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Abstract—Prominent structural patterns such as small-world
and core-periphery structures amount to some of the most
important emergent characteristics of a social network. Yet
little work is done to interpret these emergent phenomena in
a unified way. Towards a unified interpretation framework, we
connect the establishment of social patterns with social capital.
Social capital captures the benefits that an individual gains
from its social surrounding. We argue that individuals’ desire
to gaining higher social capital may give rise to important
network properties. To validate this claim, we propose social
capital game that mathematically conceptualizes bonding and
bridging social capital. This framework allows us to regard
individuals in a social network as learning agents who gain
social capital through iteratively building interpersonal ties. The
link-building decisions of these agents are guided by a multi-
agent reinforcement learning (MARL) algorithm which improves
agents’ capability through repeated game plays. We conduct
a series of experiments which demonstrate (1) the collective
behaviors of the agents give rise to salient social patterns, and
(2) by varying agents’ preferences to different forms of social
capital, different types of social patterns emerge. In particular,
bonding social capital plays a pivotal role in the formation of a
community structure in the network while bridging social capital
is instrumental to the emergence of core-periphery structure.
Our work sheds light on the formation of complex network
phenomena.

Index Terms—Multi-agent reinforcement learning; Network
formation; Social structures; Social capital

I. INTRODUCTION

One of the key themes of social network analysis re-
volves around discovering salient structural patterns within
a social network. For example, co-authorship networks often
demonstrate community structure, where scholars form rings
of collaboration within disciplinary boundaries [1]. Another
example is that online social platforms often exhibit small-
world property, which means that any two users are often
connected through a small number of intermediate acquain-
tances [2]. A third example is that in human organizations one
usually observes core-periphery structure, where a minority of
nodes form a core that sits in the center of the network while
others stay at the outskirts [3]. Capturing these properties
not only give us important insights on the network, but also
enable the design of random graph models that could simulate
real-world networks through computational means. As social
networks are organically grown, these structural properties also
arise as an emergent, rather than a prescriptive, phenomenon.
Uncovering the mechanism behind these emergent phenomena
would deepen our understanding of how social networks form,
function and evolve. However, no theory yet achieves a unified
interpretation of the emergence of social structural patterns.
Our knowledge regarding why such structural patterns emerge,

and more specifically, why some networks exhibit some of the
patterns while others exhibit other patterns, remain limited.
A question thus naturally arises: What would be a unified
mechanism behind the emergence of social structural patterns?

To answer this question, one needs to explore the driving
force behind the formation of social structures. Evidence
rooted in sociology has indicated that social structures tightly
correlate with social capital [4]. The concept of social capital
amounts to the benefits that social ties confer to individuals.
These benefits can be tangible, e.g., economic and human
resources, or impalpable, e.g., social support, information
control, and social influence [5]. In social psychology, the
reward theory of attraction claims that people tend to interact
with those whose behaviors are rewarding to themselves or
those who are associated with rewarding events [6]. These
studies support a theory that links the formation of the social
network structure with social capital, where social capital
embodies the rewards gained by individuals through social
networking.

To develop this theory, two challenges need to be resolved.
We first need a rigorous definition of social capital. A well-
known dichotomy has divided discussions on social capital
into two categories: bonding capital and bridging capital [7].
The former depicts the aggregate welfare that an individual
draws from its closed social circle in the form of, e.g.,
trust and social support [8], while the latter captures the
individual’s capacity to acquire opportunities and information
via open links and determines, e.g., status and power [9].
An individual’s reward in building social ties would be a
combination of these two forms of social capital.

Since social capital arises from the establishment of social
ties [10], it is then important to develop a model for the
social instruments that enable individuals to build ties [11],
[12]. Most existing model are one-shot models in the sense
that they build ties all at once, providing limited insight
into the network dynamics [13], [14]. In contrast, several
recent work aim to capture the dynamics of networks [15],
[16]. Individuals’ access to information is also an important
factor to consider. Most existing models grant individuals
with complete information about the network, while recently
some models stipulate that agents only have local information
to reflect their restricted sights in a large and decentralized
network [17], [18]. Thus, to simulate real-world societies, a
combination of dynamic models and incomplete information
is desirable within the scope of this work.

