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Abstract—Authors of malicious software are not hiding as
much as one would assume: they have a visible online footprint.
Apart from online forums, this footprint appears in software
development platforms, where authors create publicly-accessible
malware repositories to share and collaborate. With the exception
of a few recent efforts, the existence and the dynamics of this
community has received surprisingly limited attention. The goal
of our work is to analyze this ecosystem of hackers in order to:
(a) understand their collaborative patterns, and (b) identify and
profile its most influential authors. We develop HackerScope, a
systematic approach for analyzing the dynamics of this hacker
ecosystem. Leveraging our targeted data collection, we conduct
an extensive study of 7389 authors of malware repositories on
GitHub, which we combine with their activity on four security
forums. From a modeling point of view, we study the ecosystem
using three network representations: (a) the author-author net-
work, (b) the author-repository network, and (c) cross-platform
egonets. Our analysis leads to the following key observations: (a)
the ecosystem is growing at an accelerating rate as the number
of new malware authors per year triples every 2 years, (b) it is
highly collaborative, more so than the rest of GitHub authors,
and (c) it includes influential and professional hackers. We find
30 authors maintain an online “brand" across GitHub and our
security forums. Our study is a significant step towards using
public online information for understanding the malicious hacker
community.

Index Terms—GitHub, Hackers, Community, Egonet

I. INTRODUCTION

“How can a 17 year old kid from Florida [1] be reportedly
the mastermind behind the recent hacking of Twitter? This
question is part of the motivation behind this work.

The security community has a fairly limited understanding of
malicious hackers and their interactions. As a result, security
practitioners do not really know their “enemy”. On the one
hand, the hacker community is fairly wide encompassing
curious teenagers, aspiring hackers, and professional criminals.
On the other hand, the hackers are surprisingly bold in leaving
a digital footprint, if one looks at the right places in the
Internet. For example, there are various online forums, where
hackers not only share information, but they also boast of their
successes.

How can we begin to understand the ecosystem of malicious
hackers based on their online footprint? The input is the online
activities of these hackers, and the goal is to answer the
following questions: (a) do these hackers work in groups or
alone, and (b) who are the most influential hackers? Here,
we consider two types of platforms that hackers frequent: (a)
software archives, and (b) online security forums. It turns out

that popular and public software archives, such as GitHub
harbor malware authors, who create publicly-accessible mal-
ware repositories [2]. Furthermore, online forums have recently
emerged as marketplaces and information hubs of malicious
activities [3], [4]. In the rest of this paper, we will use
the term hacker to refer to actors who develop and use
software of malicious intent. We will also use the term hackers
and malware authors interchangeably, although some malware
authors may not have malicious intent.

There is limited work for the problem as defined above.
First, we are not aware of a study that systematically profiles
the dynamics of the online hacker ecosystem, and especially
one considering software archives. Most of the previous efforts
on GitHub follow a software-centric view or study GitHub at
large without focusing on malware [5] [6] [7]. Most of the
previous works on online forums focus on identifying emerging
topics and threats [3], [4]. Other efforts report malware activity,
focusing on hacking events, and much less, if at all, on the
ecosystem of hackers [8], [9]. We elaborate on previous works
in Section VIII.

We propose HackerScope, a systematic approach for mod-
eling the ecosystem of malware authors by analyzing their
online footprint. We start with an extensive analysis of malware
authors on GitHub, as this is a significantly less-studied space.
We then use security forums to find more information about
these authors. From an algorithmic point of view, we use three
network representations: (a) the author-author network, (b)
the author-repository network, and (c) cross-platform egonets,
which we explain later. In addition, we use some basic Natural
Language Processing techniques, which we intend to develop
further in the future.

