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Abstract—Recent studies have considered the reinforcement
and deep reinforcement learning models to address the com-
petitive influence maximization (CIM) problem. However, these
models assume complete network topology information is avail-
able to address the CIM problem. This assumption is unrealistic
as it is difficult to obtain complete social network data and
requires exhaustive efforts to obtain it. In this work, we propose
a deep reinforcement learning-based (DRL) model to tackle the
competitive influence maximization on unknown social networks.
Our proposed model has a two-fold objective: the first is to
identify the time when to explore the network to collect network
information. The second is to determine key influential users
from the explored network, using optimal seed-selection strategy
considering the competition in the social network. Moreover, we
integrate the transfer learning in DRL to improve the training
efficiency of DRL models. Experimental results show that our
proposed DRL and transfer learning-based DRL models achieve
significantly better performance than heuristic-based methods.

Index Terms—Influence Maximization, Competitive Influence
Maximization, Deep Reinforcement Learning, Social Network
Analysis, Transfer Learning

I. INTRODUCTION

Companies employ social media, such as Facebook, Twit-
ter, and YouTube, to promote their products among the
masses. These companies select the key users in a social
network who can spread the company product’s information
and expect many users to buy the product. Such a selection of
key influential users with an expectation of maximum reward
is known as the influence maximization (IM) problem. The
IM problem has been widely studied in the research domain
[1]–[6].

A more realistic and practical scenario is when multiple
companies, such as Samsung and HTC, are promoting similar
products (smartphones) in a social network to maximize
their respective profit than the competitor. This problem has
been termed as a competitive influence maximization (CIM).
Bharathi et. al [7] is the pioneer to address the CIM problem
using game-theory. Some studies addressed the CIM problem
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by extending traditional IM-based approaches [8]–[10]. Re-
cently, reinforcement and deep-reinforcement learning-based
approaches are proposed to tackle the CIM problem [11]–
[14]. However, these studies assume that the complete struc-
ture of the network is known, and are only concerned about
selecting key users to maximize the profit. This assumption
is impractical in a scenario where companies are unaware
of the underlying social network, and complete network
topology is not given. Under such unknown and partially
visible networks, companies need to first explore the network
before selecting key users for maximum information spread.

Consider a motivational example shown in Figure 1 where
two parties are promoting their products for two rounds.
Assume that parties can select a single user to propagate
information or explore the network through multiple users at
each round but can not do both simultaneously. Figure 1 (a)
represents a given social network where users v1, v2, v6, and
v8 links are known while other users connections are hidden.
Let Parties A and B select v6 and v2 considering the user’s
number of neighbors for product promotion in the first round.
Party A can influence v4, v7, and v13 users, while party B
can influence v5 only since the first party already activates
v4. In the second round, party A and party B choose users
v1 and v8, respectively, as seed nodes, resulting in party A’s
information propagation to v3 and party B to none since users
v7 and v8 are activated. In total, Party A activates six users,
and party B influences three users, including seeds after two
rounds, as shown in Figure 1 (b). However, if parties decide
to explore the network in the first round, then both parties get
more network visibility to select better influential users. For
instance, party A explores the network through users v4, v9
while party B probes through users v11 and v12. In the second
round, party A decides to select user v4 as a seed node with
more neighbors while party B chooses user v1 as a seed node.
In total, party A activates nine users while B activates four
users (as shown in Figure 1(c)). Thus, it is critical to find
an optimal strategy that assists when to probe the network
and select key influential users from the observed network to
promote the product in the social network.

In light of the above issues, we address the following
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Fig. 1: Motivational Example

challenging questions. First, when to explore the network?
Second, how to select the key users after observing the
partial network given that other parties are competing in
the same network? Consequently, we propose a competitive
influence maximization on an unknown social network (CIM-
UN) problem. This problem considers multiple parties need
to devise the strategy to maximize their profit by probing
and investing the budget on the social network. Inspired by
the impressive performance of deep reinforcement learning
(DRL) models [15]–[17], we propose a DRL-based frame-
work to solve the CIM problem on an unknown network by
finding an optimal policy that determines when to explore the
network and how to select seed nodes. Further, the proposed
framework considers competition, budget, and probing limit
constraints when finding the optimal strategy to maximize the
reward. To improve the DRL model’s training efficiency, we
integrate transfer learning in DRL to tackle the CIM problem
on unknown social networks.

