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Scale-free networks need not be fragile
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Abstract—We report on computational experiments testing the
robustness of scale-free networks. The stylized fact that such net-
works are robust under random failure but sensitive to targeted
attack originates from experiments on instances generated by
preferential attachment. We find that these are not representative
but rather outliers: they are significantly more fragile under
targeted attack than random scale-free networks with the exact
same degree sequence. To show that they are, however, not
extreme in this respect, we also present two generators producing
scale-free networks with the same degree sequence that are
even more fragile than the corresponding preferential-attachment
networks or more robust than even random graphs. Additionally,
we present a new result on Hamiltonian realizability of scaling
degree sequences.

Index Terms—network models, resilience, graph generators

I. INTRODUCTION

A network is robust to the degree that its functions are
preserved after parts of its structure have been removed [1].
We focus on the particular case of the largest connected
component in scale-free networks after node removal. Two
scenarios have been considered in a seminal study [2] com-
paring scale-free networks to random networks: removal uni-
formly at random (random failure) and removal of nodes with
larger degree first (targeted attack). The conclusion is that
scale-free networks are more robust under random failure but
substantially more sensitive to targeted attack. This led to the
stylized fact that scale-free networks are characterized by a
“robust-yet-fragile” [3] structure.

The initial experiments [2], however, used two empirical
networks classified as scale-free and synthetic networks gen-
erated from preferential attachment [4]. While the class of
scale-free networks (characterized by their degree sequences)
and preferential-attachment networks (defined by a generative
model) are often treated as if synonymous, bounds on the
lengths of adjacency-labeling schemes show that the latter are
but a tiny subset of the former [5]. It is therefore open whether
the characterization of scale-free networks as robust-yet-fragile
is actually specific to preferential-attachment networks.

We conduct a small series of experiments comparing the
robustness of preferential-attachment networks to that of the
most similar scale-free networks (i.e., those with the same
degree sequence) and find that preferential-attachment net-
works actually are outliers in terms of their sensitivity to
targeted attack. They are, however, not extreme because we

can construct even more fragile networks from the same de-
gree sequences. While overall scale-free networks conditioned
on preferential-attachment degree sequences are indeed more
fragile than random networks, we also show how to construct
instances that are significantly more robust than their random
counterparts.

II. PRELIMINARIES

For the purpose of this paper, we consider only networks
that are represented as simple undirected graphs, and use both
terms interchangeably.

A. Graphs and degree sequences
We consider simple undirected graphs G = (V,E) where V

is the set of vertices, or nodes, and E ⊆
(
V
2

)
is the set of

edges, or links. We generally denote n = n(G) = |V | and
m = m(G) = |E|. The degree of a vertex v ∈ V is the number
deg(v) = |{w ∈ V : {v, w} ∈ E}| of its neighbors. If the
vertices are ordered v1, . . . , vn such that deg(v1) ≥ · · · ≥
deg(vn), then D(G) = (deg(v1), . . . ,deg(vn)) is the degree
sequence of G. A sequence D = (d1, . . . , dn) of integers is
called graphical, if n > d1 ≥ · · · ≥ dn ≥ 0 and there is a
simple undirected graph with D = D(G). The graph is then
said to realize the sequence, and we denote by G(D) the set
of all realizations of D. Let Ĝ(D) ⊆ G(D) be the subset of
connected graphs, then D is called potentially connected, if
Ĝ(D) 6= ∅.

An integer sequence D = (d1, . . . , dn) is called scaling, if
its elements follow a power law i = c · d−γi for i = 1, . . . , n
and constants c and γ > 0 [6]. Constant γ is called its scaling
factor. A graph with a scaling degree sequence (up to some
tolerance) is called scale free. Note that we adopt a non-
stochastic treatment because we are interested in the degree
sequences of particular graphs.