We apply and evaluate our approach using 7389 malware
authors on GitHub over the span of 11 years and leverage
the activity on four security forums in the grey area between
white-hat and black-hat security. GitHub is arguably the largest
repository with roughly 30 million public repositories, while,
appropriately fine-tuned, our approach can be used on other
software archives. Our approach encompasses four research
thrusts, which identify and model: (a) statistics and trends,
(b) communities of hackers and their dynamics, (c) influential
hackers, and (d) hacker profiles across different online plat-
forms. For the latter type, we show the collaborators of hackers
as captured by the cross-platform egonets spanning GitHub and
security forums in Figure 1. Our key results are summarized
in the following points.

a. The ecosystem is growing at an accelerating rate: TheIEEE/ACM ASONAM 2020, December 7-10, 2020
978-1-7281-1056-1/20/$31.00 c© 2020 IEEE
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Figure 1: Profiling hackers across platforms using our cross-platform
egonet: the scatter-plot of the number of neighbors on GitHub versus
those on security forums for 30 malware authors as captured in our
cross-platform egonet.

number of new malware authors on GitHub is roughly tripling
every two years. This alarming trend points to the importance
of monitoring this ecosystem.

b. The ecosystem is highly collaborative: We find 513
collaboration communities on GitHub with high cohesiveness
(Modularity Score within [0.65-0.78]), including many large
communities with hundreds of users. The malware community
is very collaborative: a malware repository is forked four times
more compared to a regular GitHub repository.

c. We identify a group of 1.7% of influential authors:
We develop a systematic approach to determine the influence
among malware authors. Our novelty lies in: (a) considering
many types of interactions, and (b) capturing the network-
wide influence of an author. We find a core group of 1.7% of
the malware authors, who are responsible for: (a) generating
influential repositories, and (b) providing the social backbone
of the malware community.

d. We identify professional hackers in the ecosystem: We
find that 30 authors are professional malicious hackers. Going
across platforms, we find GitHub authors who are quite active
on our security forums. We show the evidence that these are
professional hackers, who are building an online “brand". For
example, user 3vilp4wn is the author of a keylogger repository
on GitHub, which he promotes in the HackThisSite forum using
the same username (shown at bottom right in Figure 1).

Our work in perspective. The proposed work is part of
an ambitious goal: we want to model the Internet hacker
ecosystem at large as it manifests itself across platforms. Our
initial results are promising: a) the hackers seem to want to
establish a brand, hence they want to be visible, and b) a
cross-platform study is possible, as some authors maintain the
same login name. Our systematic approach here constitutes
a building block towards the ultimate goal. With appropriate
follow up work, achieving this goal can have a huge practical
impact: security analysts could prepare for emerging threats,
anticipate malicious activity, and identify their perpetrators.

Open-sourcing for maximal impact. We use Python v3.6.2
packages to implement all the modules of HackerScope. We
intend to make our datasets and tools public for research
purposes.

II. BACKGROUND AND DATA

Our work focuses on GitHub, the largest software archive
with roughly 30 million public repositories, and uses data
from security forums. Although GitHub policies do not allow
malware, authors do not seem to abide by them.

A. GitHub data. GitHub platform enables software develop-
ers to create software repositories in order to store, share, and
collaborate on projects and provides many social-network-type
functions.

We define some basic terminology here. We use the term
author to describe a GitHub user who has created at least one
repository. A malware repository contains malicious software
and a malware author owns at least one such repository.
Users can star, watch and fork other malware repositories.
Forking means creating a clone of another repository. A forked
repository is sometimes merged back with the original parent
repository, and we call this a contribution. Users can also
comment by providing suggestions and feedback to other
authors’ repositories.

We use a dataset of 7389 malware authors and their related
8644 malware repositories, which were identified among 97K
repositories in our prior work [2]. This is arguably the largest
malware archive of its kind with repositories spanning roughly
11 years. These repositories have been identified as malicious
with a very high precision (89%). Note that the queries with
the GitHub API, which were used in the data collection,
return primary or non-forked repositories. A discussion on the
process, accuracy, and validity of the dataset can be found in
the original study [2].

For each malware author in our dataset, we have the fol-
lowing information: (a) the list of the malware repositories
created by her, and (b) the list of followers. For each malware
repository, we have the lists of users, who: (a) star, (b) watch,
(c) fork, (d) comment, or (e) contribute to the repository.

Repository metadata. Each repository is also associated
with a set of user generated fields, such as title, readme file,
description. We can use this metadata to extract information
about the repository. We leverage our earlier work where we
discuss the processing of this metadata in more detail [2].

