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Abstract—During the onset of a natural or man-made crisis
event, public often share relevant information for emergency
services on social web platforms such as Twitter. However,
filtering such relevant data in real-time at scale using social
media mining is challenging due to the short noisy text, sparse
availability of relevant data, and also, practical limitations in col-
lecting large labeled data during an ongoing event. In this paper,
we hypothesize that unsupervised domain adaptation through
multi-task learning can be a useful framework to leverage data
from past crisis events for training efficient information filtering
models during the sudden onset of a new crisis. We present a
novel method to classify relevant social posts during an ongoing
crisis without seeing any new data from this event (fully unsuper-
vised domain adaptation). Specifically, we construct a customized
multi-task architecture with a multi-domain discriminator for
crisis analytics: multi-task domain adversarial attention network
(MT-DAAN). This model consists of dedicated attention layers for
each task to provide model interpretability; critical for real-word
applications. As deep networks struggle with sparse datasets, we
show that this can be improved by sharing a base layer for multi-
task learning and domain adversarial training. The framework
is validated with the public datasets of TREC incident streams
that provide labeled Twitter posts (tweets) with relevant classes
(Priority, Factoid, Sentiment) across 10 different crisis events such
as floods and earthquakes. Evaluation of domain adaptation
for crisis events is performed by choosing one target event as
the test set and training on the rest. Our results show that
the multi-task model outperformed its single-task counterpart.
For the qualitative evaluation of interpretability, we show that
the attention layer can be used as a guide to explain the
model predictions and empower emergency services for exploring
accountability of the model, by showcasing the words in a tweet
that are deemed important in the classification process. Finally,
we show a practical implication of our work by providing a
use-case for the COVID-19 pandemic.
Index Terms—Social Media, Crisis Analytics, Text Classification,

Unsupervised Domain Adaptation, Interpretability

I. INTRODUCTION

During the sudden onset of a crisis situation, social media
platforms such as Twitter provide valuable information to aid
crisis response organizations in gaining real-time situational
awareness [1]. Effective analysis of important information
such as affected individuals, infrastructure damage, medical
emergencies, or food and shelter needs can help emergency

Fig. 1. Problem Statement: Interpretably predict labels for tweets collected
during an ongoing crisis using only the past crisis data, given a) unavailability
of labeled data in the ongoing event, and b) need for interpretability of
machine reasoning behind data filtering for emergency managers.

responders make time-critical decisions and allocate resources
in the most effective manner [2]–[5].
Several machine learning systems have been deployed to help

towards this humanitarian goal of converting real-time social
media streams into actionable knowledge. Classification being
the most common task, researchers have designed models
[4], [6]–[10] that classify tweets into various crisis-dependent
categories such as priority, affected individuals, type of dam-
age, type of assistance needed, usefulness of the tweet, etc.
Social media streams contain short, informal, and abbreviated
content; with potential linguistic errors and sometimes con-
textually ambiguous. These inherently challenging properties
of tweets make their classification task and formulation less
trivial when compared to traditional text classification tasks.
In this paper, we address two practically important and under-

developed aspects of current research in social media mining
for crisis analytics to classify relevant social web posts: a) a
fully unsupervised domain adaptation, and b) interpretability
of predictions. A fully unsupervised domain adaptation uses
no data from the ongoing crisis to train the model. Nguyen et
al., 2016 [6] showed that their convolutional neural network
(CNN) model does not require feature engineering and per-
formed better than the state-of-the-art methods; one of theirIEEE/ACM ASONAM 2020, December 7-10, 2020
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models being completely unsupervised [6]. Similarly, Alam et
al., 2018 [7] designed a CNN architecture with adversarial
training on graph embeddings, but utilizing unlabeled target
data. Our goal is to construct an unsupervised model that
does not require any unlabeled target data with the capability
of being interpretable. We specifically address the problem
of data sparsity and limited labels by designing a multi-
task classification model with domain adversarial training;
which, to the best of our knowledge, is not explored in social
media mining for crisis analytics. Another crucial component
of our model is interpretability. In prior works, when a top
performing model produces an accuracy of 78%, for instance,
it is unclear how trustworthy it is and what features are
deemed important in the model’s decision-making process. An
interpretable model like ours can present with a convincing
evidence of which words the classifier deems important when
making a certain prediction, and helps ensure reliability for
domain users, e.g., emergency managers.
Contributions: a) To address the problems of data sparsity

and limited labels, we construct a customized multi-task learn-
ing architecture (MT-DAAN) to filter tweets for crisis analytics
by training four different classification tasks (c.f. examples
in Fig. 3) across ten different crisis events under domain
shift. This multi-task domain adversarial model consists of
dedicated attention layers for each task for interpretability
and a domain classifier branch to promote the model to
be domain-agnostic. b) We demonstrate that the attention
layers provide interpretability for the predictions made by the
classifiers; with the goal to aid emergency services in a more
meaningful way. c) We empirically validate the performance
of the underlying single-task attention-based neural network
architecture by comparing it to the state-of-the-art methods,
for improving generalizability and interpretability for domain
adaptation in unsupervised tweet classification tasks in general.
d) Additionally, through experiments, we show that deep
networks struggle with small datasets, and that this can be
improved by sharing the base layer for multi-task learning
and domain adversarial training.