One of several statistics linking degrees with the structure
of the graph is degree assortativity [7], defined as

r(G) =
M2(G)− M1(G)2

4m

1
2

∑
v∈V

deg(v)3 − M1(G)2

4m

where M1(G) =
∑
v∈V deg(v)2 is the first and M2(G) =∑

{u,v}∈E deg(u) deg(v) is the second Zagreb index [8]. Since
M2(G) is the only term that is not determined by the degree
sequence alone, degree assortativity indicates the extent to
which adjacent vertices are of like degree.IEEE/ACM ASONAM 2020, December 7-10, 2020
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B. Graph generators

A (uniform) random graph, or Erdős-Rényi graph [9], is a
graph drawn uniformly at random from the set G(n,m) of
all graphs with n vertices and m edges. In slight abuse of
notation, we will use G(n,m) for both the set and the model.
In a random graph, the distribution of degrees is binomial, and
approaches a Poisson distribution for sparse graphs with m ∈
O(n). Hence, degrees are expected to be sharply concentrated
around 2m/n.

A graph from the set G(D) of graphs realizing a graph-
ical sequence D can be obtained using the algorithm of
Havel [10] and Hakimi [11]. Assume we have created vertices
v1, . . . , vn, then it is usually implemented by (i) linking
vertex v1 to v2, . . . , v1+d1 and (ii) recursing on the sequence
d2−1, . . . , d1+d1−1, d2+d1 , . . . , dn of residual degrees. Note,
however, that the algorithm also works for any other vertex in
step (i), as long as step (ii) links it with the highest degree
vertices other than itself [12].

Scale-free graphs are often generated using preferential
attachment [4]. There are some ambiguities and degrees of
freedom in the model [13] that have led to different instanti-
ations. We use models PA(n, d), d � n, defined as follows.
Starting from a complete graph K2d+1, add n−(2d+1) many
vertices one at a time, and link each of them to d vertices
drawn without replacement from the pool of already added
vertices with probability proportional to their degree so far.
This ensures the absence of loops and multiple edges. A total
of n · d edges is created, and the expected number of vertices
of degree k is in Θ(k−3) [14], i.e., the degree sequence is
close to scaling with γ = 2.1

Thus, we can expect the degree sequence of a graph
generated by preferential attachment to be scaling. On the
other hand, the process generates only a tiny subset of all
scale-free graphs. A reversal of the vertex addition sequence
shows that the graphs generated according to PA(n, d) are
d-degenerate (i.e., every induced subgraph has a vertex of
degree at most d). Results on adjacency labeling exploit this
observation to encode preferential-attachment graphs with a
number of bits that is asymptotically vanishing compared to a
lower bound for scale-free graphs even when the scaling factor
is fixed to γ = 2 [5].

C. Robustness

Two types of damage scenarios for networks are consid-
ered [2]. In the random failure scenario, nodes are removed
uniformly at random, whereas in the (static) targeted attack
scenario, they are removed in non-increasing order of their
original degree. Both scenarios are parameterized with the
fraction β ∈ (0, 1] of nodes removed.

While many other criteria for robustness exist [1] we here
focus on the part of the graph that remains connected. For
a graph G, let n̂(G) be the number of vertices in a largest

1Note that we defined scaling of degree sequences in terms of ranks rather
than frequencies, so that the scaling factor is one less than the exponent in
the degree distribution [6].
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Fig. 1. The relative size of the largest connected component in a preferential-
attachment graph and a uniform random graph as a function of the fraction β
of vertices removed in both damage scenarios. Both graphs have n = 10000
and m = 30000 and are initially connected. As expected, the robustness
score for β = 0.45 hardly differs under random failure but is lower for the
preferential-attachment graph under targeted attack.

connected component, or LCC for short. If B ⊆ V , |B| =
dβne, is the set of vertices removed, the relative size of a
LCC is

n̂(G[V \B])

n̂(G)
,

where G[V \B] denotes the subgraph induced by the remaining
vertices. Clearly, it is bounded from above by 1 − β if G
is connected. To incorporate the rate at which the giant
component breaks apart, rather than just the time at which its
relative size falls below a threshold, we consider the average
over the entire sequence of removals. Let b1, . . . , b|B| be the
vertices of B in the order of removal, then we define

RG(B) =
1

|B|

|B|∑
i=1

n̂(G[V \ {b1, . . . , bi}])
n̂(G)

as a generalization of the robustness index [15], allowing for
removal sequences with β < 1. The index lies in the range
[ 1
n , 1 −

dβn+1e
2n ] with the extreme cases attained by the star

K1,n−1 and the clique Kn.

