
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Blocking the Spread of Misinformation in a
Network under Distinct Cost Models

Fernando C. Erd
Departament of Computer Science

Federal University of Paraná
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Abstract—Given a network N and a set of nodes that are
the starting point for the spread of misinformation across N
and an integer k, in the influence blocking maximization problem
the goal is to find k nodes in N as the starting point for a
competing information (say, a correct information) across N
such that the reach of the misinformation is minimized. In this
paper we deal with a more realistic scenario for this problem
where different nodes have different costs and the counter
strategy has a “budget” for picking nodes for a solution. Our
experimental results show that the success of a given strategy
varies substantially depending on the cost function in the model.
In particular, we investigate the cost function where all nodes
have cost 1 and a cost function that assigns higher costs to higher
degree nodes. We show that, even though strategies that perform
well in these two diverse cases are very different from each other,
both correlate well with simple (but different) strategies: greedily
choose high degree nodes and choose nodes uniformly at random.

Index Terms—influence blocking maximization, misinforma-
tion, complex networks.

I. INTRODUCTION

The spread of misinformation is not a new phenomenon,
however, with the prevalence of social media this problem
seems to have being gaining more momentum [1]. There
are evidence that people tend to believe in information that
matches their perception of social narratives and to discredit
narratives that deconstruct that perception [2].

Some studies showed that the spread of misinformation has
potential to influence the behavior of the society. Allcott and
Gentzkow (2017) [3] present an analysis of how misinforma-
tion may have affected the result of the 2016 United States
elections. Another example is the number of questionable
sources on the main social platforms regarding the outbreak
of COVID-19, as shown by Cinelli et al. (2020) [4].

The algorithmic aspects of a problem originally from the
field of “viral marketing” was investigated by Kempe (2003)
[5]. The proposed computational problem, known as influence
maximization in networks, is the following. Given a network,
the goal is to select the best individuals to advertise a product,
such that the information about that product reaches the largest
number of people. From this problem, a line of research arose
addressing the problem of finding a counter strategy for the
spread of such influence [6]. In our paper we assume that

we are dealing with the spread of misinformation and that
the counter strategy seeks to spread the correct information.
This computational problem, called influence blocking maxi-
mization, is the following. Given a set of nodes as starting
point for the spread of misinformation across the network and
an integer k, the goal is to find k nodes for the spread of
a correct information across the network so the reach of the
misinformation is minimized.

In the previous work in this field [6], [7], [8], [9], (we
discuss these works in detail in Section II) given k, the
counter strategy is able to pick any set of nodes of size k
for blocking the misinformation. We note that this scenario
might be unrealistic, since choosing a node with very high
degree might be much more expensive than a node of degree
one, for example. In fact, In all previous works using models
based on the independent cascade, the proposed strategies for
choosing the set of k nodes for the counter strategy perform
only marginally better than choosing nodes of high degree
(the algorithms are about 1% more effective than picking high
degree nodes). So, in our work we generalize the problem so
that different nodes might have different costs and the counter
strategy has a “budget” k for finding a set of nodes such that
the total cost of the nodes in the set stays within that budget.

In our paper we investigate counter strategies in this gener-
alized scenario using two distinct cost functions. Our experi-
mental results show that the success of a given strategy varies
substantially depending on the cost function in the model.
The counter strategies used in our experiments are four node
properties well-known in the literature: betweenness centrality,
percolation centrality, PageRank and clustering coefficient.
The two different cost functions that we compare are the
uniform cost function and degree penalty cost function. This
second cost function may be a more realistic since nodes of
high degree in a network might be more expensive. In conso-
nance with previous results, we show that for the uniform cost
function a number of winning strategies correlate well with
simply choosing high degree nodes. In the degree penalty cost
function, we show that the same does not hold. Interestingly,
we show that there is also a simple strategy in this scenario:
picking nodes uniformly at random for the solution.

The rest of this article is organized as follows: a brief
review of recent research in the field is provided in SectionIEEE/ACM ASONAM 2020, December 7-10, 2020
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II. Section III presents the MCICM information dissemination
model. The problem definition is described in Section IV.
The methodology used for our results is discussed in Section
V. Experimental results on some well-known data sets are
reported in Section VI. Finally, Section VII concludes the
work.