II. RELATED WORK AND BACKGROUND

A. Domain Adaptation

Domain Adaptation in text classification tasks has a long
line of fruitful research [11]–[13] that try to minimize the
difference between the domains so that a model trained
solely on one domain is generalizable to unseen test data
from a completely different domain. With the introduction
of Domain-Adversarial training of Neural Networks (DANN)
[14], many state-of-the-art models now utilize unlabeled target
data to train classifiers that are indiscriminate toward different
domains. The speciality of this architecture is that it consists of
an extra branch, which performs domain classification using
unlabeled data from different domains. Thus, both task and
domain classifiers share some bottom layers but have separate
layers towards the top. A negative gradient from the domain
classifier branch is back-propagated to promote the features at
the lower layers of the network incapable of discriminating

the domains. Recent works such as Adversarial Memory
Network (AMN) [15] utilizes attention, in addition to DANN,
to bring interpretability to capture the pivots for sentiment
classification. Hierarchical Attention Network (HATN) [16]
expands upon AMN by first extracting pivots and then jointly
training networks for both pivots and non-pivots.
For filtering social web data for crisis analytics, these models

do not suffice and need customized expansions due to the
following reasons: a) Collecting and using large unlabeled
target data from the new/ongoing crisis event may not be
practically viable, thus, we aim for a fully unsupervised
modeling. b) Having access to unlabeled data from multiple
crisis events can alleviate the above problem to an extent by
using it to train the domain classifier branch to push the model
to be domain independent. c) Due to the low-resource nature
of the dataset, binary classifiers may miss important lower
level features that can be potentially improved by a multi-task
model that shares the lower layers of the network for all the
tasks. This is also evident from our results in Table III and
IV, which show that deep models that perform much better
than simple models on Amazon reviews do not significantly
outperform them on TREC tweet dataset for crises.

B. Multi-Task Learning

Multi-Task Learning (MTL) solves multiple tasks at the same
time with a goal to improve the overall generalization capa-
bility of the model [17]. Within the context of Deep Learning,
MTL is performed by sharing (or constraining) lower level
layers and using dedicated upper level layers for various
tasks. A rich overview of MTL in Deep Neural Networks is
presented by Ruder (2017) [18]. MTL has been a successful
strategy over the past few years for many research explorations
such as relationship networks [19] in computer vision and
Sluice networks [20] in natural language processing. Similar
problems in domain adaptation of semantic classification and
information retrieval were addressed by jointly learning to
leverage large amounts of cross-task data [21]. In low resource
datasets such as for crises, the chance of overfitting is very
high. Thus, it seems intuitively better for the model to find a
shared representation capturing different tasks and not just one,
such that feature commonalities across tasks can be exploited.

C. Attention Mechanism

Attention mechanism [22], originally designed for machine
translation problems, has become one of the most successful
and widely used methods in deep learning that can look at a
part of a sentence at a time like humans. This is particularly
useful because of its ability to construct a context vector
by weighing on the entire input sequence unlike previous
sequence-to-sequence models [23] that used only the last
hidden state of the encoder network (typically BiLSTM [24],
LSTM [25], or GRU [26]). For example, in a sentence,
the context vector is a dot product of the word activations
and weights associated with each word; thus leading to an
improved contextual memorization, especially for long sen-
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tences. Our method incorporates such attention mechanisms
to enhance interpretability of the classifier.

Fig. 2. Fully Unsupervised Domain Adaptation Set-up for Multi-Task Crisis
Tweet Classification.

