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Abstract—Interpersonal ties describe the intensity of infor-
mation and activity interactions among individuals. It plays a
critical role in social network analysis and sociological studies.
Existing efforts focus on leveraging individuals’ non-structural
characteristics to measure tie strength. With the booming of
online social networks (OSNs), it has become difficult to process
and measure all the non-structural data. We study the tie strength
measuring from the network topological aspect. However, it
remains a nontrivial task due to the controversial comprehensions
of its definition and the large volume of OSNs. To tackle the
challenges, we develop a scalable measuring framework - IETSM.
From the network view, we formally define the tie strength of
an edge as the inverse of its impact on the similarity between its
two nodes’ influences in information diffusion. To measure this
impact, IETSM constructs a node’s influence as the embedding
learned from its neighborhoods inductively. It estimates the tie
strength of an edge through its impact on its nodes’ influences
brought by deleting it. The learned tie strength scores could, in
turn, facilitate the node representation learning, and we update
them iteratively. Experiments on real-world datasets demonstrate
the effectiveness and efficiency of IETSM.

Index Terms—Tie Strength, Online Social Networks, Inductive
Embedding

I. INTRODUCTION

Interpersonal ties are one of the key concepts in soci-
ology [1]. They describe the intensity of interactions and
communications among individuals, and reflect the impact of
an edge on the diffusion of information within the network [2].
The edges with relatively strong strengths (called strong ties)
are more likely to link similar users, who tend to be clustered
together and form communities in the networks [3]. The edges
with relatively weak strengths (called weak ties) often work as
bridges between different communities and are more important
in exchanging information between different communities [1].
Thus, accurately measuring the tie strength, especially weak
ties, is an essential problem in sociological studies and many
real-world applications such as social recommendation [4]
and targeted marketing [5]. For example, tie strength has a
significant impact on advertising effectiveness [6]. Advertising
messages are more likely to be forwarded through strong
ties, while weak ties bridge communities and bring more
opportunities. Highly interactive features such as entertaining
games could be added into messages on weak ties to make the
advertising information more attractive.

Inferring tie strength from the network topological aspect
gains in importance with the booming of online social net-
works (OSNs). Traditional ways to measure the tie strength
are to use the non-structural characteristics of the network,

such as the intensity of interaction and the intimacy between
two people [7]. In OSNs, these non-structural data is often
incomplete and difficult to be measured [8]. On the other hand,
existing structural information based tie strength measuring
methods mainly rely on manually-selected structural features
such as node degrees [9] and the overlap between nodes’
neighborhoods [10]. They only consider partial topological
information and tend to achieve suboptimal results.

The effectiveness of network embedding [11], [12] moti-
vates us to explore whether it could be potentially used to
advance the tie strength measuring. Network embedding aims
to compress a large-scale network into low-dimensional node
representations and preserve the network topological informa-
tion. It serves as an automatic and efficient feature extraction
tool and has achieved significant success in various network
analysis tasks [13], [14]. Network embedding could benefit tie
strength measuring as it can efficiently provide comprehensive
features that reflect the entire network structures.

However, it remains a nontrivial task to take advantage of
network embedding to measure the tie strength in OSNs, with
three major challenges as follows. First, the definition of tie
strength in OSNs is controversial. Various attempts have been
made, such as node similarity based definitions [15], [16],
hidden effect based definitions [17], and strong triadic closure
based definitions [8]. They mainly focus on the property of
strong ties rather than weak ties. But it has been shown that
weak ties are more important than strong ties for individuals to
receive new information [18], [19]. Second, real-world OSNs
usually involve a vast number of individuals compared with
traditional social networks. It puts demands on the scalability
of the measuring methods. Third, network embedding could
not be directly applied to tie strength measuring. While tie
strength measuring targets at modeling edges, network embed-
ding focuses on preserving node similarities and aims to learn
node representations that are general to different applications.
Thus, a task-specific network embedding algorithm is desired.

In this paper, we aim at answering two research questions:
(i) How to define and measure the tie strength in an adjacency
matrix from the network view? (ii) How to jointly perform
tie strength measuring and network embedding to make them
complement each other towards a better measuring perfor-
mance? Through studying these questions, we propose an effi-
cient measuring framework named Inductive Embedding based
Tie Strength Measuring (IETSM). The main contributions of
our work are listed as follows.
• Formally define the tie strength in OSNs in a general way,
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• Propose an efficient framework IETSM that estimates the tie
strength of an edge based on the changes of its two nodes’
influences brought by deleting it.

