. We only
show results for the spreader class.

C. Results and Analysis

We evaluated our proposed model on 10 debunked news
events. For each news event we obtained three types of
networks: network for the false information (F), for the true
information (T) refuting it and the network obtained by
combining them (F ∪ T). Thus we ran our models on 30 large-
scale networks.
Boundary node analysis (Less dense Nbr): Table IV sum-
marizes results for the boundary node prediction aggregated
for all news. The results show that F performs better than T on
almost every metrics while F ∪ T performs poorly. The poor
performance of F ∪ T networks could be attributed to the fact
that there is minimal overlap of nodes in F and T networks
(12%) which causes the F ∪ T networks to have sparser
communities. Also false and true information spreaders are
together considered as spreader class which could be affecting
the model performance. While comparing the baseline models,

Trusted by others model performs better than the Trusting
others model with an improvement in accuracy of 4.8%,
5% and 1.5% for F, T and F ∪ T networks respectively.
Interpolation model shows a further improvement of 2.3%,
2.3% and 1.1% for F, T and F ∪ T networks respectively over
trustingness model. LINE and GCN baselines show sig-
nificant improvement on all metrics for F networks compared
to T or F ∪ T networks. We see further substantial increase in
performance for each type of network using inductive learning
models. Comparing the three random sampler models (i.e.
SArandGEtop, SArandGEact) we see that topology-based
features of the neighborhood perform better than activity-based
features. Similar trend is observed for topology-based sampler
models (i.e. SAtopGEtop, SAtopGEact) where model using
topology-based aggregator performs better than activity-based
aggregator. Same is the case for activity-based sampler models
(i.e. SAactGEtop, SAactGEact). Integrating top and act does
not show any significant improvement over top only models.
Thus we can conclude that interpersonal trust based modeling
in the inductive learning framework is able to predict false
information spreaders better than true information spreaders.
We also observe that topology-based sampling and aggregat-
ing strategies perform better than activity-based strategies.
The low performance of activity-based strategies could be
attributed to the fact that many Twitter users are either inactive
users or users with strict privacy settings whose timeline data
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could not be retrieved. Also recent 10 activities on a user’s
timeline might be insufficient data to capture activity-based
trust dynamics. For each type of network, we observe that
SAtopGEtop model performs the best, with F having accuracy
of 93.3%, which is higher than 12.3% and 52.1% over T and
F ∪ T networks respectively. Figure 3 shows the performance
metrics of this model for the 10 news events (N1-N10). We
observe a clear distinction in performance, with F networks
performing better than T, which in turn is better than F ∪ T.
An interesting observation is the high precision values for T.
This is because the percentage of predicted spreaders which
are non-spreaders tends to be lower for T network than for F
network.
Core node analysis (More dense Nbr): Table V summarizes
results of the model for predicting core nodes aggregated for
all news. The overall performance trend is identical to the
results shown for boundary nodes in Table IV. Among the
baseline models, Interpolation model performs better than
Trusted by others and Trusting others models. LINE and
GCN based models show significant improvement over trust
feature baselines on all metrics. Among inductive learning
models, topology-based trust modeling shows better perfor-
mance than activity-based trust modeling. Also F networks
perform better than T networks, which in turn perform bet-
ter than F ∪ T networks. Among random sampler models,
SArandGEtop has the highest accuracy of 84.2%, 72.6% and
65.6% for F, T and F ∪ T networks respectively. Among
topology-based sampler models SAtopGEtop performs better
over SAtopGEact with an increase in accuracy of 2.8%,
4.5% and 7.1% for F, T and F ∪ T networks respectively.
Activity-based sampler models also show identical trend with
SAactGEtop performing better than SAactGEact with an
increase in accuracy of 2.6%, 9% and 4.6% for F, T and F
∪ T networks respectively. Among all models SAtopGEtop

shows the best overall performance. Figure 4 shows the metric
performance of this model for the 10 news events. True
information network for N10 is excluded from analysis as it
did not have sufficient spreaders to train our model on. A clear
observation is that the metric performance for the three types
of networks is not as distinct as in Figure 3. Even though the
number of core nodes is much higher than boundary nodes,
the number of core spreaders is much smaller than boundary
node spreaders. Thus the model fails to learn meaningful
representations for core nodes due to smaller training dataset.
Summary: Comparing the prediction performance of core
and boundary spreaders we can conclude that our model’s
performance is more sensitive to aggregated features and
training dataset size compared to density of neighborhood.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel fake news
spreader detection model for communities using inductive
representation learning and community health assessment.
Using interpersonal trust based properties we could identify
spreaders with high accuracy, and also showed that the
proposed model identifies false information spreaders more

accurately than true information spreaders. The key hypothesis
we tested is that interpersonal trust plays a significantly more
important role in identifying false information spreaders
than true information spreaders. Identified false information
spreaders can thus be quarantined and true news spreaders
can be promoted, thus serving as an effective mitigation
strategy. Experimental analysis on Twitter data showed that
topology-based modeling yields better results compared
to activity-based modeling. The proposed research can be
used to identify people who are likely to become spreaders
in real-time due to its ability to adapt to rapidly evolving
information spreading networks. As part of future work we
want to test our model on higher volume of user timeline
activity which would give a better picture of the effectiveness
of the activity-based approach. We would also want to take
into consideration the presence of bots. We would also want
to extend the network further in order to sample neighborhood
from greater sampling depths.
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