For a given repository, a security expert would want to know:
(a) the type of malware (e.g. ransomware and keylogger), and
(b) the target platform (e.g. Linux and Windows). For this,
we define two sets of keywords: (a) 13 types of malware,
S1 and (b) 6 types of target platforms, and S2. Figure 6
provides a visual list of these two sets of keywords. We
define the Repository Keyword Set, Wr, for repository r,
as a set consisting of the keyword sets S1 and S2 that are
present in its metadata. Clearly, one can extend and refine these
keyword sets, to provide additional information, such as the
programming language in use, which we will consider in the
future. Note that our earlier work provides evidence that using
this metadata as we do here can provide fairly accurate and
useful information [2].

B. Security forum data. We also utilize data that we
collect from four security forums: Wilders Security, Offensive
Community, Hack This Site, and Ethical Hackers [10]. In
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Table I: Our four online security forums.

Forum Users Threads Posts
Offensive Comm. 5412 3214 23918
Ethical Hacker 5482 3290 22434
Hack This Site 2970 2740 20116
Wilders Security 3343 3741 15121

these forums, users initiate discussion threads in which other
interested users can post to share their opinion. Each tuple
in our dataset contains the following information: forum ID,
thread ID, post ID, username, and post content. We provide a
brief description of our forums below, and an overview of key
numbers in Table I.

a. OffensiveCommunity (OC): As the name suggests, this
forum contains “offensive security” related threads, namely,
breaking into systems. Many posts consist of step by step
instructions on how to compromise systems, and advertise
hacking tools and services.

b. HackThisSite (HTS): As the name suggests, this forum
has also an attacking orientation. There are threads that explain
how to break into websites and systems, but there are also more
general discussions on cyber-security.

c. EthicalHackers (EH): This forum seems to consist
mostly of “white-hat" hackers, as its name suggests. However,
there are many threads with malicious intentions in this forum.

d. WildersSecurity (WS): The threads in this forum fall
in the grey area, discussing both “black-hat" and “white-hat"
skills.

III. OUR APPROACH

We have an ambitious vision for our approach, which we plan
to release as a software platform. We provide a brief overview
in Figure 2. In this paper, we will elaborate on the four analysis
modules: (a) a statistics and trends module, which provides the
landscape of primary behaviors of the ecosystem (Section IV),
(b) a community analysis module, which identifies and profiles
communities of collaboration (Section VI), (c) an influence
analysis module, which defines and calculates the significance
of authors (Section V), and (d) cross-platform analysis module
(Section VII).

In addition, our approach also includes: a data collection
module, which aggregates, cleans and preprocesses the raw
information; a control center module; and a reporting module.
These modules are not equally developed, while at the same
time, we could not provide all the types of results that we have
available due to space limitations.

Below, we highlight some interesting or novel aspects of our
approach, which are often cutting across several modules.

a. Synthesizing multi-source data. Our approach focuses
on data for authors from GitHub and combines it with addi-
tional data from security forums, and Internet searches.

b. Defining appropriate features. As we already saw, the
authors and the repositories have a very rich set of interactions.
We have primary (measured directly) and secondary (derived
from the primary) features, which need to be determined
carefully to capture effectively the dynamics of the ecosystem.
These interactions go beyond a simple “friend" relationship of
other social media.

Figure 2: The overview of our approach highlighting the key func-
tions.

c. Modeling the dynamics. We use three network repre-
sentations to capture the rich interactions and relationships
among authors and repositories. The network representations
include: (a) the author-author network, (b) the author-repository
network, and (c) cross-platform egonets.

d. Reporting behaviors. The goal is to provide intuitive and
actionable information in an appealing and ideally interactive
fashion. The results in this paper provide an indication of some
initial plots and tables that our approach will provide to the end
user, who could be a researcher or a security analyst.

IV. STATISTICS AND TRENDS

This section describes the functionality of the statistics and
trends module of our approach, whose intention is to provide
a basic understanding of author behaviors.

A. Basic distributions of malware authors. We study
the complementary cumulative distribution function (CCDF)
of three metrics: (a) the number of repositories created, (b)
the number of followers, and (c) sum of the number of forks
across all the malware repositories of the author. As expected
all distributions are skewed, but the plots are omitted due to
space constraints. First, we find that 15 authors are contributing
roughly 5% of all malware repositories, while 99% of all
authors have created less than 5 repositories each. Second, we
find that 3% (221) of the authors have more than 300 followers
each, while 70% of the authors have less than 16 followers.
Finally, examining the total number of forks per author, we
find that 3% (221) of the authors have their repositories forked
more than 150, while 43% of authors encounter at least one
fork.