• Design an effective learning algorithm that iteratively learns
network embedding and tie strength scores since they could
complement each other.

• Empirically demonstrate the effectiveness and efficiency of
IETSM in tie strength measuring, especially for weak ties.

II. PROBLEM STATEMENT

Let G = (V, E ,W) be a social network, where V is the set
of nodes, E is the set of edges, and W is the adjacency matrix.
Without loss of generality, we focus on the binary adjacency
matrix W ∈ {0, 1}n×n. Each edge is denoted by an ordered
pair (i, j), and wij indicates the existence of (i, j) in E . If
(i, j) ∈ E , wij = 1, otherwise wij = 0. For undirected G, we
have wij ≡ wji. For directed G, wij 6≡ wji. The important
symbols are listed in Table I.

To give a new definition of the tie strength from the network
view, we first study information diffusion. Information diffu-
sion is a process by which information spreads across a net-
work through edges (e.g., news spreads in a community) [20].
When a node i receives a new message, i has the chance to
spread it to its connected nodes, and the informed nodes might
continue to spread it over the network. The nodes affected by i
(including i) during this process are called the neighborhoods
of i. The overall effect that i makes on its neighborhoods is
called i’s influence to its neighborhoods.

For an edge (i, j), a conventional way to investigate its
tie strength from the network view is to compare the speed
of information diffusion over the networks with and without
(i, j) [21]. Inspired by this idea, we study the change of i’s
and j’s influences when we remove an edge (i, j) from the
network for both cases of strong tie and weak tie. If (i, j) is a
weak tie, (i, j) is an important way or even the only way for
j to get information from i. The deletion of (i, j) will make
it hard for j to get information from i, and the influences
of i and j will become much more different than before. On
the contrary, if (i, j) is a strong tie, there could exist several
paths from i to j. After (i, j) is removed, j still have a high
probability to obtain the information from i via other paths,
and the similarity between i’s and j’s influences change little.

To conclude, the deletion of a weak tie will make an
apparent change in the similarity between its two nodes’
influences, whereas the removal of a strong tie will bring a
relatively small change on this similarity. This kind of change
caused by deleting an edge is called the impact of an edge.
We formally define the tie strength from the network view
according to the impact of an edge in Definition 1.

Definition 1 (Tie Strength) In a social network, the tie
strength of an edge (i, j) is defined as the inverse of its
impact on the similarity between i’s and j’s influences to their
neighborhoods in information diffusion. The weaker strength
an edge has, the more impact it has on this similarity.

Based on the terminologies mentioned above, we define the
problem of tie strength measuring in OSNs as follows:

TABLE I: Main Symbols and Definitions

Notations Definitions

n the number of nodes in the network
d dimension of the embedding representation

W ∈ {0, 1}n×n binary adjacency matrix
A ∈ [0, 1]n×n tie strength score matrix needed to learn

ui ∈ Rd embedding representation of node i
(i, j) the edge from node i to node j
E the set of edges
V the set of nodes
G original network, with G = (V, E ,W)

Gi6→j reduced network with edge (i, j) removed
Ni neighborhoods of node i in G

N i6→j
i neighborhoods of node i in Gi6→j

ci ∈ Rd node i’s influence in G
ci6→j
i ∈ Rd node i’s influence in Gi6→j

Si random walk beginning from i in G
Si6→j
i random walk beginning from i in Gi6→j

Given a social network G, we aim to calculate the tie
strength score aij ∈ [0, 1] for each (i, j) ∈ E , as defined
in Definition 1, such that aij would be inversely correlated to
the impact that (i, j) has on the similarity between node i’s
and j’s influences to their neighborhoods.

Related Work: Link prediction is related to but different
from tie strength measuring. The former aims to predict the
present probabilities of non-existing links, while the latter
focuses on estimating the intensity of existing edges. Whereas,
studies [22] show that the predicted score of the existing edge
by similarity-based link prediction method such as Katz [16]
and SimRank [15] could also be used as an estimation of its
tie strength. Thus we include Katz as a baseline method in our
experiments.

