
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

IEEE/ACM ASONAM 2020, December 7-10, 2020

978-1-7281-1056-1/20/$31.00 © 2020 IEEE

Movie Recommendation using YouTube Movie
Trailer Data as the Side Information

Debashish Roy
Department of Computer Science

Ryerson University
Toronto, Canada

debashish.roy@ryerson.ca

Chen Ding
Department of Computer Science

Ryerson University
Toronto, Canada

cding@ryerson.ca

Abstract— The user feedback data such as likes, dislikes,

comments on movie trailers posted on YouTube can be a useful

information source for movie recommender systems. In this

paper, we study the effect of adding the feedback data on trailers

as a type of the side information to the movie rating data. We

propose a recommendation framework that can integrate the

trailer and rating data adopting different integration strategies:

integrating all the trailer data as movie features, using sentiment

scores derived from the trailer comments as a rating matrix to

integrate with the movie rating matrix and treating others as the

movie features, or only integrating the sentiment score based

rating matrix with the movie rating matrix. Our experiment

shows that if we include the movie trailer data, recommendation

accuracy is improved. We also find that the most accurate result

is achieved if all the trailer feedback data is integrated as movie

features. To design our system, we use both Matrix Factorization

(MF) and Deep Neural Network (DNN) Models. We find that the

DNN model performs better than the MF model.

Keywords— recommender system; deep learning; matrix

factorization; sentiment score; knowledge transfer; multi-source

I. INTRODUCTION

Nowadays, the immense volume of accessible online data
is creating an information overload problem. It can be a big
challenge for users to find items of their interest efficiently
and effectively. Recommender systems provide a solution to
ease such problems. Movie is one of the most commonly used
items when testing recommendation algorithms. MovieLens
[1], Netflix [2], IMDB [3] are a few popular movie datasets
used in many research papers. In a movie recommender
system, on top of explicit ratings, there are various types of
implicit rating data we can use such as likes, comments, the
watch history. Both types of ratings are commonly used in
Collaborative filtering (CF) based recommender systems. In
content-based systems, content information is usually defined
by various movie features such as title, plot, genre, director,
actors, posters, movie clips or trailers. In many hybrid
systems [4], these features are treated as the side information
to be included into the model built upon the rating matrix.

Movie trailer is one of the movie features, playing a
similar role as the plot description or the movie poster, it is
the highlight of a movie. Most of the movie trailers have
YouTube as the main hosting site. People may watch these
trailers before the movie release date and leave comments.
These comments reflect on how much they like the trailer, and
oftentimes also their expectations on the movie, but not on
whether they like the movie itself. After they watch the
movie, they may come back to watch the trailer again and
leave comments. In this case, these comments may reflect on
whether they like the movie. Although in both cases, we
cannot equate a user’s rating on a movie trailer to the rating
on the movie itself, the rich feedback information collected

on movie trailers can provide some hint on popularity of a
movie and on whether the user likes the movie. It is our goal
in this work to investigate whether adding the user feedback
data retrieved on movie trailers can improve the movie
recommendation result. To the best of our knowledge, most
of the studies on YouTube focused on recommending the
hosted video itself based on its feedback data, whereas we
focus on using the feedbacks on trailers to recommend
movies. We would like to study the effect of adding the
feedback data on trailers as a type of the side information into
the movie recommender system.