B. Forking behavior: Malware repositories are forked
four times more than the average repository. Malware repos-
itories are more aggressively forked, which is an indication of
the higher collaboration in the ecosystem. First, we find that
a malware repository is forked 4.01 times on average, while a
regular GitHub repository is forked 0.9 times, as reported in
previous studies [11]. Second, we want to see if this is due
to a few popular repositories, but this is not the case. We find
that 39% of the malware repositories are forked at least once,
while this is true for only 14% for general repositories [11].

C. Trends. “How fast is this ecosystem growing?" To answer
the question, we plot the number of new malware authors
per year in Figure 3. We consider that an author joins the
ecosystem at the time that they create their first malware
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Figure 3: New malware authors in the ecosystem per year.

repository in our database.
a. The number of new malware authors almost triples

every two years. We plot the new malware authors per year in
Figure 3. We observe an increase from 238 malware authors
in 2012 to 596 authors in 2014 and to 1448 authors in 2016.
We also observe a steep 62% increase from 2015 to 2016. This
trend is interesting and alarming at the same time.

b. The number of new malware repositories more than
triples every four years. Echoing the growth of the authors,
the number of repositories is also increasing super-linearly. In
the future, we plan to study the trends of malware in terms of
both types of malware and its target platform.

V. IDENTIFYING INFLUENTIAL AUTHORS

To understand the dynamics of the ecosystem, we want to
answer the following question: “Who are the most influential
authors?” The functionality in this section is part of the
influence analysis module of Figure 2.

A. HackerScore: Identifying influential authors. We argue
that finding influential authors presents several challenges.
First, there are many different activities and interactions, such
as creating repositories, commenting, following other authors
and being followed by other authors. Second, we can con-
sider two types of actions: (a) creating influential artifacts,
(b) observing and engaging with other people and artifacts.
Furthermore, the distinction is not always clear. For example,
forking a repository creates a new, but derivative, repository.

To address the above challenges, we take socially-aware
approach to influence: creating a few influential repositories is
more important than creating many non-influential repositories.
We discuss how we model and calculate this influence below.

The Author-Author graph (AA). We create the Author-
Author network to capture the network-wide interaction
among authors. We define a weighted labeled multi-digraph:
G(V,E,W,Le) where V is the malware author set, E is the
set of edges, W is the weight set and Le is the set of labels
that an edge e can be associated with. These labels correspond
to different types of relationships between authors. Here we
opted to consider only malware authors in the graph to raise
the bar for being part of the hacker community.

The types of interactions. We consider four types of
relationships between authors here. A directed edge (u, v) from
author u to v can be (i) a follower edge: when u follows
v, (ii) a fork edge: when u forks a repository of v, (iii) a
contribution edge: u contributes code in a repository of v,
and (iv) a comment edge: u comments in a repository of v.

These relationships capture the most substantial author-level
interactions.

The multi-graph challenge and weight calibration. Our
graph consists of different types of edges, which represent
different relationships that we want to consider in tandem. The
challenge is that the relationships have significantly different
distributions, which can give an unfair advantage or eliminate
the importance of a relationship. For example, contribution
activities are rarer compared to following, but one can argue
that a contribution to a repository is a more meaningful
relationship and it should be given appropriate weight.

For fairness, we make the weight of a type of edge inversely
proportional to a measure of its relative frequency. In detail,
we calculate the average degree dtype for each type of edge:
follower, fork, contribution, and comment from the subgraph
containing only that type of edges from the AA graph.
We find the following average degrees: dfollower = 12.21,
dfork = 4.67, dcontribution = 0.53 and dcomment = 0.49. We
normalize these average degrees using the minimum average
degree (dmin = 0.49) and we get the inverse of this value
as the weight for that edge, namely, dmin/dtype. This way,
we set the following weights: w = 0.04 for a following edge,
w = 0.1 for a forking edge, and w = 1 for a commenting or a
contribution edge. This enables us to consider each relationship
type more fairly and meaningfully.

We propose a socially-aware and integrated approach to
combine all the author activities in a single framework. First,
we identify and define two roles in the ecosystem: (a) pro-
ducers, who create influential malware repositories, and (b)
connectors, who enhance the community by engaging with
influential malware authors and repositories. To calculate the
roles of the malware authors, we first model the interaction
among authors in the AA graph described above. Next, we
apply our algorithm, a customized version of a weighted
hyperlink-induced topic search algorithm modified to handle
the multiple types of relationships between authors. We discuss
the related algorithms in Section VIII.