III. METHODOLOGY

A. Problem Statement: Unsupervised Domain Adaptation for
Crisis Tweet Classification

Using notations in Table I, consider a set C of all crisis events
such as Guatemala Earthquake or Typhoon Yolanda. The task
of unsupervised domain adaptation for crisis analytics is to
train a classifier for a specific target crisis (ct) using labeled
(LC−ct ) and unlabeled (UC−ct ) data from all other crises;
where C − ct denotes the set of all crisis events minus the
target crisis. We assume that no data record from the target
crisis is available for training. Following the traditional domain
adaptation terminology, Xs = LC−ct represents the labeled
data from the source domain S and Ys = yC−ct represents the
ground truth labels on which the classifier is trained. And, Xt

= Lct represents the labeled data from the target domain T
and Yt = yct represents the ground truth labels; both of which
are only used for testing the classifier. Xd = UC−ct represents
the unlabeled data from different domains minus the target.
To summarize:
Input: Xs, Ys, Xd

Output: Y predt ← predict(Xt)

B. Overview

In the following sections, we describe three models: Single-
Task Attention Network (ST), Single-Task Domain Adversar-
ial Attention Network (ST-DAAN), and Multi-Task Domain
Adversarial Attention Network (MT-DAAN). ST is the model
we adopt from [27] to build the single-task attention based
baseline. ST-DAAN is constructed on top of ST to make
the model domain agnostic by performing adversarial training
using gradient reversal. Finally, MT-DAAN is constructed on
top of ST-DAAN with dedicated attention layers for each task
on a shared BiLSTM layer. This is shown in Figure 2.

Notation Definition

C Set of all crisis events {c1, c2, ...}
Lck

Set of labeled data from the event ck
yck Set of ground truth labels for Lck

.
m Number of tasks (Number of bits in each label)
Uck

Set of unlabeled data from the event ck
Tx Number of words in a sentence
x<k> k-th word of a sentence
α<k> attention from k-th word
a<k> BiLSTM activation from k-th word

TABLE I
NOTATIONS

C. Single-Task Attention Network (ST)

We first describe the single-task attention network [27] on
top of which we build our models. This model aligns with our
goals of interpretability and unsupervised domain adaptation.
This BiLSTM based model with Attention gives us three main
advantages:

1) Unlike several existing domain adaptation methods that
use unlabeled target data to train the domain adversarial
component via gradient reversal, this method is a fully
unsupervised baseline which also can be customized for
multi-task learning.

2) The method uses attention mechanism which in turn
weighs each word in a sentence based on its importance.
This can be directly utilized for interpretability.

3) The method also runs much faster (only a few minutes),
i.e. highly useful in crisis times, as compared to the top
performing semi-supervised models such as HATN [16]
(hours).

This model [27] consists of a BiLSTM layer which produces
Tx activations, each corresponding to a word in the sentence.
These activations are passed through dense and softmax layers
and are combined by dot product to produce the context vector∑Tx

k=1 α
<k>a<k>, where a<k> is the BiLSTM activation

from k-th word and α<k> is the attention weight of k-th word.
Sentences with words greater than Tx are stripped and those
with words lower than Tx are padded. This single-task (m = 1)
attention network is the building block with which rest of the
following models are constructed. The single-task binary cross
entropy loss function is shown below.

LT = −
1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (1)

where T represents the task, y is the true label, and ŷ is the
predicted label.

D. Single-Task Domain Adversarial Attention Network
(ST-DAAN)

To study the specific contribution of domain adversarial train-
ing, we construct a secondary baseline over the ST architecture
by constructing an additional branch with gradient reversal
layer which is represented by the green blocks in Figure 2.
This is a single-task binary classifier with m = 1. Domain
Adversarial Training of Neural Networks (DANN) [14] was
introduced with a goal to confuse the classifier by back-
propagating a negative gradient from a separate domain clas-
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sifier branch (right-most branch, as shown in Figure 2). This
makes the classifier agnostic to difference in domains. This
back-propagation is implemented using a gradient reversal
layer [14] which does nothing during the forward pass but
pushes a negative gradient (−λ∂Ld

∂θf
) during the backward

(gradient update) pass. Ld is the domain classification loss,
λ is the strength of the reversal, and f represents the lower
level layers or features over which the negative gradient update
is performed. In our architecture, the goal is to make the
BiLSTM layer indiscriminate towards various crisis domains
such that the multi-task classification does not depend on the
domain from which the tweet/sentence is coming from. The
ST-DAAN loss function is shown below.

L′T = LT + wdLd (2)

where wd is the domain adversarial loss weight. Ld represents
the categorical cross entropy loss for multi-domain discrimi-
nator shown below.

Ld = −
1

N

N∑
i=1

|C−ct|∑
j=1

[yij log ŷij ] (3)

where C − ct is the set of all crisis events without the target
event.