In short, our major contributions are as follows.

• To the best of our knowledge, we are the first to address
a competitive influence maximization on an unknown so-
cial network using a competitive linear threshold model.

• We propose a DRL-based framework to find a trade-off
between probing the network and investing the budget
to maximize the reward. The DRL-based agent needs to
find an optimal strategy that consists of when to explore
the unknown network to get more network visibility and
select influential seed nodes from the explored network.

• To boost the training efficiency, we integrate the transfer
learning in DRL to quickly learn the policy on unknown
target networks.

II. RELATED WORK

Influence Maximization (IM) problem has got ample re-
search attention for more than a decade. Domingo and
Richardson et al. [1], [2], in their seminal work, formulated
it as an algorithm problem and utilized Markov Random
field to tackle it. Kempe et al. [3] proved the IM problem’s
NP-hardness and proposed a greedy-based algorithm that
achieved an approximation ratio of (1 − 1/e). However,
the greed-based approach was computationally expensive and
lacks scalability on large networks. Consequently, subsequent
studies addressed the scalability, efficiency, and quality of the
IM problem [4], [18]. Monte-Carlo [19]–[21] and heuristic-
based methods [18], [22] are also proposed to address the
scalability issue of IM problem.

Competitive Influence Maximization (CIM) is a more prac-
tical scenario of the IM problem where multiple companies
are campaigning on a social network considering their budget
constraints and maximizing their respective profit. Bharti et
al. [7] is the pioneer to formulate the CIM problem and
addressed it using game theory. Further, Bharti et al. [7]
proved that at least (1 − 1/e) optimal influence spread can
be obtained when the other party’ seed nodes are accurately
predicted. Many research studies are proposed to address the
CIM problem when the competitor’s strategy is known [8],
[9], [23]–[25]. Most of these studies extended the traditional
IM-based approaches to address the CIM problem.

In recent studies, learning-based approaches are proposed
to tackle the CIM problem [11]–[14]. Lin et al. [11] proposed
a reinforcement learning-based (RL) method to tackle the
CIM problem by considering seeds selection in multiple
rounds. Seeds selection in the first round, as traditional
approaches, and single strategy is not an optimal choice
across multiple social networks, as discussed in [11]. Further,
Ali et al. [13] proposed an RL-based model to tackle the
time-constrained CIM problem. The main objective of their
work [13] is to find an optimal time to invest budget and
the strategy to select seeds for maximizing the reward. Ali
et al. [12] employed transfer learning (TL) in RL to boost
the RL-based model’s training efficiency for CIM problem.
Recently, Chung et al. [14] proposed a DRL-based approach
to address the CIM problem. Chung et al. [14] assumed the
complete network information is provided and employed a
community-based quota policy to invest budget. However, the
complete network information is difficult to obtain and need
to be collected through extensive work such as surveys and
so. In this work, we propose a DRL-based method to explore
the unknown network and select influential users from an
explored network to maximize the reward.

III. PROBLEM FORMULATION

We model a social network, G = (V,E), as a weighted
and directed graph for competitive influence maximization.
In the beginning, only the set of nodes V = {v1, v2, .....vn}
is known, and E, set of edges, is unknown. Here, the
total number of nodes is represented as |V |, and an edge
represents a relationship between two users in the social
network. Further, there are set of P = {p1, p2, .....pk} parties
promoting their products, and each user v can buy at most
one product from the parties. Besides, there are T rounds
where each party p can probe mp nodes or select seed nodes
kp at each round. Each party has a maximum of Kp budget
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Fig. 2: Influence Propagation and Probing Example

to invest. Once parties have selected seed nodes or probed
the network at each round, we propagate each party’s ideas
at the same time using the competitive diffusion process. A
node u gets activated by party p if it accepts the idea of party
p or remains inactive if not activated by any party. We have
used a competitive linear threshold model [10], [11] as the
competitive diffusion process in our experiments.