Calculating the HackerScore. We associate each node u
with two values: (a) a Producer HackerScore value, PHSu,
and (b) Connector HackerScore value, CHSu. Let w(u, v)
be the weight of edge (u, v) based on its label, as discussed
above.

The algorithm iterative refines the producer and connector
values until it converges. We, now, elaborate on the steps. First,
PHSu and CHSu are initialized to 1. During the iterative
step, the algorithm updates the values as follows: (i) for all
v pointing to u: PHSu =

∑
v w(v, u) ∗ CHSv , or zero

in the absence of such edges, (ii) for all z pointed by u:
CHSu =

∑
z w(u, z) ∗ PHSz , or zero in the absence of

such edges, and (iii) we normalize PHSu and CHSu, so that∑
u PHSu =

∑
u CHSu = 1. For the convergence, we set

a tolerance threshold of 10−9 for the change of the value of
any node. After 449 iterations, we obtain the two HackerScore
values for each author.

Identifying influential malware authors. In Figure 4, we
plot the Connector HackerScore versus Producer HackerScore
for our malware authors. Separately, we identify “knees" in the
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Figure 4: The scatterplot of the Connector HackerScore vs. Producer
HackerScore for the malware authors in our GitHub dataset.

individual distributions of each score at PHS = 0.00215 and
CHS = 0.0029 indicated by the red dotted lines. This way, we
observe four regions defined by the combination of low and
high values for PHS and CHS values which shows if an author
is influential as producer or connector.

A few authors (1.7%) drive the community. The three
regions of influence together consist of 128 malware authors
(1.7%). The break down of the region size is fairly even:
Region A of mostly connector authors devoted to connect
the malware community is 0.6%, Region C of the influential
producers who are the originator of the malware resources is
0.7%, and Region B of dual influence is 0.4%. We use the
term Highly Influential Group (HIG) to refer to this group
of authors.

We provide a profile overview of the two most influential
authors per region in Table II. The most influential author of
Region C is cyberthrets, with the highest PHS (0.012) and 336
malware repositories. She gained a huge following by creating
all her repositories of assembly code malware on Feb 16, 2016.
The top connector author from Region A is critics with a CHS
score of 0.01, which stems from her 446 comments across
301 repositories. The top malware author from Region B is
D4Vince for his dual role in producing credential reuse tools
with 7 repositories and 165 comments and 187 contributions.

The importance of socially-aware significance. We argue
that our socially-aware definition of significance provides more
meaningful results than simply taking the top-ranked users in
any primary metric in isolation. First, the two scores capture
different aspects of influence: they can differ by orders of
magnitude as is the case with cyberthrets and ytisf. Second, our
scores capture a combined network-wide influence that each
primary metric could miss. For example, our most influential
producers do not always own many malware repositories.
Malware author D4vince and n1nj4sec, mentioned in Table
II, have single-digit repositories (7 and 8 respectively) and
yet are two of the top producers. On the other hand, author
kaist-is521 is ranked way below than n1nj4sec in terms of
HackerScore (PHS =0.0001 and CHS =0.00013), although she
has 18 malware repositories.

B. Reciprocity of interactions. We want to understand
better the nature of the author interactions here.

“Is the influence among malware authors reciprocal?” The
answer is negative: the relationships are not reciprocal,
which is in stark contrast to the reciprocal relationships in

Table II: The profiles of the two most influential malware authors
from each region A, B, and C.

Name PHS CHS Repos Follow
-ers

Forks Com-
ments

Cont-
rib/s

cyberthrets 0.012 0.001 336 1013 778 13 2
ytisf 0.005 10−6 12 606 1412 4 1
critics 0.001 0.01 6 396 83 446 301
samyk 0.0018 0.0058 2 554 125 176 209
D4Vince 0.0066 0.0082 7 608 499 165 187
n1nj4sec 0.0058 0.0052 8 876 1391 64 79

other social media like Twitter and Facebook [12]. We consider
a total of six relationships: following, forking, commenting,
contributing, watching, and starring relationships. We define
the Reciprocity Index for relationship x, RIx, to be the ratio
of reciprocal relationships over the pairs of authors with that
type of relationship (unilateral or mutual) in the Author-Author
network.