III. EXPERIMENTS

Our experiments are designed to test whether the robustness
of scale-free networks is adequately described by instances
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generated from preferential attachment. Because of their par-
ticular configuration and relatively small number, we hypoth-
esize that this is not the case.

To be sure, we are rather strict about the scale-free net-
works we compare with. A scale-free preferential-attachment
network is compared only with other scale-free networks
that have the exact same degree sequence. In addition to
randomly sampled scale-free networks, two rather extreme
types of networks are generated as described in the following
subsection.

A. Graphs with fixed degree sequence

Any graphical sequence D can be realized using the Havel-
Hakimi algorithm from Sec. II. Standard implementations pick
a vertex of maximum degree in each step, but to create graphs
with low degree assortativity, we introduce a variant, smallest-
first Havel-Hakimi (sfH2), in which the vertex chosen next is
of minimum degree. This has the added advantage that the
graphs are also (maximally) connected.

Theorem 1: [16] Given a potentially connected graphical
sequence D, sfH2 realizes a connected graph with maximum
connectivity2 in Ĝ(D).

Since all neighbors of low-degree vertices are among the
vertices of highest degree, graphs generated by sfH2 are
especially sensitive to targeted attack.

To generate graphs that are almost perfectly robust, we
plant a Hamiltonian cycle (i.e., a simple cycle containing all
vertices) on which vertices appear in order of their degrees. If
vertices are removed in the same order, the rest of the graph
remains connected.

We therefore introduce another variant, Hamiltonian Havel-
Hakimi (H3), that first creates a Hamiltonian cycle on vertices
v1, . . . , vn and then iteratively connects a vertex to those of
highest residual degree that are not its neighbors on the cycle.
Note that there is ambiguity in the order in which vertices of
the same degree are removed in a targeted attack. To safe-
guard against systematic effects we introduce a specialization,
randomized Hamiltonian Havel-Hakimi (rH3), that randomizes
both, the order in which equal-degree vertices appear in the
cycle, and the rule by which ties are broken among residual
degrees.

Extensive experimentation suggests that rH3 succeeds in
realizing any approximately scaling graphical sequences that
are obtained from large and sparse instances of preferential-
attachment generated from PA(n, d) where the minimum
degree d is strictly larger than one and upper-bounded by a
constant.

While not all potentially connected graphical sequences
admit a Hamiltonian realization, the following result provides
confidence that graphical sequences that are close enough to
scaling are realizable with a Hamiltonian cycle. The proof is
in the appendix.

2The connectivity of a graph is the largest k for which the graph is k-
connected. A connected graph is said to be k-connected if it has more than
k nodes and remains connected whenever fewer than k nodes are removed.

Theorem 2: For sufficiently large n, any graphical sequence
that is scaling with a factor γ > 1 and has bounded minimum
degree at least 2, admits a Hamiltonian realization.

Whereas a minimum degree bounded by a constant d is no
restriction in the context of preferential attachment, random
graphs with d · n edges are disconnected with high proba-
bility [17]. For the network-size regime we consider in our
experiments, random graphs matching the size of preferential-
attachment networks with minimum degree d ≥ 3 still tend
to have almost all of their nodes in the largest connected
component, but this is not the case for d = 2. Moreover,
minimum degree two requires the following special handling
when attempting to realize robust networks using rH3.