Definition 3.1: COMPETITIVE LINEAR THRESHOLD
(CLT) [10], [11]: Given a graph G = (V,E) and set of party
P , each node v picks an activation threshold ρv . At round
t, the node v is activated by party p ∈ P if the total weight
of its active in-neighbors exceeds the activation threshold,
i.e.,

∑
u∈Op

t
wu,v > ρv , where Op

t ⊆ V is the set of activated
nodes by party p before tth round and wu,v is the edge weight
from node u to v.

We propagate each party’s influence at the same time once
the seed nodes are selected, or the network is probed. The rule
of conflict is addressed by majority rule. The majority rule is
that the node v gets activated by party p whose total influence
is highest on node v, that is ,

∑
u∈Op

t
wu,v >

∑
u∈Oj

t
wu,v

than any other party j. If two parties have the same highest
influence to activate the node v, then the first party gets a
preference to activate node v. Moreover, we illustrate the
working of information diffusion and probing in an unknown
social network in Figure 2.

Figure 2 (a) shows the real network topology information.
However, we are provided an unknown or partially visible
network such as Figure 2 (b) before training. The party de-
termines to invest budget and selects a node with a maximum
degree from an explored network, that is, node A in the
first round (R1). We propagate the influence of node A and
assume that node C gets activated. In the next round, R2, the
party determines to explore the network rather than selecting
a seed node(s). Node E is selected as probing node and
discloses its neighbors as in Figure 2 (f). After probing, we
propagate the influence of node C, activated in the previous
round, to its neighbors, even its neighbors are not disclosed
yet. In short, parties can select the seed nodes from the
explored network while influence is propagated considering
the real network topology (as Figure 2 (a)). Intuition for such
information diffusion is like the company campaigning its
product information on the Facebook network, even without
knowing the users’ actual friendship connections.

Definition 3.2: COMPETITIVE INFLUENCE MAXI-
MIZATION ON UNKNOWN SOCIAL NETWORK (CIM-
UN): The CIM-UN problem consist of T rounds, where each

party p determines to select kp seed nodes or probe mp nodes
from the unknown network G to explore the network at each
round. The influence is propagated using the CLT diffusion
model at each round and continues till maximum T rounds,
or no more nodes are left to get activated.

The objective of each party is to find an optimal policy
against the competitor’s strategy to maximize the reward. The
optimal policy is to find a trade-off between exploring the
network and investing the budget to maximize the reward
taking budget constraints and competition into consideration.

IV. METHODOLOGY

A. Background

Reinforcement learning (RL) is a machine learning tech-
nique where an agent learns to find an optimal policy to
solve the task (or maximize the accumulative reward) by
keeping interacting with the environment [26]. RL models
value function (V ) and action function (Q) to estimate how
good the policy (π) is in maximizing the reward in the long
run. Though RL has achieved impressive results in various ap-
plications, it is still intractable to tackle large-scale problems
due to high-dimensional state-action pair space growth. The
recent success and fast computational resources allow us to
tackle the high dimensional and complex problems using deep
learning. The deep learning can provide the approximated Q-
values with the help of neural networks rather than learning
action values at every state through Q-learning. Mnih et. al
[15], [16] is a pioneer who proposed a Deep Q-Network
(DQN) consisting of neural network and multiple hidden
layers. Deep Q-network outputs the vector of action values,
that is, Q(s, ·; θ), in m size when provided an n-dimensional
input state. To overcome the instability of the Q estimation,
Mnih et. al [15] proposed a target Q network similar to online
network except the parameters θ− are frozen for a certain
iterations and later updated through the online network, i.e.,
θ− = θ. Experience replay is another key component of the
Deep Q-network framework for stability [27].

B. Proposed Framework

Although RL-based models have achieved significant suc-
cess in tackling the competitive influence maximization [11]–
[13] on social networks, these models lack scalability to
tackle the state space growth of social networks. Chung et
al. [14] proposed a DRL-based approach to address the CIM
problem by integrating the community structure of the social
network with it. Their proposed model assumes the complete
network topology is visible. However, such an assumption is
impractical in real settings where it is hard to obtain complete
network data. In this work, we propose a Deep Reinforcement
Learning-based framework to address the CIM on unknown
social networks.