We find that the reciprocity is low and less than 7.3% for all
the relationships in question. By contrast, reciprocity is often
above 70% in social media, like Facebook or Twitter [12].
These social media mirror personal relationships and have an
etiquette of conduct. We conjecture that the lower reciprocity
on GitHub is due to its utilitarian orientation: following an
author stems from a professional interest.

VI. COMMUNITY ANALYSIS

This section describes the functionality of the community
analysis module, whose goal is to identify the communities
of collaboration among the malware authors on GitHub.

A. Identifying collaboration communities. We quantify the
collaborative nature of the malware authors as follows.

The Author-Repository graph (AR). We define the Author-
Repository graph to be an undirected bipartite graph, G =
(A,R,E), where A is the set of malware authors and R is
the set of malware repositories. An edge (u, r) ∈ E exists,
if author u: (a) creates, (b) stars, (c) forks, (d) watches, (e)
comments, or (f) contributes to repository r.

Identifying bipartite communities. To identify communi-
ties, we employ a greedy modularity maximization algorithm
modified for bipartite graphs as we discuss in our related work.

We find a total of 513 communities spanning a wide range
of sizes as shown in Figure 5. The size of the communities
follows skewed distribution. In Figure 5, we plot the number
of malware authors and repositories per community in order of
decreasing community size (defined as the sum of authors and
repositories). We find that 90% of communities have less than
14 authors and repositories. We also see a fairly sharp knee in
the plot at the fifth community, as shown by the vertical line.

B. Profiling the communities. A full investigation of the
purpose, evolution, and internal structure of each community
could be a research topic in its own right. Here, we only
provide an initial investigation around the following three
questions.

a. How cohesive are our communities? We report the Mod-
ularity Score (MSC), which quantifies the cohesiveness of
a community C. The MSC is defined as follows: MSC =
nC(E)
NC(E) , where nC(E) is the total number of edges and NC(E)
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Figure 5: The distribution of the number of authors and repositories
for the 27 largest communities in the order of community size.

is the number of all possible edges in community C (if the
community was a bipartite clique).

Overall, our communities are highly cohesive: 82.8% (425)
of the communities have a Modularity Score MSC ≥ 50%,
which means that more than half of all possible edges within
the community exist. Interestingly, the largest communities
exhibit strong cohesiveness. In Table III, we present a high-
level profile of the five largest communities which have a
Modularity Score of 0.65-0.78, which is indicative of tightly-
connected communities.

b. Who are the community leaders? We want to identify
the influential authors as part of profiling a community. We
identify the top two most influential producers and connectors
per community using the HackerScore from Section V. This
leads us to a group of 144 leaders of the communities of size
of at least 20 authors. We find 81% of these community leaders
are part of the Highly Influential Group (HIG) of authors. This
suggests that the HIG authors are indeed driving forces for the
ecosystem. In the future, we intend to investigate in more depth
the influence and dynamics of each community.

c. What is the focus of each community in terms of platform
and malware type? A security expert would want to know
the main type of malware (e.g. ransomware) and the target
platform (e.g. Linux) of a community. We use the Repository
Keyword Set, Wr, information of a repository r, as we defined
in Section II, and we use it to characterize the community.

One way to quantify the importance of a keyword for
a community is to measure the number of repositories, for
which that keyword appears at least once. In detail, we use
the Strength Of Presence (SOP) metric, which we define as
follows. For a community C with a set of R repositories, we
define ki to be the number of repositories, in which keyword
i appears in the metadata Wr for repository r at least once
for all repositories r ∈ R. We define the SOPi of keyword i
from keyword set S as follows: SOPi =

ki∑
j∈S kj

. In Table III,
we show the most dominant keywords from malware types and
platforms sets for each community and the related SOP scores.

We can also use the SOP to visualize the keywords as a
word-cloud. A word-cloud is a more immediate, appealing,
and visceral way to display the information. In Figure 6, we
show the word-cloud for the third largest community, which
is dominated by ransomware malware and targets Windows
platforms. Not only we see the main words stand out, but
their relative size conveys their dominance over the other words

Table III: High-level profile of the five largest communities of malware
authors and malware repositories.