II. RELATED WORK

The influence maximization problem [5] in a network is
the computational problem of finding a set of nodes of size k,
for a given integer k that is part of the input, as the starting
point for the spread of information in this network so that
the maximum number of nodes is reached. In this paper we
deal with a version of the influence maximization problem
where there are two competing information being disseminated
in the network, referred here as the misinformation and the
correct information. Such competitive version of the influence
maximization problem is formally proposed by He et al.
(2012) [6]. In this scenario the input consists of a network
with k given nodes for spreading the misinformation and the
goal is to find k nodes for spreading the correct information
so that the number of nodes reached by the misinformation
is minimized. Using a variation of the linear threshold model,
called competitive linear threshold model (CLT), the authors
show that the problem is submodular and monotonic, which
guarantees an approximation of 1−1/e of the optimal solution
using a hill climbing strategy. Also, they propose the CLDAG
algorithm, based on the LDAG [10] algorithm which was
previously used for the influence maximization problem.

The first work in this context using the independent cascade
model in the competitive version appeared in Budak et al.
(2009) [11]. In this paper, the authors proposed the eventual
influence limitation problem (EIL), where the cascade of
negative (false) information propagates alone in the network
for a certain number of steps, before the cascade of positive
information starts to spread through the network. Budak’s
main contribution is a proof that the function associated to
the problem is submodular and monotonic over the campaign-
oblivious independent cascade (COICM) model. In addition,
Budak showed that using the multi-campaign independent
cascade model (MCICM) when the probabilities of positive
and negative dissemination are arbitrary, the submodularity
property does not hold, but when the probability of positive
dissemination is equal to 1 for all edges, then the model can
guarantee an approximation to the optimal solution.

In the MCICM model, Arazkhani et al. (2019) [7] used
a metric based on some centrality measures, like degree,
betweenness and closeness, in order to choose the set of
positive seed nodes. In a later study Arazkhani et al. (2019)
[8] combined the centralities in a pre-processing method to
find the largest k communities using fuzzy clustering, which
chooses a node with the highest degree, betweenness or close-
ness of each community as being the positive seed. Regarding
the dissemination taking place on the COICM model, Wu et al.
(2017) [9] used the structure of maximum influence arbores-
cence (MIA) proposing two heuristics, CMIA-H and CMIA-

O. In the same work they consider the MCICM model in the
particular case where the probability of positive dissemination
is 1 for all edges.

A variant of the influence maximization problem proposed
by Kempe et al. [5] considers costs for selecting each node
in the network. For example, the budgeted influence maxi-
mization problem studied by [12], each node v is associated
with an arbitrary cost c(v). The goal of such problem is to
select a set S of nodes so that the cost of those nodes in
S is at most a budget b, and S maximizes the spread of
information thought the network. In the budgeted competitive
influence maximization problem, proposed by [13], the goal is
to maximize the spread of one product over another, given a
budget.

III. DIFFUSION MODEL

In this work, we use the multi-campaign independent cas-
cade model (MCICM) introduced by Budak et al. [11]. In
MCICM, given a directed or undirected graph G = (V,E)
there are two spreading cascades P and N representing
the positive and negative cascades respectively, two initial
sets S ⊆ V and N0 ⊆ V of positive and negative seeds
respectively. The negative seeds are the starting point for the
misinformation and the positive seeds the starting point for the
correct information. Each node assumes three different states:
positive, negative or inactive, and in the starting configuration
the nodes in S are set as positive, those in N0 are set as
negative and the rest of the nodes are set as inactive. In
addition, each edge (u, v) ∈ E has two weights, w+

u,v and
w−u,v in the range [0, 1], which denote the probabilities of
u activating, respectively, positively or negatively the node
v. The simulation occurs in discrete time steps, and if u is
activated in step t by the cascade of P or N , it has only one
chance to positively or negatively activate a neighbor v during
the simulation. As a tiebreaker rule, if the P cascade and the
N cascade in the same step t try to activate the same inactive
node, the N cascade has preference for the activation. The
step t finish when all nodes activated during step t− 1 try to
activate their inactive neighbors and simulation ends in step t
when no node is activated by the cascades.

IV. PROBLEM DEFINITION

Let NT be the set of negative nodes that is the outcome
of an execution of the stochastic process of diffusion (in
our case, dictated by the MCICM model). The outcome NT

depends on the graph G, the probabilities w+ and w−, and
the initial negative and positive seed sets N0 and S. Thus,
given an integer k, the probability that |NT | = k depends on
the same input variables, but in the notation we only make
it explicit the dependence on the initial positive seed set S,
writing Pr

(
|NT | = k

∣∣S).
Now, given the initial positive seed set S, the expected size

of the negative nodes NT is,

E
[
|NT |

∣∣ S] = |V |∑
k=0

k · Pr
(
|NT | = k

∣∣S).
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We can measure the impact of an initial positive seed set
S by considering the difference between two scenarios, when
the initial positive seed set is S, and when the initial positive
seed set is empty. This is called the expected blocked negative
influence of S, and is formally defined as

σ(S) = E
[
|NT |

∣∣ {∅}]− E
[
|NT |

∣∣ S],
and we want to maximize this quantity. We can now define
the problem.