Figure 3 illustrates the flow of our proposed deep q-learning
framework. The agent is provided a partially explored state
of the network and determines a set of actions through deep
Q network to achieve the maximum reward, that is, a number
of nodes activated. Different from [14], an agent needs to
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Fig. 3: Deep Q-learning framework

determine the policy when to probe (explore) the network and
when to invest the budget given the partially observed network
state. At the first time-stamp, we only know the number of
nodes in the network and initial network visibility, so the
state is computed considering this information only. With the
elapsed training, the network is gradually explored if the agent
chooses a probing strategy, and the state would be computed
based on the up-to-date current network visibility status. We
explore the network using the popular ’Jump-Crawl’ method
[28] when the agent determines the best action as probing
given the current state of the network. We propagate the
influence of multiple parties using the CLT diffusion model
after parties determined their action, i.e., selected key seed
nodes kp, among network and then stored the state transition
in the experience pool.

The proposed DRL agent’s objective is to learn an optimal
policy, π, that consists of probing and seed selection strategy,
which maximizes its expected accumulated reward.

Environment. We represent the competitive influence dif-
fusion as an environment. It disseminates the active nodes’
influence on other in-active nodes using a competitive linear
threshold model, as discussed in section III.

Reward. The DRL agent receives the reward as the delayed
reward, that is, the number of nodes activated till the last
round. Specifically, rpt as, 0 if t < T and |Vp| if t = T ,
where |Vp| denotes the number of nodes influenced by party
p till the last round.

Action. We extend the meta-learning approach proposed in
[11], [14] for action space to include the probing strategy to
explore the network. Specifically, we include a ’Jump-Crawl’
[28] method in existing meta-based action space for exploring
the network. The agent can probe m nodes to explore the
network or select any existing IM-based strategy to invest the
budget k, that is, select seed nodes. Further, we select seed
nodes considering the explored social network contrary to a
complete topology consideration as in [11], [14]
• Jump-Crawl: The idea of this approach is to either jump

to a uniformly random node for exploring the network
or crawl along an edge from the set of an already visited
node to one of its neighbors. Once a node is visited, it
reveals all of its neighbors [28], [29].

• IM-Based Strategies for seed selection: We select seed
nodes from the explored network using MaxDegree,
MaxWeight, Blocking, SubGreedy, or Voting strategy.

Readers are requested to refer [11], [13] for complete
IM-based strategy discussion.

State. The main backbone for our transfer learning in DRL
is to design state features in such a way that any unknown
social network with different topological structures can have
similar state representations. When networks of varying sizes
are represented in the same representation, then it would be
easy to transform the learned policy from one network to
another without redefining the neural network structure for
each network. We revised the state features proposed in [11]
to accommodate the unknown social network.

1) Number of unexplored nodes
2) Number of in-active nodes
3) Maximum out-degree of explored but in-active nodes
4) Maximum out-edge weight summation of in-active ex-

plored nodes
5) Summation of the out-edge weight of in-active explored

nodes, which are neighbors of second party active
nodes.

We normalize each state feature with its original value and
transform them into numerical representation such as [3, 2,
1, 0] to avoid the network scale gap variation from network
to network. We discuss the state normalization process in the
following example with only two features, and the remaining
features normalization is carried out in the same way.

Example: Let us refer to the same unknown social network
given in Figure 2 (b). There are six nodes in the network,
and only node A is explored (probed) at this time. So, we
normalize the first feature as the number of unexplored nodes
divided by the total number of nodes, that is, 5/6 = 0.83.
Now, let us consider the third feature for normalization, that
is, the maximum out-degree of in-active explored nodes. Since
we do not know the maximum degree as edges are unknown
except N , the total number of nodes. We assume that at-most
a node can have (N − 1) neighbors in a social network. So,
the third state feature is normalized as 3/5 = 0.6, that is,
an out-degree of node A divided by a maximum degree in
a social network. Further, We represent the decimal digits of
normalized features in numerical form to avoid the decimal
digits in state representation. For instance; the decimal value
greater than 0.6 is represented as 3, decimal value > 0.2 as
2, decimal value > 0 as 1, and 0 otherwise.