Edge centrality refers to a group of methods that indicate the
importance of edges in the graph and are often used to find the
bridge edges [23]. For example, edge betweenness centrality
(EBC) calculates the number of shortest paths between linking
nodes that pass through the edge [24]. Usually, the weak tie
should have a relatively large edge centrality. However, EBC
has the computation complexity of O(|V||E|) [24] and cannot
be directly applied to large-scale networks.

Recently, graph neural networks have demonstrated re-
markable performance in many tasks [25]. The core idea is
to aggregate the structural properties and community level
information to reveal a node’s effect in the graph. For example,
GraphSAGE [26] generates node representations by sampling
and aggregating features from its local neighborhood. Plan-
etoid [27] is a graph-based semi-supervised learning frame-
work, in which the embedding can be viewed as hidden layers
of a neural network.

III. IMPACT ANALYSIS WITH INDUCTIVE EMBEDDING

In this section, we propose a scalable framework - Inductive
Embedding based Tie Strength Measuring (IETSM). Figure 1
illustrates its main idea. IETSM consists of four components.
(i) Infer a node’s influence as the embedding learned via in-
ductively aggregating its neighbors’ representations and itself.
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(ii) Measure the tie strength as the change of the similarity
of nodes’ influences between the original network and the
reduced network. (iii) Introduce random walks to accelerate
the computation of the inductive embedding. (iv) Adjust node
embedding according to the estimated tie strength. These four
components clarify the way how tie strength scores and node
embedding representations complement each other. Specifi-
cally, we build an effective learning algorithm which trains
the tie strength scores and node embedding representations
iteratively to achieve accurate measuring results.

Our work is described on directed networks. For undirected
networks, we transform them to directed networks by building
two directed edges for each undirected edge. The average score
of two directed edges is used as the estimated tie strength value
for the corresponding undirected edge.

A. Representing Influences of Nodes

A straightforward way to model a node’s influence is to use
the node degree, but the node degree cannot sufficiently main-
tain the topological information in the network. For example,
neighborhood overlap (NO) [10], a widely used node-degree
based tie strength measure, has a limitation that it could assign
zero values for edges located at sparsely connected nodes [28].

We propose to take advantage of network embedding since it
could embed the entire topological structure into node vectors.
First, we embed the network into the initial d-dimensional
embedding ui for each node i by preserving the first order
proximity. Second, we gather the embedding representations
of i’s neighborhoods and define their weighted sum as the
inductive representation of i’s influence.

Initial node embedding by the first order proximity:
The first order proximity is the observed pairwise proximity
between two nodes in the network [12]. In this problem,
the binary adjacency matrix W is the first order proximity.
With a start node i, we sample an arbitrary node j from V
and construct an edge sample (i, j). We further assume that
the theoretical probability to sample (i, j) is proportional to
exp(ui · uj). Then pij = P{(i, j) is sampled with the start
point i} = exp(ui · uj)/

∑
k∈V exp(ui · uk). As W repre-

sents the observations of the relationship in the network, the
empirical probability of this sample is p̂ij = wij/

∑
k∈V wik.

To preserve the first-order proximity, we expect to find the
best representations to minimize the total difference between
each pair of distributions pi· = (pi1, . . . , pin) and p̂i· =
(p̂i1, . . . , p̂in) of i. With KL divergence to measure the differ-
ence, we obtain the following objective function after omitting
redundant terms,

O1 =
∑
i,j∈V

wij log
exp(ui · uj)∑

k∈V exp(ui · uk)
. (1)

By maximizing O1, we get the initial low-dimensional node
embedding for each node in the network. Notice that we can
choose other node embedding methods that have a differ-
entiable objective function of ui and include the first order
proximity to construct the initial embedding.

Representing the influences of nodes as the embedding
learned from their neighborhoods inductively: For the orig-
inal network G, we use Ni to denote i’s neighborhoods in it,
which represents the set of nodes affected by i in information
diffusion. We assume that i’s effects in information diffusion
disappear after K-step spreading, and then Ni becomes the
set of nodes that i can contact within K steps through the
edges in G. By removing (i, j) from G, we get the reduced
network Gi6→j . Similarly, N i6→j

i denotes i’s neighborhoods in
Gi6→j , which is the set of nodes that i can contact within K
steps through the edges in Gi6→j .