Given a graphical sequence D = (d1, . . . , dn) with min-
imum degree dn = 2, let k be the largest index such that
dn−k+1 = . . . = dn = 2. Applied to this sequence, rH3 yields
a graph in which the planted Hamiltonian cycle contains an
induced path Pk of k vertices. It is therefore highly sensitive
to vertex deletions, since the removal of any pair of vertices
in Pk detaches the entire subpath between them.

To mitigate this problem, rH3 is applied to the sequence
d1, . . . , dn−k. Afterwards, select k edges not on the Hamilto-
nian cycle and introduce k additional vertices by subdividing
them.

B. Instance creation

The seminal experiments of Albert et al. [2] used two
kinds of data, two empirical networks classified as scale-
free, and graphs generated from PA(n, 2) with n ∈
{1000, 5000, 10000, 20000} for comparison with uniform ran-
dom graphs. Only the results for one pair of graphs with
n = 10000 are presented in detail, and removal fractions of
β ∈ {0.05, 0.18, 0.45} are used in an illustration of different
stages of damage.

In all our experiments, we start by generating graphs from
PA(n, d) until we obtain one GPA that passes as scale-free
according to a standard criterion [18] as implemented in the
python-igraph package [19]. Note that graphs from PA(n, d)
are necessarily connected. Let D = D(GPA) be its (scaling,
potentially connected) degree sequence.

Next we use sfH2 and rH3 to create two special scale-free
graphs from Ĝ(D).

Finally, graphs are drawn uniformly at random from
Ĝ(D(GPA)), i.e., random connected scale-free graphs with
the same degree sequence. This can be done, for instance,
by starting from any of the three graphs in Ĝ(D(GPA)) that
we already have and performing a series of connectivity-
preserving edge swaps [20]. Size-matching random graphs are
drawn from G(n, dn) using rejection sampling until they are
almost fully connected (95% of nodes in the largest connected
component).

We use graph-tool [21] and python-igraph [19] for graph
generation and computation of some network properties. All
of the robustness scores reported below are averages over ten
independently drawn vertex-removal orders.
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Fig. 2. Robustness of preferential-attachment networks in context. For both damage scenarios (left/right) we show robustness scores after removing 5%, 18%,
and 45% of all nodes (top to bottom). The scores of sfH2 under targeted attack are off the chart for β ∈ {0.05, 0.18, 0.45} (at about 0.68, 0.43 and 0.19).
The robustness scores of randomly sampled graphs passed the tests for normality and are therefore shown in stylized form for visual clarity.

C. Preferential attachment is not typical for scale-freeness

In the first experiment, we pit a scale-free preferential-
attachment network generated from PA(10000, 3) against ran-
dom scale-free networks with the same degree sequence and
uniform random graphs of the same size. Note that, for the
original setting of d = 2 [2], random graphs of the same size
are rarely connected.

The results for a typical preferential-attachment network are
shown in Fig. 2, where 5%, 18% and 45% of vertices are
removed in both damage scenarios. Since the robustness of
random scale-free and uniform random graphs were found to
be distributed normally we show stylized normal distributions
with sample mean and variance for clarity. To test normality,
we used the Shapiro-Wilk test as implemented in the SciPy
package [22] with 35 samples and a significance level of 0.05.

Overall, the conclusions of Albert et al. [2] regarding the
relationship between the robustness of scale-free and random
graphs are largely corroborated. For smaller percentages of re-
movals, β ∈ {0.05, 0.18}, scale-free networks are significantly
more robust than random graphs under random failure (with

tiny differences), but significantly more fragile under targeted
attack (with larger differences and the exception of rH3).

Despite showing the same tendencies, however, we find
that the preferential-attachment networks differ significantly
from random scale-free networks, even when conditioned
on the same degree sequence. They are among the most
fragile against targeted attacks and therefore exaggerate the
relationship between scale-free and random networks.

The instances generated from sfH2 and rH3 indicate that
even more extreme scale-free networks exist, with the instance
from rH3 being more robust than even random graphs.

D. The distinction is consistent

The second experiment is a repetition of the first, but instead
of comparing one network with multiple random samples,
we do a paired comparison of multiple networks with single
samples.