Such normalized state features representation, as a one-
dimensional vector representation, will assist the neural net-
work to have the same hyper-parameters of the network
state and transform the learned hyper-parameters from one
unknown social network to another easily. Besides, DRL will
leverage the past learning to learn on a new unknown target
network quickly.

Deep Q network. We create a Deep Q network similar
to the neural network structures proposed in [14], [16] in our
proposed framework to estimate the Q-value. Contrary to [14],
we compute the state features to represent the environment
state based on an unknown social network and its explored
part, as discussed earlier.
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C. Transfer Learning in DRL for CIM

Ali et. al [12] proposed a transfer learning (TL) in rein-
forcement learning to tackle the CIM problem. Recently, some
studies have considered integrating transfer learning in DRL
[30], [31]. Du et. al [31] discusses the integration of TL in
DRL by utilizing deep learning models transfer techniques.
That is, either apply the pre-trained models directly without
further training on the new task or transform the learned
weights from pre-trained models for new tasks and fine-tune
it before evaluation [32]. Likewise, we propose a similar
approach to integrate transfer learning in DRL to tackle
the CIM problem on an unknown social network. First,
we train the model on a smaller unknown social network,
termed as Unknown Source Social Network, for hundreds
of thousands of times. It takes less training time to learn
the policy as an unknown network is quite small. Once we
get the pre-trained model, we then copy the weights, biases,
and Q-values from it for further fine-tuning or evaluation on
a larger unknown target network, termed Unknown Target
Social Network. This way, it avoids the random initialization
of weights and biases on an unknown target network and
learns faster by utilizing pre-trained weights. Moreover, our
proposed DRL and transfer learning in DRL methods are
discussed in Algorithms 1 and 2, respectively.

Algorithm 1 DRL for competitive influence maximiza-
tion on unknown social network (DRL-UN)

1: Initialize Q action-value function with random weights θ
2: Initialize target Q̂ action-value function with weights θ− = θ
3: Initialize experience pool M to capacity N
4: Initialize ε-decay as 1, anneal to 0.1 with training, learning rate
γ = 0.00025

5: for training episode s = 1, S do
6: st ← s0, mt ← m0

7: for t = 1, T do
8: Select a random action with probability ε, otherwise

choose action at = argmaxaQ(φ(st), a; θ)

9: Simulate the competitor’ strategy
10: Propagate diffusion using CLT model and observe

next state st+1, and reward rt
11: Store transition (st, at, rt, st+1) in M
12: st ← st+1

13: Sample random minibatch of transitions from M
14: Update the Q action-value function
15: Reset θ− = θ after every C steps
16: end for
17: end for

V. EXPERIMENTS

A. Experimental Setup

We evaluate the following hypothesis for our proposed
DRL and TL-based DRL models in our experiments:
• H1. Can DRL-based models achieve acceptable perfor-

mance on unknown networks than the heuristic-based
methods?

Algorithm 2 Transfer Learning in DRL (DRL-UN(TL))
1: Initialize Q action-value function with pre-saved weights θ
2: Initialize target Q̂ action-value function with weights θ− = θ
3: Initialize experience pool M to capacity N
4: Initialize ε-decay as 0.2 and learning rate γ = 0.01
5: for Training episode s = 1, S do
6: Compute remaining training process similar to DRL-UN

algorithm
7: end for

• H2. If the DRL-based model is trained on small unknown
source network, can it achieve attainable performance on
unknown target networks with little further training?