Now we construct ci and ci6→j
i - the node i’s influences

in G and Gi6→j as the weighted mean of the node embedding
representations in Ni and N i6→j

i ,

ci =

∑
l∈Ni

βilul∑
l∈Ni

βil
, ci6→j

i =

∑
l∈N i6→j

i
β′ilul∑

l∈N i6→j
i

β′il
, (2)

where βil and β′il are the weights of node l in Ni and N i6→j
i .

We choose the weight βil as the (i, l)th entry of:

B = I+WD+ (WD)2 + · · ·+ (WD)K , (3)

where I is the identity matrix, and D is a diagonal matrix
whose (i, i)th element is the inverse of the outer degree of node
i. βil selected in this way reflects the expected times that l is
included in a K-step path which starts from i and randomly
walks K steps via G. Specifically,

∑
l∈Ni

βil = K + 1. β′il is
chosen by the same way with B calculated in Gi6→j . Similarly,
we can calculate cj and ci6→j

j , the node j’s influences in G
and Gi6→j .

B. Measuring Tie Strength on the Edge Impact

Based on Definition 1, we investigate the impact of an edge
on the similarity between two nodes’ influences as follows.

First, we use the inner product of two nodes’ influences to
reflect their similarity. For example, ci6→j

i ·ci6→j
j represents the

similarity between i’s and j’s influences in Gi6→j .
Second, we test the change of influence between G and
Gi6→j . In the directed network, the deletion of (i, j) mainly
changes the information received by j rather than i. Thus we
focus on the change of j’s influence. To capture the change of
j’s influence from G to Gi6→j , a straightforward way is to use
cj − ci6→j

j . Unfortunately, as both cj and ci6→j
j are calculated

by the node representations in G, and j’s neighborhoods are
the same in G and Gi6→j , cj and ci6→j

j are almost the same
that cj ≈ ci6→j

j by Eq. (2).
To solve this problem, we use ci − ci6→j

j instead to reflect
the change of j’s influence by removing (i, j) for two reasons.
First, ci−ci6→j

j can reflect another kind of loss of information
of j from i by removing (i, j). ci − ci6→j

j ≈ ci − cj , which
represents the potential new information that j’s neighborhood
can get from node i through (i, j). If we delete (i, j) from
the network, node j will lose chance to receive ci − ci6→j

j .
Second, the relationship between ci and ci6→j

j is similar to
the relationship between j’s influences before and after the
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Fig. 1: For (i, j), IETSM compares the difference between the original network G and the reduced network Gi6→j . IETSM
constructs ci, c

i6→j
i , and ci6→j

j from i’s and j’s neighborhoods to measures aij . The estimated aij can in turn adjust node
embedding.

deletion of (i, j). A strong tie’s nodes have more paths to
share their information than a weak tie’s nodes, and thus ci
and cj in the case of the weak tie are more different than the
case of the strong tie. Similarly, the influences of j before and
after the deletion of (i, j) are more different in the case of the
weak tie than the strong tie.

Third, we use ci6→j
i ·(ci−ci6→j

j ) to reflect the loss of the sim-
ilarity between i’s and j’s influences to their neighborhoods
after removing (i, j). The larger it is, the more impact (i, j)
makes, and the weaker the tie strength is. ci6→j

i · (ci6→j
j − ci)

can reflect the inverse of the impact of (i, j) on the similarity
between i’s and j’s influences to their neighborhoods. By
applying the sigmoid transformation, we could get an estimator
of the tie strength of (i, j):

âij = σ
(
ci6→j
i · (ci6→j

j − ci)
)
, (4)

where σ(x) = sigmoid(x) = 1/(1 + exp(−x)).

C. Acceleration by Random Walks

To accelerate the calculation of ci, ci6→j
i , and ci6→j

j , we
utilize the random walk technique, in which only a small
number of nodes in the neighborhoods of i and j are selected
each time to construct their influences.

A K-step random walk Si of i in G is a (K + 1)-length
path that starts from i and randomly moves K steps according
to the edges in G. With Si, we can compress ci by:

ĉi =
1

K + 1

∑
l∈Si

ul, (5)

where E(ĉi) = ci with βil in Eq. (2) selected by Eq. (3) [29].
Similarly, by drawing two random walks Si6→j

i and Si6→j
j of i

and j in Gi6→j , we can build ĉi6→j
i and ĉi6→j

j . We estimate aij
by

âij = σ
(
ĉi6→j
i · (ĉi6→j

j − ĉi)
)
. (6)

With T different groups of random walks Si, Si6→j
i , and

Si6→j
j , we can calculate T different estimators â1ij , . . . , â

T
ij . To

combine different âtij , aij is obtained by minimizing:

Oaij
=

T∑
t=1

(aij − âtij)2. (7)

The result of aij is simply the average value of âtij . Eq. (7)
is used in our algorithm to calculate the gradient of aij .