Problem 1 (Generalized Influence Block Maximization
(GIBM)). Given a graph G = (V,E) with costs c(v) for each
v ∈ V , propagation probabilities w+ and w−, a negative seed
set N0, and a positive integer k, the GIBM problem aims
to find the positive seed set S that maximizes σ(S) where∑

v∈S c(v) ≤ k.

V. METHODOLOGY

Our goal is to investigate several measures of centrality to
be used as strategies to solve the problem under the uniform
cost function, where all nodes have the same cost, w.l.o.g.,
say, c(v) = 1 and degree penalty cost function, such that
c(v) = δ(v), where δ(v) be the degree of a node v. For both
cost functions cases, we perform simulations on directed and
undirected graphs, with the goal of analyzing the behavior
between the two types of graphs.

If the input graph is not connected, we take into consid-
eration only the largest connected component (resp. largest
weakly connected component for directed graphs) of the graph.
In the simulations for each edge w+ and w− are chosen in
the interval [0, 1] so that independently and randomly from the
uniform distribution. Various sizes of N0 are considered in the
experiments.

For the experiments we choose three real-world datasets,
among which are two networks of citations (DBLP and
CORA) and the Wikipedia Election dataset. The original
DBLP database has 12,590 nodes and 49,749 edges. The
CORA dataset [14] contains more than 23,000 nodes and
approximately 90,000 edges. The Wikipedia dataset [15] rep-
resents the English Wikipedia social network and has 7,066
nodes and more than 100,000 edges. All datasets originally
describe directed graphs. The same datasets were used in the
experiments on undirected graphs, but the direction of the
edges was ignored.

For each proposed scenario we use the following network
metrics as a counter strategy: clustering coefficient [16],
PageRank [16], betweenness [16] and percolation [17]. In
addition to the measures above, we use two strategies for
experiment control: choosing high degree nodes first (greedly)
and choosing nodes at random.

The percolation centrality requires weights for nodes re-
flecting a certain degree of “contamination”, so we use this
measure in our experiments in the following way. Let d(v,N0)
be the distance from v to the nearest node in N0. Thus, the
percolation weight for a node v is defined as

perc(v) =
1

d(v,N0) + 1
.

The idea is that the nodes initially in N0 are 100% perco-
lated (in this case, d(v,N0) = 0), and as a node is further
away from N0, its percolation weight decreases.

The experiments were launched in an Intel(R) Core(TM) i7-
6700 CPU @ 3.40GHz and 8 GB RAM. The scripts were im-
plemented in Python 3.6.9 language. For graph manipulations
we use the NetworkX 2.3 library [18]. The implementation of
all the networks measures considered in this work are available
in NetworkX as well.

VI. EXPERIMENTS AND RESULTS

In this section we evaluate the performance of different
strategies for finding a solution for the GIBM problem. Since
MCICM is a probabilistic model, we run repeated experiments
for the spreading over the initial sets N0 and S in order to
obtain the average behavior. In each different scenario, we
perform the simulation 1000 times to obtain the average of
the positively and negatively contaminated sets.

A. Uniform Cost Function

In this section we show and analyze the results obtained for
the uniform cost function. For these experiments, we set the
size of N0 to be 1% of the number of nodes of each dataset,
and we vary the parameter k (here the size of the output set
S for positive seeds equals k) between 0.1%, 0.5%, 1%, 1.5%
and 2.0% of the number of nodes in each dataset. We analyze
the undirected and directed cases. In each plot, we show the
average results for the three datasets. The vertical axis we show
the percentage of negatively contaminated nodes, therefore,
the lower the values, the better the network metric works as a
strategy for the problem.

Fig. 1. Uniform cost function in undirected graphs.

In the undirected graphs case, show in Figure 1, we see that
the percolation, betweenness, degree and PageRank measures
behave similarly, and also they perform better than other
strategies. In the case of directed graphs, the number of
positively influenced nodes decreases in comparison to the
undirected version, as show in Figure 2.

We hypothesize that the similar behaviors between degree,
betweenness, PageRank and percolation comes from the fact
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Fig. 2. Uniform cost function in directed graph.

that the set of positive seeds chosen by these strategies are
similar. In order to test this hypothesis, we take the set
of positive seeds of the degree centrality as a basis for
the comparison, and measure the similarity between the sets
returned by the other strategies. More formally, let S1 and S2

be the sets returned by using, respectively, the degree centrality
and some other strategy. To measure the similarity between the
sets, we use the overlap coefficient, defined as

|S1 ∩ S2|
min{|S1|, |S2|}

.