Ten scale-free networks are generated from PA(10000, 3)
and each of them is paired with a triple of networks that
have the same degree sequence: one connected random scale-
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Fig. 5. Illustration of the effects of node removal on actual examples. A preferential-attachment graph is generated from PA(10000, 3) and two more scale-free
graphs with the same degree sequence are obtained from sfH2 and rH3; the uniform random graph has the same number of vertices and edges. The outer
columns show the graphs remaining after 45% of vertices have been removed.

337



free graph, and one each from sfH2 and rH3. In addition we
generate ten random graphs from G(10000, 30000). Note that
similar to Sec. III-B, we use rejection sampling to ensure that
the generated preferential-attachment networks pass as scale-
free and also to ensure that the generated random graphs are
almost fully connected.

In the scatterplot of Fig. 3, graphs from the same generator
cluster strongly, and clusters separate increasingly for larger
fractions of removed vertices.

All instances are highly robust against random failure but
there are stark differences with respect to targeted attacks.
The ordering that emerges is clearly visible for β = 0.45
and suggests that the findings of the first experiment are not
dependent on the initial preferential-attachment network.

E. Structural factors

With the final experiment we illustrate possible reasons
underlying the observed relationships. For the instances gen-
erated in the second experiment, two structural characteristics
are plotted in Fig. 4.

It has been pointed out before that degree assortativity
(see Sec. II) has an influence on robustness (e.g., [23]). In
disassortative networks, lower-degree vertices may be more
likely to become detached from the giant component when
loosing their higher-degree neighbors during a targeted attack.
Unlike preferential-attachment networks, random connected
scale-free networks with the same degree sequence do not
exhibit disassortativity.

An index measuring local cohesion is the clustering co-
efficient, defined as the density c(v) = m(G[N(v)])

(deg(v)
2 )

of the

neighborhood of vertices v ∈ V with deg(v) ≥ 2, and zero
otherwise. The clustering coefficient of the graph C(G) is the
average c(v) taken over all nodes v ∈ V [24].

While networks generated by sfH2 do not have the same
level of disassortativity as preferential-attachment networks,
their lack of local clustering may be a reason for increased
vulnerability. Networks generated with rH3 are by far the
most assortative and locally dense scale-free networks in our
study. Fig. 5 exemplifies with specific instances what has been
expressed by summary statistics so far.

We add that relative to the other network types considered
in this paper, the rH3 networks are noticeably more connected
within the core consisting of high degree nodes and also within
the periphery consisting of the other lower degree nodes. This
is at the expense of a looser connection between core and
periphery.

IV. CONCLUSION

Scale-free networks are defined by their degree sequence,
preferential-attachment networks by a generative model. While
the model typically generates scale-free networks, these are
special even among those with the exact same degree se-
quence.

Our experiments do not contradict the general ideas about
robustness commonly held since Albert et al. [2], but indicate

that differences between scale-free and uniform random graphs
are exaggerated by preferential attachment.

Using two newly introduced variants of the Havel-Hakimi
algorithm, it was even possible to construct scale-free graphs
that are indistinguishable in terms of their degree sequence
(and thus scale-freeness) but either extremely fragile or not
fragile at all. Statements about the robustness of scale-free
networks should therefore be interpreted as stylized rather than
absolute.

More generally, one should be hesitant to draw conclusions
about scale-free networks from computational experiments in
which all instances are generated from preferential attachment.
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on the existence of finite graphs],” Časopis pro pěstovánı́ matematiky,
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APPENDIX

A. Realizability of H3

With the following results from the literature, we can split
the proof of Theorem 2 into two smaller parts.

Lemma 1: [25] [26] A graphical sequence D = (d1, . . . , dn)
can be realized with a Hamiltonian cycle, if and only if (d1−
2, . . . , dn − 2) is graphical and

1

k

k∑
i=1

(di − dn−i+1) < n− k − 1

for all k ∈ {1, . . . , dn2 e − 1}.
The first part is to show that a scaling degree sequence

remains graphical after reducing all degrees by two when
planting the Hamiltonian cycle. This is proven in the next
section.