E. Multi-Task Domain Adversarial Attention Network
(MT-DAAN)

Building on top of ST-DAAN, we construct MT-DAAN,
which is intended to classify problems with multiple tasks or
labels. For each task, a dedicated attention layer is allocated
from which it predicts binary labels. The BiLSTM layer
remains exactly the same as in the single-task model but
multiple attention blocks are added for each task along with a
domain classifier. In the architecture decision process, we first
investigated a multi-label classifier where all layers are shared
with the final softmax layer making multi-label predictions.
In low resource settings, constructing a multi-label classifier
using a shared architecture is challenging for two reasons:
a) jointly balancing positive and negative samples across all
classes is not trivial and potentially challenging to make it
extensible when new classes need to be added, and b) attention
layer may not always produce class-specific insights as the
weights are assigned to train for the combination of labels.
On the other hand, in the multi-task architecture with separate
attention layers, it is easy to add more classes. If some classes
require more training, it is trivial to further tune a model
specific to that class. More importantly, context<tj> vector
for j-th task identifies the influential words from each sentence
for that specific task. The complete architecture is shown in
Figure 2. MT-DAAN loss function is shown below:

LMT−DAAN =

m∑
k=1

(wkLTk
) + wdLd (4)

where m is the number of tasks, wk is the loss weight and
LTk

is the loss term for each task, wd is the domain adversarial
loss weight, and Ld is the domain adversarial loss term.

CRISIS EVENTS Total
Tweets

Vocab Avg
#words

P F S I

2012 Guatemala Earthquake 154 422 18.74 104 108 12 15
2013 Typhoon Yolanda 564 1746 19.47 249 46 119 51
2013 Australia Bushfire 677 2102 20.21 152 213 167 36
2013 Boston Bombings 535 1755 19.30 147 28 234 198
2013 Queensland Floods 713 2301 19.08 293 54 173 215
2014 Chile Earthquake 311 919 16.54 48 26 50 10
2014 Typhoon Hagupit 1470 2893 15.36 469 375 276 101
2015 Nepal Earthquake 2048 4026 13.77 1067 377 741 133
2015 Paris Attacks 2066 4152 18.62 306 183 782 429
2018 Florida School Shooting 1118 2940 21.40 329 64 206 70

TABLE II
TREC DATASET STATISTICS; SHOWING THE NUMBER OF POSITIVE

SAMPLES FOR EACH OF THE 4 CLASSES. P =PRIORITY, F =FACTOID,
S=SENTIMENT, AND I=IRRELEVANT.

F. Model Interpretability

The output (α) of the attention layer (ATT ) of each task, is
a Tx-dimensional vector; Tx being the number of words in
the sentence. The context vector (

∑Tx

k=1 α
<k>a<k>) is the

product of these attention weights and the Tx-dimensional
activation (a) from the BiLSTM layer. α essentially weighs
how much each word in the sentence contributes to the
classification result. Thus, α is the component that is evaluated
for model interpretability.

IV. DATASETS

A. TREC Dataset

TREC-IS1 (Text Retrieval Conference - Incident Streams) is
a program that encourages research in information retrieval
from social media posts with the goal to improve the state-of-
the-art social media based crisis analytics solutions. We use
the dataset from 2018 track proposal. Statistics of this curated
dataset of Twitter downloaded from TREC is shown in Table
II. The original dataset consisted of 15 crisis events. However,
due to very low data, we trimmed the events and tasks such
that there are at least 10 positive samples for each task.
The four tasks used in our experiments are shown below:

1) Priority: Different priority levels are assigned for each
tweet: low, medium, high, critical. We convert this into
a binary classification problem where low = 0 and
{medium, high, critical} = 1.

2) Factoid: ‘Factoid’ is a categorical label that represents
if a tweet is stating a fact. Eg: ‘death toll rises ...’

3) Sentiment: ‘Sentiment’ is a categorical label that repre-
sents if a tweet represents a sentiment. Eg: ’Worried..
Thoughts and prayers.’

4) Irrelevant: ‘Irrelevant’ is a categorical label for tweets
that do not provide any relevant information.

B. Amazon Reviews Dataset

The standard benchmark dataset2 of Amazon reviews [28] is
widely used for cross-domain sentiment analysis. We chose
four domains: Books (B), Kitchen (K), DVD (D), and Elec-
tronics (E). The raw data3, a part of Blitzer’s original raw
dataset, used in this work is from HATN [16]. This dataset

1http://dcs.gla.ac.uk/∼richardm/TREC IS/
2http://www.cs.jhu.edu/∼mdredze/datasets/sentiment/
3https://github.com/hsqmlzno1/HATN/tree/master/raw data
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S → T
LR SVM CNN BiLSTM

