
ActRec: A Word Embedding-based Approach to
Recommend Movie Actors to Match Role

Descriptions
Ai-Ni Lee

National Cheng Kung University
Tainan, Taiwan

a0909333247@gmail.com

Kuan-Ying Chen
National Cheng Kung University

Tainan, Taiwan
h24051312@ncku.edu.tw

Cheng-Te Li
National Cheng Kung University

Tainan, Taiwan
chengte@ncku.edu.tw

Abstract—In this work, we propose a novel recommendation
problem, actor recommendation (ActRec), based on unstructured
text data for the movie industry. Given the text description of
a role, we generate a ranking list of actors such that the most
proper actors for the role-playing can be at top positions. We
propose a word embedding-based approach to solve the ActRec
problem. In addition, we compile a multi-source data from
Wikipedia, Google Search, and PTT online forum. Experimental
results show the promising performance of our method, which
encourages future effort on ActRec.

Index Terms—Actor Recommendation, User-Generated Data,
Movie Analysis, Role description, Semantic Matching

I. INTRODUCTION

Recommender systems (RS) are widely applied in a variety
of domains, such as e-commerce, social networking, news
recommendation, and search engine. Recent advances on deep
learning further improve the performance of recommenda-
tion algorithms by better representing users, items, and their
context information [14]. With the success of RS based on
explicit users-item interactions, nevertheless, it is still an
undeveloped land for applying RS to movie industry. In the
movie industry, it is highly demanded to recommend proper
actors and actresses that match the roles depicted by the
directors [7]. We term the task as Actor Recommendation
(ActRec). Specifically, in actor recommendation, we are given
a set of actors, and each actor is associated with a collection
of unstructured text descriptions that represent the roles they
had ever played and/or their figures and personality. Besides,
the directors or producers of a movie can specify the roles in
the text form. The task of ActRec is to generate a ranking list
of actors that best match the role description. To the best of
our knowledge, we are the first to perform such a kind of actor
recommendation based on unstructured text data. Although
Solaimani et al. [11] have ever identified political actors from
news texts, their method relies on hand-coded dictionaries, and
does not deal with the semantics of actors.

We develop a word embedding-based approach to solve the
proposed actor recommendation task. The basic idea is to map
actor names and words that appear in both descriptions of
actors and roles into the space embedding space. By doing so,

we are allowed to semantically compare actors and any words.
Then the recommendation can be cast into retrieving the top-K
similar actors by using the query terms in the semantic space.
The most challenging part of this task is that currently there is
no publicly available datasets on movie actors and roles. Thus
we attempt to collect multi-source datasets from Wikipedia,
Google Search Engine, and an online forum PTT (the most
popular forum in Taiwan) that contains user-generated data
on discuss movies and actors.

The contribution of this work is five-fold. First, we propose
and define the problem of actor recommendation based on
unstructured text description data. Second, we collect and
compile a multi-source dataset that contains text descriptions
on actors and roles of movies. Third, we propose a word
embedding-based approach to deal with the actor recom-
mendation task. Fourth, experimental results show that the
proposed method leads to promising performance using all
datasets, comparing to several baselines. Fifth, our empirical
study provides a list of insights on how to develop a system
for description-based actor recommendation.

Related Work. Rolenet [13] analyzes social interactions
between roles in a movie based on multimedia content. Hu
et al. [3] recommend movie stars based on the historical
movie genres and styles. However, their recommendations
cannot be tailored to match the role semantics/descriptions.
Jakob et al. [4] consider the roles of leading actors/actresses
and user reviews for movie recommendation. Chen et al. [1]
point out that the recommendation of movies should match
the personality of users and roles. Although these studies
discuss the roles of actors/actresses are correlated with movie
recommendation, none of them exploit the role descriptions for
actor recommendation. While Wallace et al. [12] emphasize
the selection of proper actors/actresses affects the success of
films, our work delivers the first attempt to perform actor
recommendation based on role descriptions.

II. PROBLEM STATEMENT

Let A denote the set of actors. Each actor a ∈ A is
associated with a collection of text descriptions, denoted by
Ta. The text description of a role r is denoted by Tr. It is

389

admin
Text Box
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

admin
Text Box
IEEE/ACM ASONAM 2020, December 7-10, 2020978-1-7281-1056-1/20/$31.00 © 2020 IEEE

Training Text Corpus

Query Role
Description

Word
Segmentation

Word/Actor
Embedding
Learning

Embedding
ClusteringActor

List

Query
Extraction

Actor Ranking
Generation

Exampled
Embedding Space

Recommended
Actors

Online
Offline

Fig. 1. Flowchart of ActRec model.

worthwhile to mention that Tr can be a subset of Ta if actor
a had ever played role r. In other words, Tr consists of two
parts. One is the actor itself, i.e., multi-source descriptions on
actors. The other is the descriptions of roles that the actors
had ever played.