In this work, we adopt three strategies to integrate movie
ratings with the trailer data. We consider four types of
feedback data on trailers: the like count (the number of likes),
the comment count (the number of comments), the view count
(the number of views) and the sentiment score calculated
from each comment. The first three are per movie basis and
can be treated as movie (or trailer) features. The last one is
per (movie, user) pair basis and is considered as the implicit
rating. In the first strategy, we treat all of them as the side
information and integrate them with the movie ratings. In the
second strategy, we use sentiment scores as implicit ratings to
integrate with the explicit movie ratings, ignoring other
features. In the third strategy, we use sentiment scores as a
rating matrix and the other trailer features as the side
information to integrate with the movie ratings. We design the
recommender system using both the matrix factorization
model and the deep neural network. Our experimental result
shows that if we integrate all the trailer feedback data as the
side information with movie ratings, we can provide the most
accurate result and this finding is observed in both the matrix
factorization model and the deep neural network model. We
also find that the deep neural network model performs better
than the factorization model.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III explains the overall
system architecture and recommendation strategies used in
our research. Section IV provides the details of the
experiment design, data collection and preparation steps, and
result analyses. Finally, Section V concludes the paper with a
summary and future research directions.

II. RELATED WORK

We first review some of the research works that use the
matrix factorization (MF) model to implement recommender
systems using both the rating data and the side information.
A two-level hybrid matrix factorization model is proposed in
[5]. It computes the semantic relations between items using
weighted textual MF, in which a textual corpus is represented
by a term document matrix. In [6], users’ friendship data is
added as a social regularization term to recommend items.

275

YouTube recommends personalized videos to its users based
on their activities such as videos watched, favored and liked
[7]. It uses the personal activity as the seeds and expands the
set of videos by traversing a co-visitation graph of videos
which is created using the association rule mining.

In recent years, deep learning models have become one of
the most popular and effective options to implement
recommender systems. In [8], a neural collaborative filtering
(NCF) approach is proposed, which generalizes the matrix
factorization and models the non-linear relationship between
users and items using a multi-layer perceptron (MLP) neural
network. To recommend apps in Google Play, a deep neural
network architecture “wide and deep learning” is proposed in
[9]. The wide learning component is a generalized linear
model using a single layer perceptron. The deep learning
component is a non-linear model that uses multi-layer
perceptron. Deep Factorization Machine in [10] integrates the
factorization machine with the MLP. The pairwise and linear
interactions between different features are captured by the
factorization machine and the deep learning component is
used to learn higher-order interactions.

Multiple data sources can offer a richer set of user
interaction data and provide a deeper insight in user
preferences. In [11], a user profile is built using the cross-
linking function in four social networks (Foursquare, Twitter,
Instagram, Facebook). In [12], cross-network collaborations
are used to recommend YouTube videos. To build a user
profile, the system extracts the auxiliary information of users
from their corresponding Twitter accounts and uses the user
profile to recommend YouTube videos. A multi-source based
Cross-network Collaborative Matrix Factorization (CCMF)
framework is designed in [13]. Information from one network
to another network is transferred by aligning the similar items
between the two networks.

Compared with the previous work, especially the work on
movie recommender systems and the work on integrating
multiple data sources, we use the feedback data on movie
trailers as the side information (not the feedbacks on the full-
length movies), which means that the ratings from two
sources are not of the exact same type. To the best of our
knowledge, it is novel to use trailer feedback data in this way.
Also, in the past, the side information is usually treated as the
item features to be included into the recommendation model.
In our work, since the comments can be viewed as implicit
ratings, we explore different ways of integrating them.
Compared with [13], although we follow their broad learning
framework, we take a two-step process – knowledge transfer
first and then regularization based on item similarities,
whereas they include all regularization terms in one model.

III. OUR PORPOSED MOVIE RECOMMENDER SYSTEM

We collect the movie rating data from MovieLens and the
movie trailer data from YouTube, though theoretically we can
get data from any source that has movie ratings or movie
trailer data. We propose three approaches to integrate the
movie trailer feedback data with the rating data. In the first
approach, we only use the sentiment scores calculated from
the comments as a rating matrix to integrate with the movie
ratings, ignoring other feedbacks. We use VADER [14] to
calculate the sentiment scores. A higher score (closer to 1)
means that a comment is positive, and a lower score (closer
to 0) indicates a negative comment. In the second approach,
we use sentiment scores as a rating matrix and the other trailer

feedbacks as the side information to integrate with the movie
ratings. Here, the side information is infused as a movie trailer
feature vector. In the third approach, sentiment scores are also
considered as one of the trailer features, and then all the trailer
features are infused as a feature vector with movie ratings.