D. Adjusting Node Embedding by Tie Strength

Tie strength scores estimated by the inductive embedding
can in turn help adjust the node representations and achieve
more accurate estimations. For instance, a small tie strength
score aij of (i, j) could reflect that the i’s and j’s neighbor-
hoods are heterogeneous [3]. By weakening the link of (i, j),
the difference of the similarity between i’s and j’s influences
is augmented, which makes it easier to observe the impact of
(i, j). Inspired by this idea, we build a new objective function
for node embedding by the neighborhood proximity with aij .

Combining W with the tie strength score matrix A, the
neighborhood proximity between nodes should be the element-
wise product of W and A, W � A. Thus, the theoretical
probability that (i, j) is sampled with the starting point i is
pij = exp

(
ĉi6→j
i · (ĉi6→j

j − ĉi)
)
/
∑

k∈V exp
(
ĉi6→k
i · (ĉi6→k

k −
ĉi)
)
. The empirical probability to sample this edge is p̂ij =

wijaij/
∑

k∈V wikaik. Imitating the form of Eq. (1), we build
the second objective function for node embedding as:

O2 =
∑
i,j∈V

wijaij log
exp

(
ĉi6→j
i · (ĉi6→j

j − ĉi)
)∑

k∈V exp
(
ĉi6→k
i · (ĉi6→k

k − ĉi)
) . (8)

The overall optimization problem to extract the node repre-
sentations is max(O1+ρO2), where ρ is a hyper-parameter to
allocate the importance of two parts. This objective function
compromises the topological information between the individ-
ual level (O1) and the neighborhood level (O2).
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Algorithm 1 Effective Learning Algorithm of IETSM
Input: G = (V, E ,W), d, M , K, ρ, γ, and N .
Output: aij of each edge and ui of each node.

1: Initial aij and ui.
2: while less than N edges are sampled do
3: Sample an edge (i, j) from E .
4: Sample M negative nodes according to PG(v).
5: Sample K-step random walks Si, Si6→j

i , and Si6→j
j .

Calculate the current âij .
6: For each negative sampling vm, sample another three

K-step random walks Si,vm , Si6→vm
i , and Si6→vm

vm
.

7: Calculate the gradient of aij and all related ui from
Eq. (9), Eq. (12), and Eq. (13). Then update them by

aij ← aij − γ
∂(Oaij )

∂aij
, ui ← ui + γ

∂(O1 + ρO2)

∂ui
.

8: end while

E. Effective Learning Algorithm

Based on the aforementioned four components of IETSM,
the tie strength measuring and node embedding could comple-
ment each other. We propose the learning algorithm of IETSM
in which tie strength scores and node representations are
estimated simultaneously in an iterative process. In each step,
we update both of them based on their values in the previous
step. This is also an adaptive algorithm. Node representations
are learned by adaptive weights, and tie strength scores are
measured by adaptive node representations. Through this al-
gorithm, we can achieve the estimation of tie strength scores
effectively.

The steps of the algorithm are outlined in Algorithm 1.
Stochastic gradient descent (SGD) is used to update aij and
ui. For aij , we can calculate its gradient from Eq. (7):

∂Oaij

∂aij
= 2(aij − âij), (9)

where âij are the tie strength score estimated by the current
group of random walks Si, Si6→j

i , and Si6→j
j via Eq. (6).