This work aims to develop an agent-based framework for the
formation of social network from a social capital perspective.
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In our framework, social actors are agents who are able to
establish social links with others. Their decisions to establish
links are driven by a desire to grow their social capital. The
framework specifies how their decisions evolve and improve
through repeated interactions with others. These improvements
are reflected at the population-level as the emergence of social
structural patterns. The contribution of our work are many-
fold: (1) Our framework formalizes the notions of social capi-
tal using metrics in social network analysis. (2) We propose a
game-based model, namely social capital games (SCG), that
capture the dynamics of social networks and behavioral traits
of agents. (3) To model the agents’ behavioral changes when
playing SCG, we adopt multi-agent reinforcement learning
(MARL). Agents are treated as independent learners in a
shared environments equipped only with local information
about the network. To the best of our knowledge, we are the
first to bring the multi-agent learning paradigm to the field of
network formation. (4) We perform a series of experiments
and observe the resulting networks formed as a result of
the learning process of agents in SCG. In particular, we
observe the emergence of community, small-world, and core-
periphery structures as the agents acquire higher social capital
through training under different configurations. Moreover, by
varying agents’ preferences to different forms of social capital,
different types of social patterns emerge. In particular, bonding
social capital plays a pivotal role in the formation of a
community structure in the network while bridging social
capital is instrumental to the emergence of core-periphery
structure. With these analysis, our work sheds light on the
formation of complex network phenomena.

Related Work. Pioneering works in sociology advanced the
research on social capital. Coleman laid the foundation for the
research on social capital [5], [19]. Bourdieu proposed that
homophily is the source of bonding capital [8]. Granovetter,
Putnam, and Burt stated that weak ties are the source of
bridging capital [9], [20]. Inspired by their work, we formalize
two types of social capital. Recently, a number of works have
uncovered vital roles that social capital plays in a wide range
of applications, such as resource management [21], disaster
survival analysis [22] and unemployment analysis [23].

Network formation models aim to discover the natural emer-
gence of social structures. Traditional approaches to network
formation fall into three main paradigms: models based on
random events, models based on strategic decisions, and
empirical models distilled via mining data of real-world social
networks. Models based on random events are generative mod-
els with ad-hoc designs that mimic real-world networks [24]–
[26]. Agents wherein are manipulated in probabilistic manners,
e.g., preferential attachment [27], to produce intended degree
distributions. Though such models can generate networks with
desired structural properties, they pay limited attention to
agents’ behavioral acquisitions and are thus limited to explain
the emergence of social structures over time. Models based
on strategic decisions provide an explanation for how social
structures emerge as equilibria of network formation games
[13], [17]. However, results of these models are limited to
stability and efficiency and neglect dynamics of networks.
Empirical models can offer evidence for community detection
[28], link prediction and recommendation [29] by mining real-

world data, but are powerless to show how networks form in
real life. Our work differs from these models as the following
properties hold simultaneously in our proposed framework: (1)
the SCG captures dynamics of societies; (2) MARL captures
behavioral traits and acquisitions of agents; (3) our model
reproduces classical types of social structures rather than being
restricted to a specific class.

Multi-agent reinforcement learning has been adopted in
social simulation under game-theoretic setups. For example,
Sen and Airiau introduce reinforcement learning to simulate
the emergence of social convention [30]. In their framework,
agents learn strategies through iteratively interacting with each
others. Many work follows this idea to study norm emergence
in networked multi-agent systems [31]–[33]. More recently,
deep learning-based MARL is used to analyze the emergence
of cooperation [34]–[36]. So far, there has not been any work
that applies MARL to the field of network formation. In
this work, instead of studying the emergence of behavioral
norms, we focus on the emergence of “structural norms”, i.e.,
social structures. We use graph neural networks to learn latent
features of the network, since the social surrounding of an
agent is structured data. Likewise, the reinforcement learning
is adopted to learn a policy.

II. BACKGROUND

Following standard conventions, a social network is viewed
as a graph. Fix N = {1, 2, . . . , n} as a set of social actors (i.e.,
agents), each representing a node in a graph. Edges between
nodes represent social ties. We define the complete graph gN
as the set of all subsets of N of size 2. Hence {g | g ⊆
gN} denotes the set of all possible graphs on N . For any two
distinct nodes i, j ∈ N , {i, j} ∈ g indicates that an undirected
edge exists between i and j in graph g. For simplicity, we
write ij ∈ g. Now we can formalize the creation of links, for
any g′ ⊆ gN , let g + g′ denote the integrated graph obtained
via adding each link ij ∈ g′ into g, i.e., g + g′ = g ∪ g′.