Given the text description tr? of a new role r?, the task of
actor recommendation aims at generating a top-k ranking list
L of actors from all actors A such that the most proper actor
a? can be ranked at top positions in L. That said, we aim to
accurately find which actor will play role r? in the future.

III. THE PROPOSED ACTREC METHOD

Our method consists of five phases: (1) preprocessing and
word segmentation, (2) word/actor embedding learning, (3)
embedding clustering, (4) query extraction, and (5) ranking
generation.

We present the flowchart of the proposed ActRec model
in Figure 1, in which the upper part is the offline module
and the bottom part is the online module. Given the training
text corpus and the list of actors as the input, the offline
module is to learn the embeddings of words and actors. We
first perform word segmentation to obtain the set of words.
The word embedding learning technique is used to generate
the embedding of extracted words and given actors. That said,
words and actors are projected into the same embedding space
so that we are allowed to search for relevant actors based
on textual terms. To provide effective actor recommendation
based on similarity search in the embedding space, we perform
embedding clustering such that those words and actors sharing
similar contexts in the text corpus are grouped together. In
the online module, given the role description, we first extract
query terms that are not only representative but also have ever
appeared in the embedding space. Last, by similarity search
in the embedding space, the actor ranking generation method
is devised to return top-recommended actors.

A. Preprocessing and Word Segmentation

Given the original corpus of text descriptions, we first
remove all of the stop words to eliminate noises. Then we
perform word segmentation to obtain the set of words for
recommendation. Since we target at Chinese movies, i.e., text

descriptions are Chinese, we exploit the state-of-the-art neural
word segmentation technique, ckiptagger1 [6], to generate the
set of words. Note that we follow the hyperparameters sug-
gested by the original paper of ckiptagger to have segmented
words.

B. Word/Actor Embedding Learning

Another input of our model is the list of actors. To learn
the representations of actors, we require the actors to appear
in the text corpus. That said, we filter out those actors that are
not contained by the text corpus. To map all of the words and
actor names into the same embedding space, we leverage the
technique of word embeddings. Glove [9] is used to generate
the embeddings of all terms. By doing so, actors and normal
terms (e.g., named entities, adverbs, and adjectives) can be
compared, and thus we are allowed to find actors based on its
surrounding terms in the role description. Note that although
Glove is used here, it can be replaced by any recent word
pre-training model such as BERT [2].

C. Embedding Clustering

Since some words can be correlated with each other, we
perform k-means clustering [5] to group those close with one
another. Embedding clustering can benefit the actor ranking
generation. It is because the query terms can scatter in the
embedding space. If we simply average the embedding vectors
of query terms into a center vector, and find the closest
actors to the center one, unexpected actors can be reported.
For example, there could be a few irrelevant words in the
role description. Averaging the embedding vectors of these
words can mislead the semantic representation of the input role
description. Therefore, we cluster words by their embeddings,
and use the clusterings can help filter out irrelevant query
terms. The centroid of each cluster is obtained. We will
describe how cluster centroids can be used to avoid reporting
irrelevant actors, and to find the most representative actors in
the section of actor ranking generation. We will also show
how the number of clusters affects the performance in the
experiments.

D. Query Extraction

Given the text description of a role (provided by movie
directors), we extract the corresponding representative query
terms. The TF-IDF measure is used to score all words in the
description. Top-K high-scored words are regarded as query
terms. In the experiments, we will report how K affects the
recommendation performance. Note that the scoring of TF-
IDF can be replaced by state-of-the-art keyword extraction
methods, such as deep keyphrase generation [8].

E. Actor Ranking Generation

The generation of actor ranking consists of two steps. The
first step is to find the word/actor cluster that delivers similar
semantics as the input role description (query terms). The
second step is to produce the ranking list of actors by a

1https://github.com/ckiplab/ckiptagger

390

scoring measure that estimates how an actor matches the role
description.

First, to find the representative cluster, we use query terms
to vote for clusters. Each query term can vote for a cluster
based on the similarity between query term embedding and
cluster centroid embedding. The cluster with the highest sum
of similarity scores is considered as the representative one. We
will recommend actors from the representative cluster.

Second, we generate the ranking list of recommended actors
based on two criteria. One is the popularity (termed pop) of
an actor, i.e., the number of description appearances of an
actor in the text corpus. To boost the visibility of a movie
and ensure the quality of role playing, it is usually to consider
popularity to select actors. The other is the similarity (termed
sim) between an actor and terms in a word cluster. We first
find the cluster c? whose center vector is closest to the center
vector of query terms. Then the embedding similarity is used
to rank actors in cluster c?. We can multiply popularity with
similarity (termed popsim) to be the final ranking criterion.