For related ui, it is computationally expensive to calculate
their gradients, since the denominators of both O1 and O2

require the summation over the entire edge set. To address
this problem, we use the technique of negative sampling [30],
which only samples a small number of edges to approximate
the original objective function and reduce the computational
complexity. For each positive sample, we draw M negative
samples and approximate O1 and O2 by:

O1 =
∑
i,j∈V

wij

[
log σ(ui ·uj)+

M∑
m=1

Evm
log σ(−ui ·uvm

)
]

(10)

O2 =
∑
i,j∈V

wijaij

[
log σ

(
ĉi6→j
i · (ĉi6→j

j − ĉi)
)
+

M∑
m=1

Evm log σ
(
−ĉi6→vm

i · (ĉi6→vm
vm

− ĉi,vm)
)]
,

(11)

where vm is independently sampled from a uniform distribu-
tion of the nodes of V . For each vm, we generate another three
K-step random walks Si,vm , Si6→vm

i , and Si6→vm
vm

to calculate
ĉi,vm , ĉi6→vm

i , and ĉi6→vm
vm

.
After approximation, for O1 part, the corresponding gradi-

ents of ui, uj , and uvm are

∂O1

∂ui
= uj(1− σ(ui · uj))−

M∑
m=1

uvm
σ(ui · uvm

),

∂O1

∂uj
=ui(1− σ(ui · uj)),

∂O1

∂uvm

= −uiσ(ui · uvm
).

(12)

For O2 part, we take the example of ul with l in Si6→j
i but

not in the other random walks. The gradient of ul is:

∂O2

∂ul
=
∂ĉi6→j

i

∂ul
· ∂O2

∂ĉi6→j
i

,
∂ĉi6→j

i

∂ul
=

1

K + 1
,

∂O2

∂ĉi6→j
i

= aij(ĉ
i6→j
j − ĉi)

[
1− σ

(
ĉi6→j
i · (ĉi6→j

j − ĉi)
)]
.

(13)

The other ui included in Si, Si6→j
j , Si,vm , Si6→vm

i , and Si6→vm
vm

can be calculated in the similar way.
Complexity: The total number of edge samples N is

O(|E|), where |E| denotes the number of edges in E . The
process of sampling these edges uses constant time O(1) [12].
For each edge sample, the number of related nodes in random
walks and negative sampling is bounded by 3(K+1)(M+1).
The total complexity of one edge sample to calculate the
gradient of all related parameters is O(dKM). Therefore, the
overall time complexity of IETSM is O(dKM |E|). IETSM is
scalable and can efficiently be applied to large-scale OSNs.

IV. EXPERIMENTS

Now we perform experiments on five real-world datasets
to evaluate the effectiveness and efficiency of IETSM. All
datasets are publicly available and widely used in related
studies. The details of them are shown as follows. Table II
includes the number of nodes and edges of each dataset.
• KDD [8]: KDD is an author collaboration network of

papers published in KDD. The number of collaboration
between two authors reflects the tie strength.

• Bitcoin-Alpha [31]: Bitcoin-Alpha is an online who-
trusts-whom network that records the trust score made
to members of Bitcoin Alpha by other members.

• Youtube1 [32]: Youtube1 is an online contact network of
users of Youtube. The number of shared favorite videos
between two nodes is taken as the ground truth of tie
strength.

• Flickr [33]: Flickr is an online relationship network
collected from Flickr, which is a photo management
website. Users of Flickr share photos with each other and
their interactions form a network. Each user is labeled
with one of nine different interest groups.

• Youtube2 [32]: Youtube2 is another online contact net-
work of users of Youtube that includes more than one
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TABLE II: Description of the Datasets

Dataset Nodes Edges Ground Truth

KDD 2,892 22,416 # Collaboration
Bitcoin-Alpha 3,783 24,186 Trust Score
Youtube1 15,088 76,765 # Shared Favor Videos
Flickr 7,575 239,738 Community
Youtube2 1,138,499 2,990,443 Community

million nodes and over two million edges. Users in
Youtube2 has pre-defined community information.

Baseline methods: We include five groups of methods as
baseline methods. (i) To evaluate the contribution of inductive
embedding in gathering the topological information, we in-
clude NO and Adamic-Adar (AA). (ii) To compare the impact
analysis with the similarity analysis, we include Katz and
Node Similarity (NS). (iii) To test the effectiveness of focusing
on weak ties rather than strong ties to measure tie strength,
we include STC-LP2. (iv) To compare our framework with
the edge centrality methods, we include edge betweenness
centrality (EBC). (v) To demonstrate the effectiveness of the it-
erative training of tie strength scores and node representations,
we include IETSM-na, in which the estimated tie strength
scores are not used to adjust the node representations. Their
descriptions are listed below.
• NO [10]: Use di to denote the degree of node i and Oij

to indicate the set of nodes directly connecting with both
i and j. NO index of an edge (i, j) is defined as

NOij =
|Oij |

di + dj − 2− |Oij |
.