A path in g is a sequence of edges i1i2, i2i3, . . . , iM iM+1

where imim+1 ∈ g for all 1 ≤ m ≤ M . The distance
dist(i, j) between i and j is the length of a shortest path
between these two nodes. We focus on connected graphs and
thus dist(i, j) < ∞ for any i, j ∈ N . The d-hop neighbor
set of i is Nd(i) := {j ∈ N | dist(i, j) = d}. We denote
Nd[i] := {j ∈ N | dist(i, j) ≤ d} all i’s neighbors within
distance d. As stated earlier, an agent is often restricted to
access complete information of the network in real life. To
capture this fact, we assume an agent i’s vision is restricted to
N2[i], i.e., friends and friends of friends. Formally, we employ
the notion of 2-level ego network, which represents the social
surrounding that an agent perceives and maintains.

Definition 1 (2-level Ego Network). The 2-level ego network
of node i ∈ N is the subgraph oi ⊆ g induced by i, i’s 1-hop
and 2-hop neighbors, i.e., oi := {jk | j, k ∈ N2[i]}.

Social structural patterns are topological properties in the
context of graphs. We briefly present three classical and
widely-studied structural patterns:
• Community: The community structure has been known
as a prevalent property in social networks. Namely, nodes
in the network can be partitioned into clusters, with a high
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density of edges within each cluster but low density of
edges between these clusters [1], [37]. Formally, a community
structure of a graph g ⊆ gN refers to a partition of N ,
C = {C1, C2, . . . , Ck}, such that each component induces
a connected subgraph. A standard method to quantify the
significance of community structure is modularity, which
measures how many edges lie within clusters relative to the
expected number of such edges:

MOD(C) = 1

2|g|
∑
i,j∈N

(
Ai,j −

didj
2|g|

)
δ(ci, cj), (1)

where Ai,j = 1 if ij ∈ g and Ai,j = 0 otherwise; di is
the degree of node i; ci denotes the community of node i;
δ(ci, cj) = 1 if ci = cj and δ(ci, cj) = 0 otherwise.
• Small-World: The small-world property is one of most
important attributes of a complex network, e.g., Internet and
gene networks [2]. Loosely speaking, the property asserts that
every pair of nodes are within a small distance apart. Small-
world is reflected by a high clustering coefficient and a low
average shortest path length. The clustering coefficient of a
node i, c(i), measures the probability of two randomly chosen
friends of i are also friends. The clustering coefficient of a
graph g, CC(g), averages clustering coefficients of all agents:

CC(g) =
∑
i∈N

c(i)

|N |
=
∑
i∈N

2 · |{jk ∈ g | ij, ik ∈ g}|
di(di − 1)|N |

. (2)

The average shortest path length of a graph g, L(g), measures
the average distance between all pairs of nodes, i.e.,

L(g) =
1

|N |(|N | − 1)

∑
i6=j∈N

dist(i, j). (3)

• Core-Periphery: Core-periphery (C-P) structure is a com-
mon property of real-world social networks and networks of
the economy [3], [15], where a densely connected core is
in the center, and other nodes are located at edges. Broadly
speaking, a scale-free graph can be viewed as an instance of C-
P structure, where the degree distribution follows a power law.
A popular measurement is C-P coefficient, which measures the
prominence of C-P structure of the given graph relative to the
expected prominence [38]. C-P coefficient is defined based
on the notion of extended closeness centrality for a subset of
nodes:

δg(U) =
∑

i∈U,j 6=i∈N
dist(i, j)/|U |, (4)

where U ⊆ N . The C-P coefficient is formally defined as

CCP (g) =
δg(Uk-core(g))

δg(N)
− E

[
δg′(Uk-core(g

′))

δg′(N)

]
, (5)

where Uk-core(g) is the set of nodes of the maximum subgraph
of g with minimum degree k and maximal δg value, g′ is a
graph with the same degree sequence as g.