We compare the DRL-based models (either trained from
scratch or transferred models) performance of unknown social
networks with the DRL model having complete network vis-
ibility along with Heuristic-based methods. Following is the
list of implemented models along with comparison methods.
• DRL-UN: DRL Algorithm trained on a target network

from scratch for 100, 000 training episodes with ini-
tial network visibility as 0.1% of total nodes. Each
episode consists of T rounds for action selection (seed
selection or probing) and influence propagation. Initial
network visibility means 0.1% of the nodes, and their
relationships are visible at the start of each training
episode. This 0.1% visibility is uniformly drawn from
pre-generated 5000 different network visibility random
lists for training.

• DRL-UN(CEL): DRL-UN Algorithm trained on the
Celegan source network for 200, 000 training episodes.
Since Celegan is a small source network, so we choose
initial network visibility as 1% for training. Further, we
evaluate this model on unknown target networks as-is
without fine-tuning.

• DRL-UN(TL): We fine-tune the DRL-UN(CEL) model
on unknown target networks for further 30, 000 training
episodes with initial network visibility as 0.1%.

• DRL-OPT: Deep Q-learning agent trained on a target
network for 20, 000 training episodes with complete
network visibility.

• FD: Fixed Degree: A heuristic strategy that selects seed
nodes having a maximum degree at each round without
probing the network.

• AFD: Alternate Fixed Degree: A heuristic method that
probes and selects seed nodes in alternate rounds using
Jump-Crawl and MaxDegree strategies respectively.

• FR: Fixed Random: A heuristic strategy that selects
seed nodes randomly at each round.

• AFR: Alternate Fixed Random: A heuristic strategy
that probes and selects seed nodes in alternate rounds
using Jump-Crawl and Random strategies respectively.

We conducted experiments on four different real-world
social networks. We selected the Celegan network 1 as an
unknown source network while other three networks, as

1https://graph-tool.skewed.de/static/doc/collection.html
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unknown target networks, are downloaded from Stanford
Network Collection [33] website. More information about
the statistics of the network is discussed in Table I. In our
experiments, we use the CLT diffusion model as discussed
in Section III. Further, we used weighted-cased model [19],
[24] and fixed edge-weights as 0.4 in evaluation.

TABLE I: Datasets

Name #Nodes #Edges Description

Unknown Source Network

Celegan (CEL) 297 2,359 A directed neural network

Unknown Target Networks

Facebook (FB) 4,039 88,234 Social circles from Facebook
Ca-GrQc 5,242 14,496 Collaboration network of

Arxiv General Relativity
P2P-Gnutella (P2P) 6,301 20,777 A snapshot of P2P network

Data for training and evaluation: Since we do not
have real-time or human-annotated data to train and evaluate
our proposed models, so, we generated 5000 initial network
visibility random lists of source and target networks for
training. Initial network visibility of target networks is set
as 0.1% and 1% of the Celegan source network for training.
This initial visibility random lists make DRL-based models’
training stable by not beginning training from too much
random initial visibility. Further, we generated 2000 different
initial visibility random lists of unknown target networks for
evaluation. We evaluated each method by running against
these 2000 different random lists and present an average
competition reward of the first party. Each method is evaluated
by competing against a competitor’s AFD strategy. We set
a number of rounds, T = 10, for action selection, that is,
probing or seed-selection, and influence propagation. Besides,
Each method can invest budget k = 1 in each round when a
seed-selection strategy is chosen. We evaluate each method’s
performance against different initial network visibility settings
nv = {0.1, 0.4, 0.7, 1, 3}.

B. Experimental Results

1) When the transfer learning-based DRL model is trans-
ferred in the same settings: In the first experiment, we set
the number of nodes to probe by each party mp as 10 if the
probing strategy is selected as an action. We train the DRL-
UN and DRL-UN(CEL) using weighted-cased edge-weights
while the number of nodes to probe is fixed as 10 during
training and evaluation.