A. System Architecture

Fig. 1 shows the overall system architecture of our movie
recommender system.

Fig. 1. Overall system architecture of our movie recommender system

We use both matrix factorization and deep neural network
to implement the recommendation model. For all the movies,
we extract the associated trailer data. The sentiment scores of
the comments are used in two ways. In one approach, shown
as dotted lines in Fig. 1, it is used as a rating matrix. The two
rating matrices are fed into the latent feature generators
(implemented using either the MF model or the DNN model,
with latent feature vectors as the output instead of the
predicted ratings). Then we transfer the knowledge learned
from the sentiment-based matrix to the movie rating matrix
using a broad learning algorithm [13]. Since users who
provide feedbacks on trailers could be different from users
who provide movie ratings, it is hard to align users. Therefore,
we align movies based on their titles. After the knowledge
transfer, we get the integrated matrix (same size as the movie
rating matrix). Applying the latent feature generator on this
new matrix, we get the final user and movie latent features. In
the second approach, sentiment scores are used as movie
features. Together with the other three trailer features, they
are combined with user and movie latent features to feed into
the recommendation component. In this case, the knowledge
transfer and matrix integration are not required.

The side information is included in the recommender
system through a trailer feature vector. The recommender
system takes three vectors as input: a) the movie trailer
feature vector, b) the vector for user latent features, and c) the
vector for movie latent features. Again, we use either the
matrix factorization model or the deep neural network for
implementing the recommender. In the matrix factorization
implementation, we add a new regularization term, which is
based on the similarity between two movie trailers. The
assumption is that the similarity between two movies in the
latent space is consistent with the similarity based on their
trailer features.

276

The network structure of the deep neural network
implementation is shown in Fig. 2. We use one-hot encoding
vectors for both users and movies, and numerical values for
trailer features. Once we get the dense embedding vectors for
users and movies, we concatenate them with the trailer feature
vector to create the input vector. In the current
implementation, we include three linear transformation
layers using the Rectified Linear Unit (ReLU) function.

Fig. 2. DNN implementation of the recommender system

B. Matrix Factorization Implementation

The process of matrix factorization starts with a user-item

rating matrix R. The size of matrix R is m  n where m denotes
the total number of users and n denotes the total number of
items. Matrix factorization decomposes the rating matrix R
into two low rank latent feature matrices P for users and Q for

items; here, the size of matrix P is m  d and the size of matrix

Q is n  d, d is the rank of the matrices and defines the
dimension for the latent features. If R̂ represents a matrix of
predicted ratings, matrix factorization approximates R̂ in such
a way that R̂ = PQT. To predict a rating from user u on item i,
the inner product between Pu and Qi is calculated. To
decompose a sparse rating matrix, the following objective
function is used [9]:

L = min
P,Q

1

2
 ∑ (𝑅𝑢,𝑖 − 𝑃𝑢𝑄𝑖

𝑇)
2

+
λ

2
(‖𝑃‖𝐹

2 + ‖𝑄‖𝐹
2) (u,i)ϵC (1)

In equation (1), C represents the set of (user, item) pairs
of known ratings; to avoid overfitting, two regularization
terms on the sizes of P and Q are added as constraints and λ
is used as a regularization parameter. In this work, for matrix
factorization using only the rating data, we use the objective
function defined in equation (1). However, this objective
function does not include the side information retrieved from
the movie trailer data. To include the side information, we
derive a regularization term using the trailer similarity score.
We define 𝑆𝑗ℎ as the similarity co-efficient between trailers of

two movies j and h which satisfies: i) 𝑆𝑗ℎ ϵ [0,1]; ii) 𝑆𝑗ℎ = 𝑆ℎ𝑗;

iii) the larger 𝑆𝑗ℎ is, the more similar the movies are. With the

similarity co-efficient, the similarity regularization is to
minimize the following term:

 min
α

2
∑ ∑ (Sjh − Qj

TQh)
2n

h=1
n
j=1 (2)

In equation (2), α is used as a regularization parameter. The
similarity between trailers of different movies (movie j and
movie h) is calculated using the cosine similarity function.