III. TOWARDS A FORMALIZATION OF SOCIAL CAPITAL

Rooted in sociology, the concept of social capital aims
to capture the benefits attained by individuals via social
interactions. Such benefits can emerge in the form of social
support, companionship, solidarity, influence, and control over
information, which are closely related to network structural
properties. As a result, social capital should be measured based

on structural properties. However, the structure itself does not
define social capital. Instead, social capital arises as a function
of social interactions and information conveyed through social
relations [19], [39]. Social relations have long been classified
based on their functions: While strong ties link homogeneous
and like-minded individuals, weak ties bridge diverse and
weakly connected groups [20]. Analogously, social capital also
consists of two types: bonding capital refers to benefits an
individual draws from its closed neighborhood, in the form of,
e.g., trust and support, which are brought by strong ties; while
bridging capital is an embodiment of benefits of accessibility
to information and control over information flow, which are
largely functions of weak ties. However, so far no consensus
has been reached over the formal definitions of social capital.
In this paper, we adopt two metrics to measure these two
notions in the context of social networks.

Bonding capital, as it is often expressed as trust and
companionship, measures the extent to which two nodes bind
with each other [8]. This can be aptly captured through
a measure of “social proximity”. In other words, a node
gains more bonding capital as it gets closer to others in its
neighborhood. To this end, we adopt personalized PageRank
index, which evaluates structural proximity between nodes
through predicting the likelihood of edges between any pairs
of nodes [40], [41]. The metric is adapted from PageRank: It
takes as input a starting node i, and assigns a score to every
node j that captures the likelihood of a random walk from i
to reach j. Fix a restart probability β ∈ (0, 1), random walk
starts from the node i; stops moving at each node with the
probability of β and restarts from the node i; or continues to
walk with the probability of 1 − β by randomly selecting a
node from the neighbors of the current node. The probability
that each node is accessed converges in finite rounds of
walking. Each entry of the personalized PageRank vector pr
records the probability that the corresponding node is accessed.
More formally, let aj be the column vector in the adjacency
matrix of g corresponding to node j. Denote by prj , the link
prediction score between i and j is:

prj = βrj + (1− β)(pr · aj/|N1(j)|), (6)

where β ∈ (0, 1) is the restart probability, rj = 1 if j = i and
rj = 0 otherwise, and each entry of the personalized PageRank
vector pr records the probability that the corresponding node
is accessed. Intuitively, assume that i holds certain amount
of “goodwill” which is randomly shared with i’s neighbors,
and whoever that obtains such goodwill can continue to pass
goodwill to their neighbors or return them to the node i, in
the same manner as a random walk. Bonding capital can be
viewed as the amount of goodwill eventually received by i.

Definition 2 (Bonding Capital). Given a graph g ⊆ gN and
a node i ∈ N , the bonding capital of i is defined by summing
personalized PageRank indices between i and i’s neighbors,
namely, boi :=

∑
j∈N1(i)

prj .

Occupying a central position to act as a gateway for
information exchange brings an individual bridging capital [9].
Betweenness centrality is used to evaluate bridging capital in
[26], [42]. The betweenness centrality of a node measures the
number of the shortest paths between each pair of other nodes
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that pass through it, and thus reflects the agent’s ability to
broker interactions between different groups of agents.

Definition 3 (Bridging Capital). Let g ⊆ gN be a connected
graph. The bridging capital of i ∈ N , is defined as i’s
betweenness centrality: bri :=

∑
j 6=i6=k∈N σjk(i)/σjk, where

σjk is the number of shortest paths between nodes j and k,
and σjk(i) is the number of shortest paths passing i.

An individual may have different preferences to two types
of capital. To reflect this fact, we employee a preference weight
w ∈ [0, 1] to define the mixed capital.

Definition 4 (Mixed Capital). Let g ⊆ gN be a graph. For
a node i ∈ N and a preference weight w ∈ [0, 1], the mixed
capital is defined as mixi,w := wboi + (1− w)bri.