Lemma 2: Let D = (d1, d2, . . . , dn) be a scaling degree
sequence with γ > 1 and dn ≥ 2. For sufficiently large n,
(d1 − 2, . . . , dn − 2) is graphical.

The second part consists of bounds on the differences
between high and low degrees.

Lemma 3: Let D = (d1, d2, . . . , dn) be a scaling integer
sequence with γ > 1 and dn ≥ 2. For sufficiently large n,

1

k

k∑
i=1

(di − dn−i+1) < n− k − 1

for all k ∈ {1, . . . , dn2 e − 1}.
Proof: Notice that di = n

1
γ dni

− 1
γ . Fix any k ∈

{1, . . . , dn2 e− 1}. Then, again exploiting the scaling property,

1

k

k∑
i=1

(di − dn−i+1) =
n

1
γ dn
k

k∑
i=1

[
i−

1
γ − (n− i+ 1)−

1
γ

]
︸ ︷︷ ︸

≤1

≤ n1/γdn ∈ o(n),

and therefore less than n− k − 1 for n sufficiently large.

B. Proof of Lemma 2

We use the following condition to show that the residual
sequence is graphical.

Lemma 4: [27] An integer sequence d1, d2, . . . , dn with n >
d1 ≥ d2 ≥ · · · ≥ dn is graphical if and only if

∑n
i=1 di is

even and for all t ∈ {1, . . . , n− 1}:

2
t∑
i=1

di ≤
n∑
i=1

di +
t∑
i=1

min{di, t− 1}.

To bound the terms in these conditions, we use the following
approximation.

Lemma 5: [28] Let ζ(z) be the Euler’s generalized constant
defined for z ∈ (0, 1) [29]. For t ≥ 1 and γ > 1:

t∑
i=1

i−
1
γ =

t1−
1
γ

1− 1
γ

+ ζ(
1

γ
) +O(t−

1
γ ).

Lemma 6: If d1, . . . , dn is a scaling integer sequence with
γ > 1,

∑d1
i=1 di ∈ o(n) and

∑n
i=1(di − 2) ∈ Ω(n) .

Proof: Notice that di = n
1
γ dni

− 1
γ = d1i

− 1
γ and γ2 >

2γ − 1 > 1. Using Lemma 5 we obtain
d1∑
i=1

di = d1

d1∑
i=1

i−
1
γ ∈ Θ(d

2− 1
γ

1 ) = Θ(n
2γ−1

γ2 d
2γ−1
γ

n ) ∈ o(n)

as well as
n∑
i=1

(di − 2) = n
1
γ dn

n∑
i=1

i−
1
γ − 2n︸︷︷︸

≤ndn

≥ n
1
γ dn

(
n1− 1

γ

1− 1
γ

+ o(n1− 1
γ )

)
− ndn

= n

(
1

γ − 1
dn

)
+ o(n) ∈ Ω(n) .

We can now show that the conditions required in Lemma 4
hold. Notice that

∑n
i=1(di− 2) =

∑n
i=1 di− 2n is even since∑n

i=1 di is even. We only need to prove ∀t ∈ {1, . . . , n} :∑n
i=1(di−2)−2

∑t
i=1(di−2)+

∑t
i=1 min{di−2, t−1} ≥ 0.

If t ≥ d1−1 the statement is equivalent to
∑n
i=t+1(di−2) ≥ 0

which trivially holds. In case t ≤ d1− 2, we use Lemma 6 to
complete the proof of Lemma 2 by
n∑
i=1

(di − 2)︸ ︷︷ ︸
∈Ω(n)

−2
t∑
i=1

(di − 2)︸ ︷︷ ︸
<
∑d1
i=1 di∈o(n)

+
t∑
i=1

min{di − 2, t− 1}︸ ︷︷ ︸
≥0

∈ Ω(n) .
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