Adding the regularization term defined in equation (2) to the
previous objective function defined in equation (1), we get the
following objective function:

L=
min
𝑃,𝑄

1

2
 ∑ (𝑅𝑢,𝑖 − 𝑃𝑢𝑄𝑖

𝑇)
2

(𝑢,𝑖)ϵC +
λ

2
(‖𝑃‖𝐹

2 + ‖𝑄‖𝐹
2) +

α

2
∑ ∑ (𝑆𝑗𝑛 − 𝑄𝑗

𝑇𝑄𝑛)
2𝑁

𝑛=1
𝑁
𝑗=1 (3)

We use this updated objective function to design a hybrid
recommendation model using rating and movie features.

C. Deep Nerual Network Implementation

In addition to the matrix factorization model, we use deep
neural network to model the interaction between users and
movies. To learn the interaction patterns, we use a multi-layer
perceptron (MLP) with linear transformation layers to form
our deep neural network as shown in Fig. 2. The network
takes three vectors: i) the movie feature vector, ii) the user
latent vector, and iii) the movie latent vector. To format the
input for the neural network, we combine the vectors using
the concatenation operation. As a simple vector concatenation
does not consider the interaction between user and movie
latent features, we add hidden layers on the concatenated
vector to construct an MLP. In this MLP based neural
network, we use both linearity and non-linearity to learn the
interaction between users and movies. To add non-linearity,
we use the activation function ReLU. We choose ReLU
function for the following reasons: it does not suffer from
saturation; it is well-suited for sparse data; it helps to avoid
overfitting. We also use the deep neural network to generate
the latent features in the latent feature generator. The
embedding layer is used to map the high-dimensional user
and movie one-hot encoding vectors into the low-dimensional
dense vectors in the latent space. The number of latent
features determines the size of the embedding vector. Here,
user and item embeddings have the same size.

D. Knowledge Transfer

In our research, to transfer knowledge between movie
ratings and trailers, we align the movies using their titles, and
transfer movie latent features between the sources [13].
Assume that S1 and S2 are two information sources and M is a
movie which is represented as M1 in information source S1
and M2 in S2. Even if M1 and M2 refer to the same movie, as
they are from different sources, their latent features could be
different and thus we cannot directly set M1 = M2. L is a
matrix that is used to store the information for two matching
movies between two information sources. We use this matrix
to ensure that only the latent feature vectors of the same item
are restricted to be the same and we want to set LTM1 =
LTLM2. To make LTM1 and LTLM2 to be the same or close to
each other, we want to make ‖𝐿𝑇𝑀1 − 𝐿𝑇𝐿 𝑀2‖2 to be as
small as possible. An item latent source adaptation matrix H
is used to bridge the differences between S1 and S2.
Essentially, the transfer of latent features from one source to
another is considered as a minimization problem and defined
as the following regularization term [13]:

1

2
‖LTM1H − LTL M2‖2 (4)

IV. EXPERIMENT

In this section, we first explain how we design the
experiment and how we collect and prepare the data. Then,
we show the results that are obtained from the testing phase
of the experiment. Lastly we compare different approaches
with analyse and discussion on the results.

277

A. Experiment Design

In this experiment, we investigate our proposed three
approaches for data integration and recommendation. We
compare the results to identify the most effective solution. To
design the recommender system, we use both the deep neural
network and matrix factorization models. So, we also
compare the performance of the two implementations.
Finally, we want to compare our approaches with a few
baseline models implemented using deep learning models or
matrix factorization models. To run the experiment, we use a
computer with Intel core i7 processor 2630QM, 2.5 GHz
clock speed, 16GB RAM and Windows-10 as the operating
system. The programming language used is Python 3.7 and
Python packages used include Torch, Numpy and Scipy. To
download the YouTube data, we have used google-api-
python-client and the source code for the project can be found
on github1.