Figure 3 shows the results of the similarities between the
solutions on the DBLP dataset. On the vertical axis we have
the overlap coefficient, taking the degree centrality as the base
comparison. The horizontal axis represents the size of the set,
and we show solutions up to 250 nodes since this is roughly
the size of the largest sets for the solutions in the experiments
and, additionally, with the solution size approaching the entire
node set obviously they have a large overlap. We note that
solutions using betweenness, percolation and PageRank as
strategies have a high overlap coefficient. This means that
the solution sets returned by these strategies are similar to
the degree centrality strategy. On the other hand, solutions
obtained using clustering coefficient and random sampling as
strategy have a very small overlap, so they are very different
from the set nodes with highest degree.

B. Degree Penalty Cost Function

In this section we analyze the results for the degree penalty
cost function. In this case the costs are directly proportional
to the degree, so we define the sizes of N0 and S as a fraction
of the sum of the degrees (i.e., twice the number of edges).
More specifically, we set the size of N0 to be equal to 1% of
the sum of the degrees and choose k to be 0.1%, 0.5%, 1%,
1.5% and 2% of that same sum.

Initially, we analyze the results for undirected graphs. Dif-
ferently from the case with uniform cost function where the
node degree is the central attribute that characterize the success
of a given strategy, in the degree penalty cost function the

Fig. 3. Overlap coefficient in DBLP undirected graph: value 0 (resp. value 1)
is the case where the elements of the solution are completely different (resp.
exactly the same) from nodes of k highest degrees.

Fig. 4. Degree penalty cost function in undirected graph.

node weight “amortizes” the advantage that the degree exerts
in those strategies where high degree nodes are prioritized, i.e.,
betweenness, percolation and PageRank (recall Figure 3 where
we show the overlap of such strategies with the set of highest
degree nodes). Therefore, these strategies are not as successful
in the scenario using the degree penalty cost function as shown
in Figure 4. Generally speaking, compared to the uniform cost
function, the degree penalty cost function had more negatively
influenced nodes. Also, in the degree penalty cost function
problem, the clustering and random strategies present the best
performances among the metrics we choose.

In particular, we believe that the good performance of the
clustering coefficient can be explained by the dissimilarity
between this measure and the degree centrality (also shown in
Figure 3). In the analyzed datasets, the nodes with the highest
clustering coefficient are those with the lowest degree. Since
the strategy that uses the clustering coefficient selects nodes
with low degree, this means that it chooses a large number of
nodes for the solution, as the cost of the nodes in this case is
low. Therefore, the clustering coefficient strategy may succeed
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by being able to choose a high fraction of the nodes of a graph.
The random strategy also had good results and we have

some supposition for its success. Since, in real-world graphs,
typically, the degree distribution is approximated by a power
law distribution, roughly speaking theses graphs contain a
large number of low degree nodes. This may explain, in part,
the good performance of the random metric. The idea is that
by randomly selecting the graph vertices, the vast majority are
low degree vertices and therefore more vertices are selected
until reaching the maximum budget limit.

Fig. 5. Degree penalty cost function in directed graphs.

The behavior of degree penalty cost function in directed
graphs is different from the other cases analyzed so far. Figure
5 shows that betweenness and percolation metrics show better
results than the other metrics. The clustering coefficient strat-
egy had opposite performances in the directed and undirected
cases. A possible explanation is that in the directed case, the
nodes chosen by this strategy have low degree. Thus, due to
the edge directions, many may have out-degree equal to zero,
making the spreading impossible.

VII. CONCLUSION

In this work, we present the Generalized Influence Blocking
Maximization (GIBM) problem and analyze the behavior
of strategies based on well-known network metrics for two
particular cost functions: uniform and degree penalty. The
uniform cost function case has appeared in the literature as
the influence blocking maximization problem. For this case,
the betweenness, percolation and PageRank metrics obtain
similar results to the simple degree centrality. We show that
this similarity is related to the overlapping of the solution sets.
On the other hand, in the degree penalty case, the results show
that the same metrics have opposite performances. In addition,
our results suggest at least two conclusions for algorithms
that have a high level of similarity with the node degree.
First, however sophisticated is the metric computed by an
algorithm in the uniform cost function scenario, if there is
a high similarity between such metric and the node degree,
then one should not expect substantial improvements in their

performance. So this might be the case why recent results
in the literature obtained only slight improvements (about
1% better) when compared with the node degree strategy
in the uniform cost function case. Second, algorithms with
solutions correlated to the set of high degree nodes does not
perform well in degree penalty scenario. This naturally leads
us to consider future research where the goal is to design
solutions that take into consideration other cost functions for
the generalized version of the problem.
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