ID Authors Repos MS Dominant
Platform

SOP Dominant
type

SOP

1 584 677 0.65 Linux 0.32 Keylogger 0.29
2 419 544 0.67 Windows 0.26 Virus 0.31
3 175 288 0.73 Windows 0.65 Ransomware 0.44
4 57 100 0.78 Linux 0.43 Spyware 0.43
5 47 57 0.71 Mac 0.33 Trojan 0.22

Figure 6: The word-cloud for the malware types and platforms
keywords for the third largest community: Ransomware and Windows
dominate.

more viscerally than a lengthy table of numbers.
We present the results of this type of profiling for the largest

communities in Table III, which we also discuss below.
We find that the largest community of 584 malware authors

and 677 malware repositories having Linux (SOP = 0.32)
and keylogger (SOP = 0.29) as the dominant platform and
malware type. Interestingly, we find that 49 of the top 100
most prolific (in terms of the number of repositories created)
authors are in this community. Upon closer investigation, we
find that 11 out of the 15 authors with the highest degree in
the subgraph of this community are keylogger developers.

The third-largest community consists of 175 malware au-
thors and 288 malware repositories and revolves around Ran-
somware (SOP = 0.65) and Windows platform (SOP =
0.44). For reference, we present the word-cloud of the malware
types and platforms based on the SOP score in Figure 6 for
this community which exhibits that Ransomware and Windows
possess the highest SOP scores.

Finally, the fourth largest community (57 authors, 100
repositories) is the most tightly connected (MS = 0.78) and
it revolves around the development of attack tools for Kali
Linux. Upon closer inspection, we find that 15 of the top 25
authors (based on node degrees) form an approximate bipartite
clique with 5 repositories. This group developed WiFiPhisher
in 2016, a Linux-based python phishing tool [13], which has
been used for both good and evil [14].

The above are indicative of the potential information that we
could extract from these malware repositories. In the future, we
intend to: (a) extract more detailed textual information from
each community, and (b) study the evolution and dynamics of
these communities over time.

VII. AUTHOR INVESTIGATION

“Who are these malware authors?” To answer this question,
we go across platforms to security forums and leverage our
datasets from several security forums. The functions described
here are part of the author investigation module of Figure 2.

a. Malware authors strive for an online “brand” and
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Table IV: Profiles of four cross-platform users.

Name Forum Posts in
forum

Collab/tors
in forums

Malw.
repos

Follow-
ers

Forks Collab/tors
in GitHub

Repository content Internet-wide Rep-
utation

misterch0c WS 7 224 7 749 81 898 Cracked malware code Self-declared hacker
3vilp4wn HTS 103 513 1 0 1 6 Python keylogger Keylogger developer
fahimmagsi OC 73 175 1 1 0 1 Backdoor Famous hacker
Evilcry EH 18 444 2 89 15 98 Botnet and ransomware Ransomware expert

Figure 7: A cross-platform egonet: capturing the neighbors of both
the security forum and GitHub.

usernames seem persistent across online platforms. We find
that many malware authors use the same username consistently
across many online platforms, such as security forums, possibly
in pursuit of a reputation.

We identify 30 malware authors who are active in one of
our four security forums: 12 in Wilders Security, 6 in Ethical
Hacker, 4 in Offensive Community, and 8 in Hack This Site
[10]. We argue that some of these usernames correspond to the
same users based on the following two observations.

First, we find significant overlap in the interests of the
cross-platform usernames. For example, usernames int3grate
and jedisct1 show interest in ransomware in both platforms,
while 3vilp4wn advertises her keylogger malware (github.com/
3vilp4wn/CryptLog) in the forum. Second, these usernames are
fairly uncommon, which increases the likelihood of belonging
to the same person. For example, the top ten results from in-
ternet searching for the username of author Misterch0c returns
nine hacker related sites and a twitter account with a different
handle but claimed by Misterch0c. Note that not all the
malware authors or repositories have a malicious purpose. For
instance, the project “Empire” [15] by xorrior was created as
an offensive tool to stress-test the security of systems. However,
it has recently been used by the state-sponsored hacking group
Deep Panda [16]. In general, offensive security tools contribute
to the power of the malware ecosystem irrespective of the
intention of its creator.

b. Modeling the cross-platform interactions. We propose
to study the cross-platform interactions between GitHub and
security forums as a promising research direction that can
bridge two domains: software repositories and online forums.