B. Dataset Preparation

In this work, we use the MovieLens dataset for the movie
rating data. We extracted 7805 ratings for randomly selected
1000 users and 1000 movies which were released between
1998 and 2005. In this dataset, the maximum number of
ratings on a movie is 33, the minimum is 2, and the average
is 8. For each movie, we extract four types of implicit
feedback data from the YouTube movie trailers: i) the
comment count, ii) the view count, iii) the like count, and, iv)
top 100 comments on the movie trailers given by 1000 users.
Note that these 1000 users are different from those from the
MovieLens dataset. From YouTube, we extracted a total of
3158 comments from these 1000 users. The maximum
number of comments on a movie is 17, the minimum is 1, and
the average is 3. In general, there are more ratings from the
MovieLens than those from the YouTube.

C. Results and Analyses

a) Performance Optimization on Hyperparameters: In the

deep neural network implementation, we need to determine

the size of the embedding vector and the number of iterations

(step). To determine the embedding size, we run the model on

the integrated matrix, testing different values including 10,

20, 30, 40 and 50, and for each run we save the RMSE values.

An embedding vector of size 40 gives us the best performance

and a similar kind of experiment gives us an optimal step

value of 15. So, in the neural network model, we use 40 latent

features for both users and movies and iterate it for 15 times.

After concatenation, we have altogether 84 neurons: 40 for

user latent features, 40 for movie latent features and 4 for

movie trailer features. We have three hidden layers in our

neural network model: first layer has 84 neurons; the second

and third layer have 42 and 21 neurons respectively. In the

matrix factorization implementation, we need to decide the

optimal values for the parameter d (the number of latent

features) and for number of iterations (step). To determine the

values, we apply the similar kind of approach that we use to

determine the size of the embedding layer and the best

performance is achieved when we choose d as 20 and step as

50. So, in this work, we use 20 latent features for the two

latent feature vectors and we iterate the model for 50 times.

In equation (3), for the regularization parameters α and λ, we

choose very small values 0.0002 and 0.02 respectively.

1 https://github.com/movieReco/hybridrecommender

b) Evaluation of Results using RMSE and F1-Score: For

evaluation, we calculate the RMSE and F1 scores for top-10

recommended items generated using MF and DNN models.

We also have the results for the precision and recall values

and all accuracy measures on top 20 items. Since the patterns

observed are similar, we only report these two metrics in the

paper. Fig. 3 shows the RMSE scores for both models.

Fig. 3. RMSE for Matrix Factorization and Deep Neural Network models

From the figure, we see that using trailer features can
improve the prediction accuracy (smaller RMSE scores). We
have the smallest RMSE scores when we use all the trailer
feedback data as the movie features. When we use the trailer
sentiment scores as ratings and integrate them with movie
ratings, the result is slightly worse. Also, comparing between
MF and DNN, DNN models produce better RMSE scores.
Fig. 4 shows the evaluation using F1@10 for both models.

Fig. 4. F1@10 for Matrix Factorization and Deep Neural Network models

From the figure, we see that the highest F1-scores are
achieved when using all the trailer feedback data as movie
features. The DNN model increases F1@10 by 6.2% when
using all trailer features vs. MovieLens rating only. Again, the
DNN model produces better results than the MF model.