IV. THE MODEL: SOCIAL CAPITAL GAMES

We construct a game-based model, social capital game,
which takes social capital as utilities. Individuals wherein
are regarded as social-capital-driven and self-interested agents.
Before formally define social capital games, we first address
following auxiliary notions.
Dynamic networks. Let N = {1, 2, . . . , n} be a finite set
of agents. An (`-length) finite dynamic network is a sequence
of graphs G = g0, g1, . . . , g` that evolves in finite discrete
time steps 0, 1, . . . , `, where ` is the termination step. Each
gt ⊆ gN is called a network instance at step t. Throughout, we
use superscript t and subscript i to denote the corresponding
notation derived from time step t and agent i, respectively. At
each step t < `, each agent i ∈ N builds a link to another
agent ati from i’s 2-hop neighbor set N t

2(i), as i’s observation
is restricted to the 2-level ego network oti. All agents make de-
cisions simultaneously, resulting in the next network instance
at step t + 1. Formally, ∀0 ≤ t < ` : gt+1 = gt + {iati}i∈N ,
where ati ∈ N t

2(i).
Remark. Two caveats exist here: Firstly, we have to clar-
ify the evolution of real-world networks. In principle, any
addition/deletion of node/edge may happen. To simplify the
model, however, we only allow additive changes, that is, the
only allowable change is the addition of edges. Secondly, the
creation of edges is unilateral in our model, though a large
literature on network formation games assume an edge must
be established reciprocally, i.e., an edge emerges and persists
only if both involved nodes gain payoff from it [13]. However,
unilateral edges also cover a large class of real-world networks
such as online social networks and academic citation networks.
On the other hand, many classical network formation models
also adopt additive changes and unilateral edges [2], [43].
Utilities. We measure the immediate utility of an agent as the
increment of the mixed capital between two consecutive time
steps. Formally, the utility of agent i received at step t+1 after
linking to ati is defined as: ut+1

i := mixt+1
i,wi
−mixti,wi

. As such,
the cumulative utility of agent i at step t sums over rewards
received at all elapsed time steps: U t

i :=
∑t

i=1 u
t
i = mixti,wi

−
mix0i,wi

. A social capital game (SCG) incorporates dynamic
networks and rewards, which is formally defined below.

Definition 5 (Social Capital Games). A social capital game
(SCG) is a tuple (N,W, g0, `), where

• N = {1, 2, . . . , n} is a finite set of agents;
• W = (w1, w2, . . . , w|N |) is a preference vector, in which

each entry wi records the preference weight of agent i;
• g0 ⊆ gN is the initial network;
• ` ∈ N+ is the termination step.

Conceptually, one can view an SCG as a multi-stage game
played amongst agents over graphs with imperfect informa-
tion. The goal of an agent i is to select actions in a way that
maximizes the cumulative utility U `

i during the whole course
of a game. At each stage, all agents build links simultaneously,
resulting in that the game enters to the next stage. The
behavioral trait of an agent is thus reflected by the policy to
build links. Our attention here is that how an agent i take a
strategy to build a relationship under an observation oi and
preference weights of within agents.

Definition 6 (Policy). Let (N,W, g0, `) be a social capital
game. A policy of an agent i ∈ N is a function πi defined on
all possible 2-level ego networks1 of i such that πi(oi) = a ∈
N2(i) for any oi ⊆ gN .

We put the process of learning a policy under the MARL
framework. A refinement of policies yields an updated un-
derlying dynamic network. The network instance at the ter-
mination step, g`, depicts the social structure resulted by the
ensemble of agents’ policies. Thus the change of g` represents
the evolution of social structures as a function of behavioral
acquisitions towards gaining social capital. We investigate
what and how social structures emerge under different con-
figurations of SCGs.

V. LEARNING: MARL

To learn a policy, an agent should have two basic abilities:
(1) extract explicit and latent information from the observation;
(2) based on received utilities, criticize and adjust the way to
make decisions. To this end, our learning method is adapted
from S2V-DQN as in [44], which is an end-to-end deep learn-
ing architecture to solve graph-based combinatorial problems.
S2V-DQN incorporates graph embedding and reinforcement
learning. Graph embedding is a technique of representation
learning on graphs, learning latent features of network struc-
tures. It resolves two challenges in SCGs: (1) graphs are not
fixed-size formatted data; (2) social surroundings of an agent
can be too complex to learn from.