Table II presents the model’s performance on three un-
known target networks using a weighted cascade model.
Column heading under each network represents the initial
visibility of the respective target networks. Cell values repre-
sent the average number of nodes activated by the first party.
DRL-based models, that is, DRL-UN, DRL-UN(CEL), and
DRL-UN(TL), performed better than the heuristic methods
in all networks in most network visibility settings except

on FB network when network visibility is low such as 0.1,
and 0.7. We found that DRL-based models took probing
strategy on FB network only once when the visibility was low
and achieved less performance than the AFD strategy, which
explored and invested budget in alternate rounds. However,
the performance of AFD strategy is inconsistent on other
networks and achieved less reward than the FD strategy.
Besides, DRL-UN(TL) model achieved significantly better
reward than the DRL-UN(CEL) model on all the networks
when network visibility was higher. Further, the last row rep-
resents the DRL-OPT model’s reward with complete network
visibility. Intuitively, the DRL model can perform better when
having complete network topology information. Besides, the
naive random-based strategies, that is, FR and AFR, are not
as competitive as the other two heuristic strategies compared
with DRL-based models. So, we omitted the results of these
two naive random-based strategies results in our following
experimental results.

2) When the transfer learning-based DRL model is trans-
ferred in different settings: In this experiment, we train the
DRL-UN(CEL) source model using weighted-cased edge-
weights and number of nodes to probe as 10. Further, we
transfer this pre-trained model and fine-tune it on target
networks with the number of nodes to probe as 20 if the
probing strategy is selected. Besides, the DRL-UN model is
trained by selecting a number of nodes as 20.

Table III presents the DRL and heuristic models results
when the number of nodes to probe is set at 20. We can
observe from results in Table III that the number of nodes
activated by the first party is higher than the nodes activated
with probing set as 10 (as in results II) when using weighted
cascade edge weights in both settings. This shows that if we
increase the number of nodes to probe during training and
evaluation, then the model can explore more network and
have a higher chance of selecting influential users that can
activate more users. DRL-UN, DRL-UN(CEL), and DRL-
UN(TL) models perform better than the heuristic methods
in all networks except in the Facebook network, where AFD
strategy performed better in most network visibility settings.
DRL-based models took probing strategy few times (maybe
once) on FB network when network visibility was low and
selected seeds from this explored part, which resulted in less
reward. Similar to results shown in Table II, the performance
of heuristic strategies, FD and AFD, is inconsistent on all the
network. Further, DRL-UN(CEL) model, without further re-
training to accommodate different settings, could not achieve
better reward than other two DRL-based models.

3) Adaptability of DRL models with different structure:
Next, we discuss the DRL model’s adaptability to a differ-
ent network structure, such as changing edge-weights from
weighted cascade to 0.4 for all the edges. Our objective
is to analyze the effect of different edge-weights than the
DRL models were trained. Table IV presents the DRL-based,
and naive heuristic-based models results evaluated using fixed
edge-weights, that is, 0.4, and the number of nodes to probe
is set as 10. More nodes are activated when we fixed the
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TABLE II: When models are evaluated using weighted cascade edge-weights and nodes to probe = 10

FB P2P Ca-GrQc
0.1 0.4 0.7 1 3 0.1 0.4 0.7 1 3 0.1 0.4 0.7 1 3

Model

Heuric-Based
FD 8 30 40 51 115 15 39 46 48 51 8 23 27 26 29
AFD 43 45 49 65 124 24 24 24 26 29 14 14 14 14 16
FR 9 15 13 19 15 14 22 23 23 23 8 18 18 17 16
AFR 8 8 9 9 7 11 11 11 11 11 8 8 8 8 8
DRL-Based
DRL-UN 30 37 53 61 135 31 47 57 62 83 21 29 33 36 47
DRL-UN(CEL) 23 36 53 62 156 30 46 55 60 77 20 24 25 26 31
DRL-UN(TL) 23 33 51 65 155 30 50 64 71 98 21 27 30 33 42
DRL-OPT 2432 200 72

TABLE III: When models are evaluated using weighted cascade edge-weights and nodes to probe = 20