From these figures, we see that when adding only the
sentiment scores as the rating matrix, there is very little
improvement compared to the basic model. When adding all
the trailer feedback data, adding sentiment scores as another
feature shows better result than adding them as a rating
matrix. The possible reason could be that when we integrate
these features as the side information into the rating-based
models (MF or DNN), we use them directly without any data
transformation, while the other two approaches require data
transformations in the form of generating latent features and
transferring the knowledge between two matrices. These
figures also show that the DNN model performs better than

0.81 0.809 0.801 0.7980.79 0.789 0.787 0.77

0

0.2

0.4

0.6

0.8

1

MovieLens MovieLens +
YouTube Rating

MovieLens+YouTube
Rating + Other

Trailer Features

MovieLens + All
trailer features

MF DNN

0.405 0.411 0.414 0.4240.421 0.437 0.441 0.447

0

0.1

0.2

0.3

0.4

0.5

0.6

MovieLens MovieLens + YouTube
Rating

MovieLens+YouTube
Rating + Other Trailer

Features

MovieLens + All
trailer features

MF DNN

278

the MF model. For example in Fig. 3, comparing with the MF
model, the DNN based model lowers the error by 2.47% for
the basic model, 2.53% when sentiment scores are added as a
rating matrix, 1.75% when sentiment scores are added as a
rating matrix with other features, and 3.5% when we add all
the trailer feedback data as movie features.

We compare our best-performing DNN model (using all
the trailer feedback data as features) with some of the baseline
algorithms, including the basic MF model, SVD, SVD++,
NMF [15], NCF [8], RBM [16] and SAR [17]. For all of the
baselines, we take their default parameters. Fig. 5 shows the
comparison based on the RMSE scores.

Fig. 5. Comparing with baseline algorithms using RMSE

From the figure, we see that our model has the smallest
RMSE score compared to the baselines. Out of all the baseline
methods, RBM has the lowest error rate and our model lowers
that error by 1.18%. Fig. 6 shows the comparison of our
model with these baseline algorithms on F1@10.

Fig. 6. Comparing with baseline algorithms using F1@10

The figure shows that our model has the most accurate
result compared to the other models in terms of the F1-scores.
Out of the matrix factorization models, SVD++ generates the
most accurate result while our model improves it by 11.5%.
Out of the neural network models, RBM generates the most
accurate result, while our model improves it by 8.1%.

In terms of the running time, for our dataset, MF-based
model takes longer time than the DNN-based model. When
adding the trailer feedback data, we record longer running
time (~35% longer) from both models compared to the case
when the original model is used without the side information.
This is expected considering the extra processing required.

V. CONCLUSION AND FUTURE WORK

This work evaluates the effectiveness of adding movie
trailer feedbacks as the side information to the movie rating
data for movie recommendation. To integrate the trailer data,
we have used three approaches: integrating all of them as
movie features; treating sentiment scores as a rating matrix to
integrate with the movie rating matrix and others as the movie

features; only integrating the sentiment rating matrix with the
movie rating matrix. Overall, the evaluation results show that
if we include movie trailer data, it reduces the prediction error
and increases the recommendation accuracy. As for the way
of integration, if all the trailer feedback data is integrated as
the movie features, our recommender system provides the
most accurate result. We also find that deep neural network
model performs better than the matrix factorization model.

In future, we want to extend our system to add temporal
signals as the side information. As users’ criteria to find a
movie and user preferences on a movie may change over time,
if we can add the temporal signals in our model, we might be
able to recommend movies based on users’ changing
interests. We also want to try different DNN models to
implement our recommender system. For example, instead of
MLP, we may try the CNN model, or the RNN model if we
consider the sequence information (time of ratings).

REFERENCES

[1] F. M. Harper and J. A. Konstan, The movielens datasets: History and
context, Acm transactions on Interactive Intelligent Systems, vol. 5, no.
4, pp. 1-19, 2015.

[2] J. Bennett and S. Lanning, The netflix prize, In the Proceedings of KDD
Cup and Workshop, pp. 35, 2007.

[3] IMDb, [Online]. Available: https://datasets.imdbws.com/. [Accessed 1
12 2019].