• AA [34]: AA index of an edge (i, j) is defined as

AAij =
∑
l∈Oij

1

log(dl)
.

• Katz [16]: Katz counts the number of paths between two
nodes and uses it as the estimated tie strength.

• NS: NS is calculated as the inner product of two nodes’
representations learned by LINE of the first order prox-
imity [12]. We can treat NS as an example to directly
use the network embedding method without the impact
analysis to measure tie strength.

• STC-LP2 [8]: STC-LP2 infers the tie strength by solving
a linear programming problem on strong triadic closure
(STC) property.

• EBC [24]: EBC is calculated as the number of the
shortest paths between nodes that go through an edge
in the network.

• IETSM-na: In IETSM-na, the estimated tie strength
scores are not used to adjust the node representations
with ρ = 0.

As some baseline methods only work on undirected networks,
we transform all datasets to undirected networks for a fair
comparison.

Experimental settings: To evaluate the performance of tie
strength measuring, we follow the widely-used method de-
scribed in [35] to build our evaluation metric, mean frequency.

First, given a network as the input, we get the predicted tie
strength scores of all edges of a measuring method. Based on
the tertiles of the predicted scores, we divide the edges into
three groups with equal size, i.e., weak, medium, and strong
groups. Then the empirical tie strength such as the number
of social communications through the edge is used as the
ground truth of tie strength. We define mean frequency as the
arithmetic mean of the empirical tie strength scores of edges in
a group. For a good tie strength measuring method, a group of
edges with low (or high) predicted tie strength scores should
have relatively low (or high) empirical tie strength scores,
which leads to a low (or high) mean frequency.

We set N = 100|E|, ρ = 5, M = 5, and K = 5 for
IETSM. The embedding dimension d is set as 100 for both
NS and IETSM.

A. Effectiveness of IETSM

We use two types of empirical tie strength as the ground
truth of tie strength, one based on social intimacy such as the
number of collaborations and the other based on community
categories. Both of them are widely used in the existing
works [8], [35].

Evaluation based on social intimacy: From Table III,
we observe that on the weak group of all three datasets,
IETSM has the lowest mean frequency and IETSM-na has
the second-lowest mean frequency. Particularly, comparing
IETSM-na with the best method among the other baseline
methods, measuring the tie strength based on the changes of
nodes’ influences via inductive embedding achieves an average
of 4.81% improvement on the weak group. Comparing IETSM
with IETSM-na, the iterative learning algorithm achieves an
average of another 5.16% improvement on the weak group.
NS does not perform well in most cases, which shows that
directly using the network embedding method does not ensure
to make good tie strength measuring.

For the strong group, IETSM achieves the highest mean
frequency on Bitcoin-Alpha and the second-highest mean fre-
quency on KDD but does not perform as well as NO and AA
on Youtube1. Meanwhile, we observe that the mean frequency
of IETSM increases over three groups of edges on all three
datasets, whereas other methods could have a higher value in
the weak group than the medium group. These experiments
demonstrate that IETSM performs better in discovering the
edges with weak tie strength than other methods, which is
reasonable since we focus on the impact of an edge on the
network to measure the tie strength. The impacts of weak ties
are more evident than strong ties to recognize.

Evaluation based on community structure: Previous stud-
ies have shown that weak ties often work as bridges between
different communities, while strong ties are more likely to
connect nodes in the same community [1], [3]. Following
the existing work [35], we now evaluate the performance of
IETSM from the community aspect on Flickr and Youtube2
networks. We label the edges within the community as the
strong ties with value 1 and the edges connecting different
communities as the weak ties with value 0. Then the mean
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TABLE III: Mean Frequency for Different Groups

Dataset Method Weak (↓) Medium Strong (↑)

KDD

NO 1.54 1.70 2.40
AA 1.54 1.28 2.81
Katz 1.81 1.36 2.46
NS 1.52 1.97 2.14
STC-LP2 1.86 1.89 1.89
EBC 1.79 1.92 1.92
IETSM-na 1.36 1.65 2.63
IETSM 1.30 1.65 2.69

Bitcoin
Alpha

NO 2.47 2.23 2.82
AA 2.50 2.31 2.71
Katz 2.56 2.27 2.69
NS 2.66 2.17 2.69
STC-LP2 2.50 2.51 2.51
EBC 2.35 2.45 2.72
IETSM-na 2.31 2.52 2.69
IETSM 2.21 2.50 2.82