FB P2P Ca-GrQc
0.1 0.4 0.7 1 3 0.1 0.4 0.7 1 3 0.1 0.4 0.7 1 3

Model

Heuric-Based
FD 8 30 46 51 126 15 39 45 48 51 8 23 25 26 29
AFD 54 59 78 80 145 26 25 26 27 31 12 11 11 11 11
DRL-Based
DRL-UN 28 36 55 63 137 44 65 81 91 129 27 32 35 38 48
DRL-UN(CEL) 36 42 55 70 161 38 49 56 61 78 22 24 26 27 31
DRL-UN(TL) 31 43 60 73 162 44 63 72 88 119 27 32 36 38 48
DRL-OPT 2432 200 72

edge-weights as 0.4 than with the weighted-cascade results
shown in Table II. DRL-UN/DRL-UN(TL) model achieved
better results on all the networks than the naive heuristic-
based methods in most network visibility settings except on
FB/Ca-GrQc networks, respectively when network visibility
is higher than 0.4. It should be noted that the DRL-UN and
DRL-UN(TL) models are trained using the weighted-cascade
model with initial network visibility set as 0.1. The result
of both the models against 0.1 initial network visibility is
quite better than naive heuristic-based methods on all three
networks. Nevertheless, the performance gap between DRL-
UN/DRL-UN(TL) and FD heuristic strategy is not huge on
some network visibility settings. It can be a result of policy
learned by the DRL-UN/DRL-UN(TL) model against 0.1
network visibility on the FB/Ca-GrQc network, which is not
as competitive as FD heuristic strategy when the network
visibility gets higher.

In general, DRL-based models performed better than naive
heuristic-based strategies in most of network visibility settings
on all three networks and adopted well with different edge-
weight settings. Besides, the performance of the transfer-
learning based model, that is, DRL-UN(TL), is better or
similar as compared to heuristic-based as well as the DRL-
UN methods. It validates both hypotheses.

C. Training Time Efficiency

Figure 4 shows the training time taken by each DRL-based
model with number of nodes set as 10 and 20. DRL-UN(CEL)
is trained only once on the Celegan source network and
transferred to other target networks. So, the time of DRL-
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Fig. 4: Training time of DRL-UN and DRL-UN(TL)
UN(CEL) is the same, that is, 8.75 hours on all networks.
DRL-UN(TL) took around 8−10 hours on all networks when
the number of nodes to probe is set at 10. However, DRL-
UN training time is more than 30 hours on all networks in
the same setting. The training time of DRL-UN is more than
50 hours in all networks when we set the number of nodes to
probe as 20. While the DRL-UN(TL) training time is around
9−11 hours when trained with the number of nodes as 20 on
all networks. It can be seen from Figure 4 that we can save
significant training time when integrating transfer learning in
DRL on even medium-sized networks.

VI. CONCLUSION

In this work, we formulate a competitive influence maxi-
mization for unknown social networks. We proposed a DRL-
based approach to tackle the CIM problem on unknown social
networks. To boost the training time efficiency, we integrated
the transfer learning in the DRL approach. Experimental re-
sults show that DRL-based approaches achieved significantly
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TABLE IV: When models are evaluated using fixed edge-weights as 0.4 and nodes to probe = 10

FB P2P Ca-GrQc
0.1 0.4 0.7 1 3 0.1 0.4 0.7 1 3 0.1 0.4 0.7 1 3

Model

Heuric-Based
FD 484 990 1251 1340 1639 64 146 162 166 171 1240 1846 1982 2104 2411
AFD 896 935 975 979 1052 73 73 75 77 84 1250 1284 1299 1342 1376
DRL-Based
DRL-UN 1052 1129 1234 1265 1468 107 178 205 216 279 1428 1973 2105 2211 2508
DRL-UN(CEL) 767 1106 1317 1419 1777 119 193 224 233 264 1303 1729 1881 1920 2303
DRL-UN(TL) 802 1106 1319 1431 1773 119 194 224 234 264 1303 1731 1881 1920 2303
DRL-OPT 2632 452 1510

better performance than naive heuristic-based approaches. Be-
sides, the transfer learning-based DRL approach also achieved
better results than the heuristic-based methods. Nevertheless,
DRL-UN(CEL) model took quite less time to train on the
Celegan source network. It can be applied as-is or with fine-
tuning for a small number of training episodes on unknown
target networks when time and computational resources are a
concern. Experimental results show that the transfer learning-
based DRL approach saved significant training time without
much performance loss.
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