IV. EXPERIMENTS

We conduct experiments to answer four questions. (a) Can
our method accurately find the most proper actors for a given
new role? (b) What is the performance of every dataset in
actor recommendation? (c) How do different hyperparameters
affect the recommendation performance? (d) How does the
popularity of actors influence the recommendation?

A. Data and Settings

Multi-source Dataset. We first find all Traditional-Chinese
movies in the past 10 years based on Wikipedia, and find the
leading actors and actresses for every movie. There are 973
movies, 1,946 roles, and 2,574 actors. From Wikipedia, we
also collect the text descriptions of roles of leading actors and
actresses. We retrieve the text descriptions of actors from three
sources. (1) Google Search Engine: by using the actor name as
the search query, we collect top-20 search-resulting snippets in
the first 10 pages of search results. (2) Wikipedia: we collect
the text descriptions of each actor. (3) PTT2: we first collect all
27,879 articles in PTT Movie Board 3, and retrieve sentences
that actors appear as their text descriptions.

Evaluation Settings. Movies from 2010-2018 are used to
learn the embeddings of all words and actors, and role de-
scriptions of 2019 movies are used for testing. We use Mean
Average Precision (MAP) as the evaluation metric. We set
the dimensionality of embeddings to be 128. The number of
clusters is set as 30 by default. Lists of top-10 actors are
generated. The competing methods are different combinations
of word vector with clustering (cwv) or simply averaging (wv),
and utilizing popularity with similarity (popsim) or not (pop),
i.e., wv-pop, wv-popsim, cwv-pop, and cwv-popsim. Note
that wv indicates simply using the averaged embedding vector
of all terms in the role description to represent the query. We

2https://term.ptt.cc/
3https://www.ptt.cc/bbs/movie/index.html

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

M
A
P

K: number of query terms
wv‐pop wv‐popsim

cwv‐pop cwv‐popsim

Fig. 2. MAP on different methods using ALL data.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14 16 18 20

M
AP

K: number of query terms

Wiki Google
PTT ALL

Fig. 3. MAP on different datasets using cwv-popsim.

consider four sets of actor text descriptions, including Wiki,
Google Search, PTT, and ALL of them.

B. Evaluation Results

Main Results. The results are shown in Figure 2 and
Figure 3. From Figure 2, which varies the number of query
terms by using their TF-IDF scores (terms with high TF-IDF
scores are first considered), it can be found that the proposed
method word embeddings with clustering under the ranking
criterion popularity-similarity (i.e., cwv-popsim) leads to the
best performance. When considering a proper number of query
terms (e.g., K = 8, 10), we have better MAP results. We think
that too many query terms can bring words that are not so
relevant to the role description, and fewer words can fully
depict the semantics of a movie role.

On the other hand, in Figure 3, which also varies the
number of query terms, the ALL data generates the most
satisfying results. We think the possible reason is that different
datasets are able to capture semantics from various aspects.
Collective opinions are captured from users in PTT. The
official descriptions about the personality and impression of an
actor/actress can be found in his/her Wikipedia page. Google
search results provide the news about the actor/actress. ALL
that combines semantics from multiple aspects can better and
fuller depict the actor/actress.

More Analyses. We first present how different word em-
bedding dimensions and various number of clusters affect the
recommendation performance. By changing the embedding
dimension (32, 64, 128, 256), the MAP scores of cwv-pop and
cwv-popsim are shown in Figure 4 (left). It can be found that
we have better performance when the embedding dimension is
128. Higher or lower dimensions can hurt the recommendation.

391

cwv-pop cwv-popsim

32 0.348 0.391

64 0.376 0.47

128 0.415 0.49

256 0.407 0.475

cwv-pop cwv-popsim

10 0.257 0.315

30 0.415 0.49

50 0.352 0.448

70 0.302 0.41

cwv-pop cwv-popsim

1-3 0.371 0.448 184

4-6 0.439 0.511 86

7+ 0.573 0.647 38 0.371152

ALL 0.415 0.49 308 0.447761

0

0.1

0.2

0.3

0.4

0.5

32 64 128 256
M
AP

Embedding Dimension

cwv‐pop cwv‐popsim

0

0.1

0.2

0.3

0.4

0.5

10 30 50 70

M
AP

Number of Clusters

cwv‐pop cwv‐popsim

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1‐3 4‐6 7+ ALL

M
AP

Popularity Groups

cwv‐pop cwv‐popsim

Fig. 4. Experimental results on hyperparameter analysis (the left is the embedding dimension, and the middle is the number of clusters), and the effect of
actor popularity groups (right) between cwv-pop and cwv-popsim methods.

The results of changing cluster numbers (10, 30, 50, 70) are
exhibited in Figure 4 (middle). We obtain higher MAP scores
when the number of clusters is 30. Although the empirical
results show that the performance is a bit sensitive to the
embedding dimension and the number of clusters, we think the
choice of such hyperparameters should rely on the text corpus
and how different types of movies and roles are considered.
They should be adjusted and tailored to the collected datasets.