AMN HATN
ST

B→ K 76.40 75.95 81.20 84.45 81.88 87.03 87.22
B→ E 75.53 74.05 80.44 84.61 80.55 85.75 85.51
B→ D 81.08 81.43 82.94 83.52 85.62 87.07 86.32
K→ B 76.12 75.78 78.78 80.67 79.05 84.88 81.85
K→ E 80.37 81.20 85.17 87.37 86.68 89.00 87.09
K→ D 73.32 74.98 76.41 78.49 79.50 84.72 81.13
E→ B 74.85 74.18 78.08 81.18 77.52 84.03 81.50
E→ K 81.85 81.85 86.59 89.00 87.83 90.08 89.21
E→ D 75.82 75.83 78.35 78.46 85.03 84.32 81.37
D→ B 81.17 82.20 82.26 84.83 84.53 87.78 87.02
D→ K 76.42 77.58 81.09 85.21 81.67 87.47 86.37
D→ E 72.47 73.68 79.56 83.66 80.42 86.32 85.63
AVG 77.12 77.39 80.91 83.45 82.52 86.54 85.02

TABLE III
PERFORMANCE COMPARISON (ACCURACY) OF VARIOUS MODELS ON THE
STANDARD BENCHMARK DATASET OF AMAZON REVIEWS. METHODS IN

BLUE DO NOT USE ANY UNLABELED TARGET DATA; HENCE RELEVANT IN
OUR CONTEXT. EACH REPORTED SCORE IS AN AVERAGE OF 10

INDEPENDENT RUNS OF EACH EXPERIMENT.

Target LR SVM CNN BiLSTM ST
Guatemala Earthquake 60.14 56.76 60.47 65.54 59.97

Typhoon Yolanda 65.39 65.97 63.05 65.49 65.53
Australia Bushfire 65.61 63.23 62.10 60.10 62.44
Boston Bombings 71.47 75.45 69.72 71.43 72.08
Queensland Floods 65.56 64.81 64.13 66.01 66.21
Chile Earthquake 43.09 37.94 43.37 35.45 39.23
Typhoon Hagupit 49.86 46.22 49.21 54.13 52.61
Nepal Earthquake 57.11 55.39 58.61 60.49 61.35

Paris Attacks 71.43 71.72 72.50 72.14 71.31
Florida School Shooting 58.79 63.02 58.82 59.71 60.55

AVG 60.85 60.05 60.20 61.05 61.13

TABLE IV
PERFORMANCE COMPARISON (ACCURACY) OF UNSUPERVISED MODELS
ON TREC-PRIORITY (TWEET) DATASET SHOWING THAT DEEP MODELS

ARE NOT STRICTLY SUPERIOR THAN SIMPLER MODELS DUE TO DATA
SPARSITY. EACH REPORTED SCORE IS AN AVERAGE OF 10 INDEPENDENT

RUNS OF EACH EXPERIMENT. Source = Everything - Target.

consists of 3000 positive and 3000 negative samples for each
of the 4 domains. This dataset is used for two purposes: 1)
to validate the performance of the state-of-the-art methods
including the single-task baseline and 2) to compare and
contrast the performance of deep models when trained with
rich versus sparse datasets.

C. COVID-19 Tweet Dataset

For the COVID-19 use-case, we use Twitter posts collected
using CitizenHelper [29] system in March 2020, for the geo-
bounding box of the Washington D.C. Metro region. These
tweets were annotated by volunteers of regional Community
Emergency Response Teams (CERTs), with ‘Relevant’ label
denoting how relevant a tweet is for crisis response operations.
The label values range on a scale of 1-4. We convert them into
binary classes by considering values 1 and 2 as −ve (0) class
and values 3 and 4 as +ve (1) class. This dataset consists
of 4911 tweets with −ve (Relevant=0) and 637 tweets with
+ve (Relevant=1) classes. Following unsupervised domain
adaptation criteria, the filtering models are trained using only
the TREC dataset and evaluated on the COVID-19 tweets. For
each independent run of the experiment, a balanced subset of
size 637 for both classes is selected for testing.

V. RESULTS & DISCUSSION

We first validate the performance of the adopted unsupervised
ST model [27] by comparing it with the following standard
neural network architectures and state-of-the-art models used
for domain adaption in text. We use the standard benchmark
dataset of Amazon reviews. Following the traditional domain
adaptation experimental setup, each experiment represented as
S → T consists of a source domain (S) on which the model is
trained and a target domain (T) on which the model is tested.
We use Keras deep learning library for our implementations;
with Tx=200 for Amazon reviews and 30 for Tweets. We use
Adam optimizer with a dropout of 0.4, maximum epoch of 50,
early stopping patience of 3, batch size of 32, and validation
split of 0.15.