We define the cross-platform egonet of a user as one that
consists of her egonets from the two platforms as shown in
Figure 7. The forum egonet captures the interaction of the
users that post on the same threads, while we leverage the
Author-Author network to define the GitHub egonet.

The value of cross-platform analysis. Using the cross-
platform egonet as a basis, we can model the cross-platforms
user dynamics, and more specifically, we can: (a) identify
common “friends" between the ego-nets, (b) find the topics of

interest and activities in each egonet, and (c) model information
flow and influences across platforms. In Figure 1, we visualize
the activity of a cross-platform user by comparing the number
of users on each side of the egonet as shown in Figure 7.
In Table IV, we show the actual values of indicative users,
including the three outliers in the plot.

The cross-platform egonet analysis can enrich the profile of
each user significantly. For example, if we were just looking
at GitHub, we may not have paid attention to 3vilp4wn and
Evilcry. Both of these authors are less active on GitHub (small
GitHub egonet), but are quite active in the security forums
(large forum egonet). A closer investigation of the security
forums reveals activities that match their interests on GitHub.
This suggests that their GitHub activity is part of their online
brand. For example, 3vilp4wn advertises her GitHub keylogger
repository in the forum.

c. Using information from the web. In our approach,
we leverage existing information on hackers from (a) security
outlets and databases, and (b) using web queries. With our
python-based query and analysis tools, we verified the role and
activities of authors, which we omit due to space limitations.

VIII. RELATED WORKS

Studying the dynamics of the malware ecosystem on GitHub
has received very little attention. Most studies differ from our
work in that: (a) they do not focus on malware on GitHub, and
(b) when they do, they do not take an author-centric angle as
we do here: they focus on classifying malware repositories or
use a small set for a particular research study.

Our work builds on our earlier effort [2], whose main goal
is to identify malware repositories on GitHub at scale, but it
does not study the malware author ecosystem as we do here.

a. Studies of malware repositories on GitHub: Several
other efforts have manually collected a small number of
malware repositories with the purposes of a research study [17],
[18]. Some other studies [5] [6] analyze malware source code
from a software engineering perspective, but use only a small
number of GitHub repositories as a reference.

b. Studies of benign repositories on GitHub: Many studies
analyze benign repositories on GitHub from a point of view
of software engineering or as a social network. Some efforts
find influential users and analyze the motivation behind follow-
ing, forking, and contributions [7], [11]. Earlier efforts study
repositories by analyzing the repository-repository relationship
graph [19], and by using an activity graph [20].

Several works in this area identify influential authors and
repositories using: the starring activity [21], the Following-
Star-Fork activity [22], or a rank-based approach [23]. Note
that a version of the hyperlink-induced topic search algo-
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rithm [24] has been used by some of the above efforts for
calculating influence, but they do not adjust the weights to
account for the different frequencies of the types of interactions
between users.

For our bipartite clustering, we adapt the greedy modularity
maximization approach [25][26].

c. Studies on security forums: This is a recent and less
studied area of research. Most of the works focus on extracting
entities of interest in security forums. An interesting study
focuses on the dynamics of the black-market of hacking goods
and services and their pricing [4]. Other studies focus on
identifying important events and threats [8], [9], [27]. None
of the aforementioned works focus on the dynamics among
hackers across platforms.

d. Cross-platform study: Finally, some efforts study author
activities on different software development forums, namely
GitHub and Stack Overflow [28], [29], but do not consider
information from security forums.

IX. CONCLUSION

We develop a systematic approach for studying the ecosystem
of hackers. Our approach develops methods to identify (a)
influential hackers, (b) communities of collaborating hackers,
and (c) their cross-platform interactions. Our study concludes
in three key takeaway messages: (a) the malware ecosystem is
substantial and growing rapidly, (b) it is highly collaborative,
and (c) it contains professional malicious hackers.

Our initial findings are just the beginning of a promising
future effort that can shed light on this online malware author
ecosystem, which spans software repositories and security
forums. The current work thus can be seen as a building block
that can enable new research directions.

Follow up research can expand on our work to develop
preemptive security initiatives, such as: (a) monitoring hacker
activity, (b) detecting emerging trends, and (c) identifying par-
ticularly influential hackers towards safeguarding the Internet.
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