Youtube1

NO 0.94 1.44 2.76
AA 0.94 1.45 2.75
Katz 1.07 1.48 2.59
NS 1.24 1.46 2.43
STC-LP2 1.70 1.71 1.72
EBC 0.91 1.95 2.28
IETSM-na 0.89 1.62 2.62
IETSM 0.83 1.78 2.51

TABLE IV: Percentage of Strong Tie for Different Groups

Dataset Method Weak (↓) Medium Strong (↑)

Flickr

NO 0.22 0.23 0.27
AA 0.23 0.26 0.22
Katz 0.24 0.26 0.22
NS 0.17 0.22 0.32
STC-LP2 0.23 0.24 0.24
EBC 0.22 0.23 0.27
IETSM-na 0.14 0.22 0.35
IETSM 0.14 0.21 0.36

Youtube2

NO 0.48 0.54 0.58
AA 0.49 0.53 0.57
NS 0.54 0.54 0.51
IETSM-na 0.47 0.53 0.56
IETSM 0.43 0.54 0.59

frequency metric becomes the percentage of the strong tie in
each group. Table IV includes the results. Katz, STC-LP2, and
EBC do not have the results on Youtube2 since they are not
scalable and cannot finish within a reasonable time.

We observe that IETSM has the lowest percentage of the
strong tie in the weak group and the highest percentage of
the strong tie in the strong group for both datasets. IETSM-
na achieves the second-best performance except for the strong
group of Youtube2. Compared with the second-best method
except for IETSM-na, IETSM achieves 17.6% and 12.5%
improvement on weak and strong groups for Flickr, and 10.4%
and 1.7% improvement for Youtube2. These results show that
IETSM can provide a proper order of edges in identifying the
weak and strong ties to reflect the natural community similarity
among the users in the network.

Case Study: To intuitively inspect the performance of
IETSM, we show the estimated tie strength scores of different
methods via visualization. Figure 2 shows the results of
different methods on a sub-network of the Flickr dataset with
randomly selected 400 users from two communities (colored
by red and green respectively). For each method, we draw
the edges with the top 10% (blue solid edges) and the last
10% (grey dashed edges) of the estimated tie strength scores.
For a good measuring method, most of the estimated-strong
ties should be the within-community edges, and most of
the estimated-weak ties should be the between-community
edges. Among all methods, IETSM has the most estimated-
weak ties between two communities and the most estimated-
strong ties within one community. NS performs the second-
best but does not recover the tie strength scores of edges in the
green community well. NO, AA, Katz, and EBC misidentify
many between-community edges as strong ties. STC-LP2 is
not shown since it performs the worst. The visualization
demonstrates the effectiveness of IETSM.

B. Efficiency of IETSM

Theoretically, IETSM has a complexity of O(dKM |E|).
Now we test the efficiency of IETSM in practice. We con-
struct ten sub-networks of Youtube2 by randomly selecting
10%, 20%, . . . , 100% of nodes and process IETSM to them
with ten parallel threads. The relationship between the number
of edges and the equivalent computation time of one thread is
shown in Figure 3. We observe that as the network grows, the
computation time of IETSM increases in a linear speed of the
number of edges, which verifies the efficiency of IETSM.

V. CONCLUSION

Tie strength reflects the impact of an edge in information
diffusion and benefits various real-world applications. Measur-
ing the tie strength in OSNs is still a challenging task. We de-
velop a novel framework, IETSM, to measure the tie strength
in OSNs from the network view. We formally define the tie
strength according to its properties in information diffusion.
Then, IETSM measures tie strength based on the impact of an
edge on the similarity between its two nodes’ influences built
on inductive embedding. An effective algorithm is proposed by
iteratively updating learn network embedding and tie strength
scores. Experiments on real-world datasets demonstrate the
effectiveness and efficiency of IETSM. In future work, we
plan to advance IETSM to the dynamic OSNs. In practice, the
OSNs might change dynamically, which would further affect
the tie strength. Another direction is to involve node attributes
such as tweets and reviews to boost the tie strength measuring.
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(a) NO (b) AA (c) Katz
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Fig. 2: The estimated top 10% strong ties (blue solid line) and weak ties (grey dashed line), based on the six methods.

Fig. 3: Computation time of IETSM.
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