In our proposed MARL method for SCGs, all agents are in-
dependent learners that independently and synchronously use
S2V-DQN to learn a policy. More formally, let (N,W, g0, `)
be an SCG, each agent i ∈ N estimates the quality of linking
to another agent a ∈ N2(i) under an observation (2-level ego
network) oi using an evaluation function Qi(oi, a). The policy
πi thus naturally functions greedily with respective to Qi, i.e.,

πi(oi) := argmaxa∈N2(i)Qi(oi, a). (7)

S2V-DQN uses structure2vec [45] to parameterize
Qi(oi, a;Θi) that computes a p-dimensional feature embed-
ding µj for each node j involved in an observation oi. µj is
iteratively updated. Initialized as 0, after T iterations, µj will

1Since preference weights are fixed of a social capital game, the preferences
weights of agents within agent i’s observation is uniquely determined by oi.
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Fig. 1. An example for the learning processing for an single agent in a single time step. We run T = 4 iterations in the procedure of graph embedding.
We set the dimension of vectors p = 32. The size of minibatch for experience replay is set as b = 32. Note that all agents execute the above procedure
simultaneously while learning.

contain information about its T -hop neighbors as determined
by the structure of oi. The update rule is:

µ
(t+1)
j = ReLU

(
θ1xj + θ2

∑
k∈N1(j)

µ
(t)
k

)
, (8)

where θ1 ∈ Rp×2,θ2 ∈ Rp×p are model parameters and ReLU
is the rectified linear unit (ReLU(z) = max(0, z)). xj is a
vector that incorporates explicit features of j. In the context
of SCGs, we set xj = (wj , dist(i, j))

ᵀ.
The embedding µa and the pooled embedding over the

entire observation, φ(oi) :=
∑

j∈N2[i]
µj , are used as the

surrogates for a and oi, respectively, i.e.,

Qi(oi, a;Θi) = θ
ᵀ
3 relu(θ4φ(oi) ⊕ θ5µa), (9)

where θ3 ∈ R2p,θ4,θ5 ∈ Rp×p, and ⊕ is the concatenation
operator. Qi(oi, a;Θi) is based on a collection of 5 parameters
Θi = {θm}1≤m≤5, which will be learned.

The experience replay is used to update Θi with a batch
of samples drawn from a experience dataset Di. A dataset Di

is pooled over episodes such that for each t < `, a tuple(
oti, a

t
i, r

t+1
i , ot+1

i

)
is added. For the terminate step `, we

define Qi(o
`
i , a) ≡ 0. For each step, a minibatch of tuples (size

of b) is randomly sampled from Di. Then stochastic gradient
descent is executed on the following squared loss:

L(Θi) = E(o,a,r,o′)∼Di

[
(y −Qi(o, a;Θi))

2
]
, (10)

where y = r +maxa′ Qi(o
′, a′;Θi) is the update target. The

architecture of learning is depicted in Fig. 1. The pseudocode
is illustrated in Alg. 1.

VI. EMERGENCE: SOCIAL STRUCTURAL PATTERNS

We train |N | = 100 agents and set the initial network g0 as
a regular ring lattice, a graph with |N | nodes each connected
to two neighbors, one on each side. A lattice captures a homo-
geneous and loosely connected society which does not exhibit
any meaningful community, small-world or core-periphery
structure. Lattices are often used as initial configurations in
network generation models, e.g., small-world model [2]. We

Algorithm 1: MARL for Social Capital Games
Input: A social capital game (N,W, g0, `)

1 Initialization: initialize experience dataset Di for all i ∈ N
2 for each episode do
3 for step t = 0 to `− 1 do
4 for agent i = 1 to n do

. Choose actions subject to ε-greedy5

ati =

{
random agent a ∈ N t

2(i), w.p. ε

arg maxa∈N t
2(i)

Qi(o
t
i, a; Θi), otherwise

6 gt+1 = gt + {iati}i∈N . Update Network
7 for agent i = 1 to n do
8 rt+1

i = mixt+1
i,wi
−mixti,wi

. Compute rewards

9 for agent i = 1 to n do
. Update experience dataset

10 Add tuple
(
oti, a

t
i, r

t+1
i , ot+1

i

)
to Di

11 for agent i = 1 to n do
. Experience replay

12 Sample a minibatch (of size b) B iid.∼ Di

13 Update Θi by SGD over Eq.(10) for B

investigate the emergence of social structures via varying the
terminate step ` and the preference vector W . For comparison,
we employ random network generation models as baselines.
Also, for each termination step ` ∈ {2, 5, 8}, we generate 100
randomly created networks for reference, where in each step
each agent randomly links to one from its 2-hop neighbors.