1) Simple Baselines: We construct simple baseline classi-
fiers [30]: Logistic Regression (LR) and Support Vec-
tor Machines (SVM). The input to these models are
constructed by aggregating the 300-dimensional word
embeddings of words in each review.

2) CNN: A standard Convolutional Neural Network in-
spired by Kim, 2014 [31] is constructed with the fol-
lowing architecture:
Word Embeddings(Tx, 300)→ Conv1D(128, 5)
→MaxPooling1D(5) → Conv1D(128, 5)
→MaxPooling1D(5) → Conv1D(128, 5)
→ GlobalMaxPooling1D()→ Dense(128)
→ Dense(2)→ y.
This is combined with dropouts, relu activations, and
ending with softmax activation producing labels for bi-
nary classification. State-of-the-art deep learning meth-
ods for existing social media mining approaches of crisis
analytics [6], [7] use a similar architecture.

3) BiLSTM: This is the bottom-most layer in Figure 2
with the activation a<Tx> passed through the following:
Dense(10) → Dense(2) → y also including dropouts,
relu activation, and ending with softmax.

4) AMN and HATN: AMN [15] and HATN [16] are
attention-based methods which use gradient reversal to
perform domain adversarial training on the unlabeled
data from source and target domains. HATN is an
extension to AMN by adding the hierarchical component
and jointly training pivot and non-pivot networks.

Input to all the models are word vectors4 [32]. The eval-
uation on amazon reviews shows how well the single-task
(ST) model perform when compared to the existing top-
performing domain adaptation models on benchmark dataset.
Table III shows accuracy scores on the Amazon cross-domain
sentiment analysis dataset. HATN uses unlabeled target data,
gradient reversal, explicit pivot extraction, and joint training
making it a computationally expensive method. As shown
in the experimental evaluation, we use the same Amazon
dataset and GoogleNews word vectors for our experiments.
ST, being unsupervised with no need of unlabeled target data,

4https://code.google.com/archive/p/word2vec/
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TARGET Priority Factoid
ST ST-DAAN MT-DAAN ST ST-DAAN MT-DAAN

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Guatemala Earthquake 59.97 62.39 69.07 69.66 69.05 69.34 68.92 68.47 79.90 80.76 84.05 97.01

Typhoon Yolanda 65.53 65.47 66.07 63.73 67.42 67.30 80.50 84.42 82.71 85.61 84.36 86.93
Australia Bushfire 62.44 66.69 61.07 63.42 61.93 64.28 64.58 60.69 65.64 60.53 65.04 60.13
Boston Bombings 72.08 74.29 72.34 73.37 73.80 74.74 83.10 88.51 81.42 85.90 85.82 88.82
Queensland Floods 66.21 65.94 67.19 66.97 66.74 66.46 37.56 48.90 50.46 59.82 49.52 59.21
Chile Earthquake 39.23 40.92 38.91 42.37 41.80 46.33 30.38 33.97 39.87 48.68 45.28 54.58
Typhoon Hagupit 52.61 50.59 58.97 58.94 57.50 57.52 68.98 70.79 71.42 72.44 69.49 70.08
Nepal Earthquake 61.35 59.44 60.18 57.80 61.65 59.49 74.04 76.08 80.72 81.00 81.04 81.02

Paris Attacks 71.31 76.26 70.42 74.08 74.44 77.21 75.78 80.35 82.35 84.89 82.52 85.63
Florida School Shooting 60.55 61.75 65.47 64.07 62.51 63.24 76.73 82.67 84.55 87.51 85.80 88.15

AVG 61.13 62.37 62.97 63.44 63.68 64.59 66.06 69.49 71.90 74.71 73.29 77.16
TARGET Sentiment Irrelevant

ST ST-DAAN MT-DAAN ST ST-DAAN MT-DAAN
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Guatemala Earthquake 96.96 97.03 96.45 96.68 96.76 92.73 89.36 89.03 91.22 91.06 93.11 92.73
Typhoon Yolanda 75.81 77.62 77.54 79.01 76.82 78.35 76.05 79.77 78.49 80.59 80.46 82.31
Australia Bushfire 75.95 77.58 78.80 79.12 78.54 78.92 35.42 47.164 53.78 65.11 51.76 63.36
Boston Bombings 81.39 81.11 80.73 80.70 82.13 82.10 58.15 55.73 58.15 57.43 61.49 61.45
Queensland Floods 81.69 80.39 81.05 81.39 81.53 81.32 65.68 65.36 67.26 65.72 67.88 67.27
Chile Earthquake 92.69 92.91 93.10 93.21 93.62 93.68 75.16 84.98 80.46 86.38 80.64 86.56
Typhoon Hagupit 84.98 85.86 85.15 86.14 85.43 86.38 63.21 75.04 71.50 78.25 70.22 77.27
Nepal Earthquake 67.75 68.42 70.20 70.51 69.96 70.31 31.79 42.10 36.97 47.41 41.49 52.87