[4] P. Lops, M. de Gemmis and G. Semeraro, Recommender systems
handbook, Springer, pp. 1-186, 2011.

[5] F. Li, G. Xu and L. Cao,Two-level matrix factorization for
recommender systems, Neural Computing and Applications, vol. 27,
no. 8, pp. 2267-2278, 2016.

[6] Z. Sun, L. Han, W. Huang, X. Wang, X. Zeng, M. Wang and H. Yan,
Recommender systems based on social networks, Journal of Systems
and Software, vol. 99, pp. 109-119, 2015.

[7] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S.
Gupta, Y. He, M. Lambert, B. Livingston and D. Sampath,The
YouTube video recommendation system, In the Proceedings of the
fourth ACM conference on Recommender systems, pp. 293-296, 2010.

[8] X. He, L. Liao, H. Zhang, L. Nie, X. Hu and T. S. Chua, Neural
collaborative filtering, In the Proceedings of the 26th international
conference on world wide web, pp. 173-182, 2017.

[9] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G.
Anderson, G. Corrado, W. Chai, M. Ispir and R. Anil, Wide & deep
learning for recommender systems, In the Proceedings of the 1st
workshop on deep learning for recommender systems, pp. 7-10, 2016.

[10] H. Guo, R. Tang, Y. Ye, Z. Li and X. He, DeepFM: a factorization-
machine based neural network for CTR prediction, arXiv preprint
arXiv:1703.04247, 2017.

[11] A. Farseev, L. Nie, M. Akbari and T. S. Chua, Harvesting multiple
sources for user profile learning: a big data study, In the Proceedings of
the 5th ACM on International Conference on Multimedia Retrieval, pp.
235-242, 2015.

[12] M. Yan, J. Sang and C. Xu, Unified YouTube video recommendation
via cross-network collaboration, In the Proceedings of the 5th ACM on
International Conference on Multimedia Retrieval, pp. 19-26, 2015.

[13] J. Zhu, J. Zhang, L. He, Q. Wu, B. Zhou, C. Zhang and P. S. Yu, Broad
Learning based Multi-Source Collaborative Recommendation, In the
Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pp. 1409-1418, 2017.

[14] C. J. Hutto and E. Gilbert, Vader: A parsimonious rule-based model for
sentiment analysis of social media text., In Eighth international AAAI
conference on weblogs and social media, 2014.

[15] H. Lee, J. Yoo and S. Choi, Semi-supervised nonnegative matrix
factorization, IEEE Signal Processing Letters, 17(1), pp. 4-7, 2009.

[16] R. Salakhutdinov and A. a. H. G. Mnih, Restricted Boltzmann machines
for collaborative filtering, In the Proceedings of the 24th international
conference on Machine learning, pp. 791-798, 2007.

[17] B. Sarwar, G. Karypis and J. a. R. J. Konstan, Item-based collaborative
filtering recommendation algorithms, In the Proceedings of the 10th
international conference on World Wide Web, pp. 285-295, 2001.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MF SVD SVD++ NMF NCF RBM SAR Ours

0.00

0.10

0.20

0.30

0.40

MF SVD SVD++ NMF NCF RBM SAR Ours

279

	I. Introduction
	II. Related work
	III. Our Porposed Movie Recommender System
	A. System Architecture
	B. Matrix Factorization Implementation
	C. Deep Nerual Network Implementation
	D. Knowledge Transfer

	IV. experiment
	A. Experiment Design
	B. Dataset Preparation
	C. Results and Analyses
	a) Performance Optimization on Hyperparameters: In the deep neural network implementation, we need to determine the size of the embedding vector and the number of iterations (step). To determine the embedding size, we run the model on the integrated m...
	b) Evaluation of Results using RMSE and F1-Score: For evaluation, we calculate the RMSE and F1 scores for top-10 recommended items generated using MF and DNN models. We also have the results for the precision and recall values and all accuracy measur...

	V. conclusion and future work
	References