A. Emergence of community structure

Individuals naturally bind with each other to form groups.
In a community structure, the communities form the social
surrounding that provides individuals with a range of benefits
such as social support, i.e., bonding capital. Therefore, we
make the following prediction:

Prediction 1. Community structure emerges when all agents
are in pure pursuit of bonding capital.
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Fig. 2. Results for (a) modularity for the emergence of community structure; (b) clustering coefficients and (c) average shortest path length for the emergence
of small-world structure; (d) C-P coefficients after 105 episodes and (e) change of C-P coefficients during learning for the emergence of core-periphery
structure. The darker line shows the median over 10 independent runs and the shaded area is obtained by averaging the two extreme values.

For experimental settings, we set preference weight wi = 1
for all 1 ≤ i ≤ 100 and vary ` in {2, 5, 8}. After each training
episode terminates, we use Louvain algorithm, a well-known
community detection method [46], to compute a community
structure of each g`. We then compute the modularity value
of g` based on the obtained community strcuture. We conduct
10 independent runs.

We adopt two random graph generation models for the
community structure as baselines:

• Caveman graphs (CG) [47]. It generates a graph by
modifying a set of n isolated k-cliques (complete graphs)
by removing one edge from each clique and using it to
connect to a neighboring clique along a central cycle
such that all n cliques form a single unbroken loop. Each
modified clique forms a community.

• Random partition graphs (RPG). A graph is generated
from n groups of isolated nodes C1, C2, . . . , Cn, each of
predefined sizes s1, s2, . . . , sn. Nodes in the same group
are connected with probability pin and nodes of different
groups are connected with probability pout < pin. Each
group is counted as a community.

We generate 100 instances for each model by varying model
parameters (n · k = 100 for caveman graphs;

∑n
i si = 100,

pin = 0.25 and pout = 0.01 for random partition graphs).

Results. See results in Fig. 2(a). Snapshots are shown in
Fig. 3(a) that depict the emergence of communities. Three
facts stand out: (1) Modularity grows and fluctuates as the
number of training episodes increase. (2) Modularity output
by our learning framework is higher than randomly generated
networks. (3) Modularity resulted by our learning framework
when ` = 2 and ` = 5 is comparable to by CG and RPG,
respectivey. These results clear suggest the emergence of com-
munity structure, which verifies Prediction 1. Interestingly, the
modularity shows a negative correlation with the termination

step `. This implies the fact that a capability to establish more
relationships tends to drive agents to meet more other faraway
agents, diminishing the formation of communities.

B. Emergence of small-world structure

As mentioned above, a small-world network tends to have
high clustering coefficient and small average shortest path
length. These properties provides agents with higher ability
to coordinate communications across the network. Such abil-
ities are conceptually consistent with bridging social capital.
Therefore, we make the following prediction:
Prediction 2. Small-world structure emerges when all agents
are in pure pursuit of bridging capital.

We set set preference weight wi = 0 for all 1 ≤ i ≤ 100
and vary ` in {2, 5, 8}. We adopt Watts-Strogatz (WS) model
[2], a famous small-world network generation model, as the
baseline. The model starts from a regular lattice, each node
connected to K neighbors and K/2 on each side. Then edges
are randomly rewired with probability p. When p ∈ [0.01, 0.1],
the graph typically demonstrates a small-world property. We
fix p to 0.01 and vary K in {4, 6, 10}. For each value of
K, we generate 100 instances and use the average clustering
coefficient and shortest path length for comparison. Note that
each value of K corresponds to a value of `, as the maximum
number of relationships that an agent can hold in SCGs is
`+2. Again, we generate 100 random networks for each ` in
{2, 5, 8}.
Results. Fig. 2 (b), (c) and Fig. 3 (b) depict results and
snapshots, respectively. Our training framework achieves com-
parable high clustering coefficients and lower average shortest
path lengths for each value of `, compared to the baselines
with a corresponding value of K. This is a strong sound for
the reproduction of the small-world structure. Moreover, both
clustering coefficient and average path length show a positive
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Fig. 3. Initial network configurations and snapshots during learning for (a) community structure, (b) small-world structure and (c) core-periphery structure
(termination step ` = 5).

correlation with `. This phenomenon is easy to understand
as a lager capacity to build relationships can bring agents
an expanded vision in a network. As a result, agentss are
more likely to get contacted with each other, thus the “smaller
world” emerges.