Paris Attacks 76.01 76.63 73.65 73.98 74.47 74.60 33.91 35.25 44.52 48.32 47.17 51.32
Florida School Shooting 68.77 71.77 67.06 70.03 68.14 71.05 32.66 40.90 44.22 55.27 47.64 58.65

AVG 80.20 80.93 80.37 81.08 80.74 80.94 56.14 61.53 62.66 67.55 64.19 69.38

TABLE V
UNSUPERVISED DOMAIN ADAPTATION RESULTS ON TREC DATASET SHOWING PERFORMANCE BOOST FOR Priority, Factoid, AND Irrelevant TASKS.

HOWEVER, Sentiment TASK DID NOT SHOW A SIGNIFICANT IMPROVEMENT. SEE PERFORMANCE EVALUATION SECTION FOR DETAILS. EACH REPORTED
SCORE IS AN AVERAGE OF 10 INDEPENDENT RUNS OF EACH EXPERIMENT.

TARGET Relevant
ST ST-DAAN MT-DAAN

Acc F1 Acc F1 Acc F1
COVID-19 73.25 77.36 74.55 77.51 77.00 78.09

TABLE VI
UNSUPERVISED DOMAIN ADAPTATION RESULTS FOR COVID-19 TWEETS

USING ONLY THE TREC DATASET FOR TRAINING. EACH REPORTED SCORE
IS AN AVERAGE OF 10 INDEPENDENT RUNS OF EACH EXPERIMENT.

performed competitively with an overall accuracy of 85.02%;
thus establishing a strong fully unsupervised building block
for us to build upon.

A. Crisis Tweets vs Amazon Reviews

Table III and IV show that deep models struggle with
small datasets such as TREC-IS tweets. When ST model
outperformed Logistic Regression by ∼ 8% on the Amazon
reviews dataset, the difference was only less than 1% with
no statistical significance on the TREC-Priority dataset. Note
that we conduct experiments with various parameter combi-
nations on the deep models when using tweets. For example,
Tx = 200 for amazon reviews and Tx = 30 for tweets due
to the difference in their average word-length. Books domain
of Amazon reviews has 182 average number of tokens per
review with a vocab size of 105920. On the other hand, the
event with highest number of tweets in the TREC dataset
(Paris Attacks) has only 18.62 average number of tokens
per tweet with a vocab size of 4152. This difference makes
it intuitively challenging to train deep models with several
parameters that may lead the model to memorize the entire
dataset resulting in poor generalization. Multi-task learning
and domain adversarial training try to alleviate this problem

by training the shared BiLSTM layer with much more data
from different tasks and unlabeled data.

B. MT-DAAN Performance Evaluation

The primary purpose of the MT-DAAN model is to show that
sharing the bottom layer of the model (i.e., shared representa-
tion) for different tasks along with domain adversarial training
can help improve the generalizability of some of the tasks
that are otherwise trained alone in the single-task model. The
experiments for MT-DAAN are setup in the same unsupervised
way as for single-task. No data from the test crisis is used for
training. For example, if we are testing our model for the event
‘Typhoon Yolanda’, no data from this crisis is used for training.
Note that the domain classifier component uses unlabeled data
only from rest of the crisis; making it a fully unsupervised
domain adaptation approach. Performance scores of the four
tasks (Priority, Factoid, Sentiment, and Irrelevant) are shown
in Table V. The results show clear performance improvement
for Priority, Factoid, and Irrelevant tasks. However, Sentiment
task did not show significant improvement. We speculate
that this is because other tasks do not generalize the bottom
layer enough to boost the sentiment classification performance.
These results show the usefulness of multi-task learning as
well as domain adversarial training where different tasks in
multiple domains help each other when the data is sparse and
labels are limited.