We also demonstrate how the popularity of actor/actress
influences the recommendation performance. We group the
input role descriptions based on the popularity of their corre-
sponding ground-truth actors/actresses, in which the popularity
is defined as the number of played movies. Four popularity
groups, including 1-3, 4-6, 7+, and ALL, are considered. The
results in MAP scores are presented in Figure 4 (right). We
can clearly find that role description groups with popular
actors/actresses lead to better performance, especially on the
“7+” group. We think such results bring an essential implica-
tion. Popular actors/actresses are discussed more frequently in
social media (PTT), have more news articles, and are described
using more sentences. They have much richer training texts.
Therefore, we can generate more effective word embeddings to
depict these actors/actresses. In contrast, the unpopular actors
have fewer text descriptions, and thus their recommendation
leads to worse performance.

In short, we arrange insights found in the experimental
studies. (1) To have a more accurate recommendation of movie
actor/actress, we need to collect more text descriptions for
learning better embeddings. (2) The text descriptions should
be collected from diverse sources (e.g., news, social media, and
Wikipedia). (3) An effective mechanism to select representa-
tive query terms from the input role description is also crucial.
(4) Both actor popularity and embedding similarity are equally
important in recommending actors. (5) It is also essential to
filter out irrelevant actors, and our embedding clustering and
voting is a potential strategy.

V. CONCLUSIONS

This paper presents a novel actor recommendation problem
based on unstructured text data for the movie industry. We
collect a multi-source dataset, and propose a word embedding-
based approach to deal with the task. Promising experimental
results encourage future effort on improving actor recommen-
dation. The empirical study also provides a list of insights on

description-based actor recommendation. Ongoing work is to
exploit the semantic match technique [10] to directly learn the
matching function between descriptions of actors and roles.

REFERENCES

[1] L. Chen, W. Wu, and L. He, Personality and Recommendation Diversity,
2016, pp. 201–225.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2019, pp. 4171–4186.

[3] Y. Hu, Z. Wang, W. Wu, J. Guo, and M. Zhang, “Recommendation
for movies and stars using yago and imdb,” in 2010 12th International
Asia-Pacific Web Conference, 2010, pp. 123–129.

[4] N. Jakob, S. H. Weber, M. C. Müller, and I. Gurevych, “Beyond the
stars: Exploiting free-text user reviews to improve the accuracy of
movie recommendations,” in Proceedings of the 1st International CIKM
Workshop on Topic-Sentiment Analysis for Mass Opinion, ser. TSA ’09,
2009, pp. 57–64.

[5] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: analysis and
implementation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[6] P.-H. Li, T.-J. Fu, and W.-Y. Ma, “Remedying bilstm-cnn deficiency in
modeling cross-context for ner,” in Proceedings of AAAI International
Conference on Artificial Intelligence (AAAI), 2020.

[7] A. Liu, Y. Liu, and T. Mazumdar, “Star power in the eye of the beholder:
A study of the influence of stars in the movie industry,” Marketing
Letters, vol. 25, no. 4, pp. 385–396, 2014.

[8] R. Meng, S. Zhao, S. Han, D. He, P. Brusilovsky, and Y. Chi, “Deep
keyphrase generation,” in Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, 2017, pp. 582–592.

[9] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543.

[10] J. Rao, L. Liu, Y. Tay, W. Yang, P. Shi, and J. Lin, “Bridging the gap
between relevance matching and semantic matching for short text sim-
ilarity modeling,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), 2019,
pp. 5369–5380.

[11] M. Solaimani, S. Salam, L. Khan, P. T. Brandt, and V. D’Orazio,
“Apart: Automatic political actor recommendation in real-time,” in
Social, Cultural, and Behavioral Modeling, 2017, pp. 342–348.

[12] W. T. Wallace, A. Seigerman, and M. B. Holbrook, “The role of actors
and actresses in the success of films: How much is a movie star worth?”
Journal of Cultural Economics, vol. 17, no. 1, pp. 1–27, 1993.

[13] C. Weng, W. Chu, and J. Wu, “Rolenet: Movie analysis from the
perspective of social networks,” IEEE Transactions on Multimedia,
vol. 11, no. 2, pp. 256–271, 2009.

[14] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recom-
mender system: A survey and new perspectives,” ACM Comput. Surv.,
vol. 52, no. 1, 2019.

392

	Introduction
	Problem Statement
	The Proposed ActRec Method
	Preprocessing and Word Segmentation
	Word/Actor Embedding Learning
	Embedding Clustering
	Query Extraction
	Actor Ranking Generation

	Experiments
	Data and Settings
	Evaluation Results

	Conclusions
	References