C. Emergence of core-periphery structure
For the emergence of core-periphery (C-P) structure, we

probe into the formation of two substructures, the core and
the periphery. Three questions arise: (1) why do individuals
in the periphery stay at the edge of society? (2) why are a
part of individuals located in the center? (3) how are central
individuals connected to form a core? The emergence of
communities may provide an answer to the first question: a
group of agents are only interested in bonding capital and they
thus stay at the periphery to exploit their social surroundings.
While, the emergence of small-world structure can answer the
second question: the pursuit of bridging capital drives a group
of individuals to bridge those at the periphery, resulting in a
center. The combination of bonding and bridging capital may
resolve the third question: those in the center are in pursuit of
both bridging and bonding capital; the former pushes them to
the center and the latter draws them together to form a core.
Hence, the following prediction comes out:
Prediction 3. Core-periphery structure emerges when a group
of agents are in pure pursuit of bonding capital, while the
other group of agents show mixed preferences to bonding and
bridging capital.

We randomly select a subset C ⊂ N (expected core) with
varying size in {10, 20, 30}. For all c ∈ C, we vary wc from
1/1000 to 1/1002. For each remaining agent p ∈ N \ C
(expected periphery), we set wp = 1. Throughout, we fix `
to an intermediate value, 5.

For baselines, we use two typical C-P network models, rich
club model and onion model [3]. Both models develop dense

2Because the measured value of bonding capital is larger than of bridging
capital. To balance two types of social capital, we set preference weighs to
small values.

cores. The former generates sparse peripheries, while the latter
generates peripheries in the form of several layers surrounding
the core. We generate 100 instances for each model by varying
model parameters, each of size 100.
Results. Fig. 2 (d) shows the clustering coefficients after
105 episodes of learning, where three peaks occur under
(|C| = 10, wc) = (10, 1/600), (20, 1/700) and (30, 1/700).
Fig. 2 (e) plots the change of clustering coefficients during
learning. Snapshots are shown in Fig. 3 (c), captured when
(|C|, wc) = (20, 1/700). Results indicate that the tendency
towards C-P structure rises when both the size of core and
preferences to social capital are properly set. This implies that
in agent societies, social polarization occurs when agents show
different preferences to social capital. Moreover, the ambitious
ones tend to get connected if they need to earn capital by
uniting others. Another fact is that our C-P coefficients output
by our framework is lower than by baseline models. This is not
surprising as instances generated by C-P network generation
models are with perfect C-P structure but unrealistic, limited
to depict the C-P phenomenon in the real world. On the other
hand, as C-P coefficients of randomly generated networks are
negative, the positive values obtained in learning indicates that
the tendency towards C-P is significant and meaningful for
reproducing the C-P structure.

VII. CONCLUSIONS AND OUTLOOK

Towards gaining an insight on the emergence of prominent
social structural patterns, we explore the potential role of social
capital in driving the formation of social ties. We conceptualize
bonding and bridging social capital from a structural perspec-
tive. Bonding capital represents an individual’s benefits earned
by exploiting social surroundings, while bridging capital cap-
tures utilities coming from exploring the far-away society.
We propose an agent-based model to capture the process of
relationship building as agents pursue higher social capital. In
this model, agents are equipped with reinforcement learning
abilities. We observe that the different preferences towards
social capital play a key role in the emergence of various social
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structures: bonding capital drives the community structure to
emerge, bridging capital leads to small-world structure and a
combination of bonding and bridging capital contributes to the
emergence of core-periphery structure. Overall, our framework
unifies the explanations for the emergence of classical social
structures.

Ideas and methods proposed in this paper represent a novel
research initiative. There are several potential directions for
future work. A fairly straightforward expansion is to allow
an agent’s preference weight to change over time. This ex-
tends the dynamics of current model and may result in the
emergence of more types of social structures. Another future
challenge is to add the mechanisms of node addition and
edge removal to our current model. A third future work is to
extend the current model through asynchronously organizing
agents. These future work would help bring a comprehensive
understanding of the natural emergence of social structures.
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