C. Word Vectors

We use fastText [33] as our word embeddings for tweets
because of its sub-word usage and the ability to create vectors
for arbitrary and out-of-vocabulary words. Although there
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Fig. 3. Examples of interpretable results using attention; darker the shade,
higher the attention. Recall that no data from the crisis-event for testing is
used for training the model. Even then, relevant keywords such as ‘police
urging’, ‘death toll rises’, ‘worried’, and ‘thoughts with people’ are correctly
picked up by the attention layers of their respective tasks.

exists many alternatives, picking the one that works well for a
specific dataset is not trivial. We conducted experiments using
four choices of word embeddings: fastText [33], GoogleNews
[32], Glove [34], and CrisisNLP [2]. Averaging over 10 crises,
we received the following accuracy scores (in %) respectively
for the above word embeddings: {80.20, 81.82, 81.88, 80.73}.
Unlike fastText, we fine-tune these pre-trained vectors to create
vectors for out-of-vocabulary words. Vectors for words that
are already in the vocabulary are locked while tuning for
consistency in evaluation. The tweet-based embeddings such
as Glove or CrisisNLP did not significantly outperform other
models. Glove vectors are 200-dimensional while the rest are
300-dimensional which makes the experiment favoring Glove
word vectors. This experiment shows that the problem of
finding a strictly superior word vector model for tweets still
remains a challenging task.

D. Interpretability: Attention Visualization

The attention weights used to create the context vector by
the dot product operation with word activations represent the
interpretable layer in our architecture. These weights represent
the importance of each word in the classification process.
Some examples are shown in Figures 3 and 4. Stronger the
color intensity stronger the word attention. In the first example,
‘boston police urging’ is the reason why the tweet is classified
as +ve priority. Similarly, ‘death toll rises’ in the Factoid
example, ‘worried, prayers’ in the Sentiment example, and
‘thoughts with people’ in the Irrelevant example are clear
intuitive indicators of +ve predictions. These examples show

Fig. 4. Examples of interpretable results using attention for relevancy
prediction of COVID-19 tweets. With 77% accuracy, although the highly
attended words in the ‘Relevant’ tweets provide some intuitive sense of
interpretability, the highlighted words in the ‘Irrelevant’ tweets are somewhat
ambiguous because it is unclear if those words are chosen due to their specific
or generic nature. This shows both the benefits and challenges of unsupervised
and interpretable domain adaptation.

the importance of having interpretability as a key criterion in
crisis domain adaptation tasks for social media.
To the best of our knowledge, in social media mining for

crisis analytics, there does not exist a ground truth dataset
that highlights the words that explain the labels for tweets.
Using our model as a guide, we hope to build a robust
evaluation dataset as our immediate next step so that the
models can be quantitatively evaluated using robust trust-
evaluation methods such as LIME [35]. It is also crucial to
note that binary classification tasks such as sentiment analysis
of Amazon reviews has a clear class divide that produces
intuitive keywords such as ‘good’, ‘excellent’, or ‘great’ for
+ve reviews and ‘bad’, ‘poor’, or ‘horrible’ for −ve reviews.
However, for short texts such as tweets shown in Figure 4,
‘relevancy’ can depend on the context and it is unclear which
keywords truly represent the examples in the ‘irrelevant’ class.

VI. COVID-19 USE-CASE

We show a practical implication of our work by applying
it to COVID-19 tweets described in Section 4.3. Our goal
is to interpretably predict if a COVID-19 tweet is relevant
or not; a binary classification task. The models are trained
using only the TREC dataset and evaluated on the COVID-19
tweets (a balanced subset of size 637 for +ve and −ve labels).
We found that a combination of ‘Priority’ and ‘Irrelevant’
labels from TREC performs better to predict COVID-19’s
‘Relevant’ label (this can be trivially verified by constructing
two binary classifiers). We augment all three methods (ST, ST-
DAAN, and MT-DAAN) with an additional condition before
label prediction: Rc = Pt∩It, which means that a COVID-19
tweet is ‘Relevant’ only if it is predicted both ‘Priority’ = 1
and ‘Irrelevant’ = 0. The scores are reported in Table VI and
the attention results are shown in Figure 4, demonstrating the
effectiveness of our proposed method.

415



VII. CONCLUSION

We presented a novel approach of unsupervised domain
adaptation with multi-task learning to classify relevant
information from Twitter streams for crisis management,
while addressing the problems of data sparsity and limited
labels. We showed that a multi-task learning model that shares
the lower layers of the neural network with dedicated attention
layers for each task along with a domain classifier branch can
help improve generalizability and performance of deep models
in the settings of limited data. Furthermore, we showed that
using an attention-based architecture can help in interpreting
the classifier’s predictions by highlighting the important words
that justify the predictions. We also presented an in-depth
empirical analysis of the state-of-the-art models on both
benchmark dataset of Amazon reviews and TREC dataset
of crisis events. The application of our generic approach
for interpretable and unsupervised domain adaptation within
a multi-task learning framework can benefit social media
mining systems in diverse domains beyond crisis management.

Reproducibility: Source code and instructions for de-
ployment are available at - https://github.com/jitinkrishnan/
Crisis-Tweet-Multi-Task-DA.
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