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Abstract—Compromised accounts on social networks are reg-
ular user accounts that have been taken over by an entity
with malicious intent. Since the adversary exploits the already
established trust of a compromised account, it is crucial to detect
these accounts to limit the damage they can cause. We propose a
novel general framework for semantic analysis of text messages
coming out from an account to detect compromised accounts.
Our framework is built on the observation that normal users
will use language that is measurably different from the language
that an adversary would use when the account is compromised.
We propose to use the difference of language models of users
and adversaries to define novel interpretable semantic features
for measuring semantic incoherence in a message stream. We
study the effectiveness of the proposed semantic features using
a Twitter data set. Evaluation results show that the proposed
framework is effective for discovering compromised accounts
on social networks and a KL-divergence-based language model
feature works best.

Index Terms—incoherence detection, semantic analysis, com-
promised accounts

I. INTRODUCTION

The advent of social media has borne great opportunities
and benefits, but also dangers and risk. One problem that has
become more prominent is the spread of misinformation on
social networks. In order to spread misinformation success-
fully, perpetrators mainly rely on social/spam bots [1, 2, 3]
or compromised accounts [4, 5]. Account compromising has
become a major issue for public entities and regular users
alike. In 2013, over a quarter million accounts on Twitter
were compromised [6] and despite massive efforts to contain
account hacking, it is still an issue today [7]. For affected users
a compromised account can be an embarrassing experience.
As a result, 21% of users that fall victim to an account hack
abandon the social media platform [4].

Compromised accounts are legitimate accounts that a mali-
cious entity takes control over, with the intention of gaining
financial profit [4] or spreading misinformation [8]. These
accounts are especially interesting for attackers, as they can
exploit the trust network that the user has established [9]. Since
an account takeover can take up to five days, with 60% of the
takeovers lasting an entire day [4], attackers are given ample
time to reach their goal. Finding these hijacked accounts is
challenging, since they exhibit traits similar to regular accounts
[9]. Only after analyzing the changes in the account’s behavior,

patterns can be identified that expose the account as being
compromised and therefore specific methodology is required.

Existing work on detection of compromised accounts has
mostly relied on anomalies of user profiles, but there is a great
opportunity to leverage semantic analysis of an account’s con-
tent, since the intent of compromising a social media account
is to inject “abnormal” content [10, 11, 12]. Thus, analysis of
semantic coherence of text content can be a general strategy
for detecting compromised accounts. While some existing
work has attempted to leverage text content also, the textual
features used are simplistic or non-interpretable [8, 10, 13].
For example, bag-of-word features are inadequate for captur-
ing semantic variations in language, while embedding-based
approaches are not interpretable, which is important if such
a method is to be used to guide any real-world actions on
the account. In this paper, we propose to perform deeper
semantic analysis using a solid probabilistic language model
framework to directly measure the semantic incoherence in
text content, leading to highly interpretable semantic features
for detecting compromised accounts. Such features can be used
in any supervised learning framework to improve detection
accuracy and improve explainability.

Our key observation is that a regular user’s textual output
will differ from an attacker’s textual output. We thus propose
a general framework for detecting compromised accounts
based on semantic analysis of the incoherence in the text
stream. This is complementary with the existing work in the
sense that our framework can lead to highly interpretable
novel features that can be added to any existing machine
learning-based detection method to improve its accuracy and
explainability. As a specific implementation of the framework,
we model the user’s and attacker’s language as two smoothed
multinomial probability distributions that are estimated using
the textual output of the user and attacker, respectively. We
use a similarity measure between probability distributions as
indicators that an account is being compromised. Even though
we do not know the start and the end of an account takeover,
our method leverages the fact that the average difference
for random account begin and end dates will be higher for
compromised accounts, compared to benign accounts.

Evaluation of such a detection task is challenging due to the
inevitable concern of user privacy, making it nearly impossible
to have a publicly available real world data set. Following other
work in this domain [9, 12, 14, 15], we propose a simulation-IEEE/ACM ASONAM 2020, December 7-10, 2020
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based evaluation method and use such a method to study
the effectiveness of the proposed semantic analysis method.
Specifically, we formalize this problem in a threat model and
utilize this model to simulate account takeovers in our dataset,
to compare an implementation of the proposed framework1 to
other approaches.

Our evaluation results show that the proposed incoherence-
based features are highly effective for detecting compromised
accounts and can be combined with other features to improve
detection accuracy and enhance explainability. We further
show that when the proposed method is trained on simulated
data, it can detect non-artificially compromised accounts from
real world data set. Since training on simulated data requires
no human effort, the proposed method can be immediately
adopted by a social media company to potentially enhance
their compromised account detector.

II. RELATED WORK

It is common practice in compromised account detection to
build profiles based on user behavior and look for anomalies
within them. Egele et al. [8] learns behavioral profiles of
users and looks for statistical anomalies in features based on
temporal, source, text, topic, user, and URL information. Ruan
et al. [9] finds anomalies in the variance of a user’s click
behavior. Viswanath et al. [16] applies principal component
analysis to a user’s Facebook likes to find abnormal behavior.
Vandam et al. [13] studies certain account characteristics, such
as number of hashtags or number of mentions in tweets,
which are used as features in a classification framework.
Karimi et al. [10] uses Long Short-Term Memory networks
to capture the temporal dependencies within user accounts
to learn distinguishing temporal abnormalities. VanDam et al.
[11] uses an unsupervised learning framework, where multiple
views on a user profile (i.e., term, source, time and place)
are encoded separately and then mapped into a joint space.
This joint representation is then used to retrieve a ranking
of compromised accounts. Building on this work, VanDam
et al. [12] uses and encoder-decoder framework to build low-
dimensional feature vectors for users and tweets. The residual
errors form both encoders are used in a supervised setting to
predict compromised accounts.

When it comes to textual information, current methods
either do not leverage it at all [8, 9] our the textual features are
superficial. For instance, text is only used to detect language
changes (e.g., from English to French) [8] or topics are derived
plainly from hashtags [8, 13]. It is also common to simply use
bag-of-word features [13] or neural embeddings [10, 11, 12].
Thus, all methods can benefit of a deeper analysis of the
semantic incoherence of text.

III. SEMANTIC INCOHERENCE FRAMEWORK

A. Threat Model

The adversary’s goal is to inject textual output into a benign
account in order to mask the output’s origin and leverage the

1The code is available at: https://github.com/dom-s/comp-account-detect.

Fig. 1: A tweet stream divided according to begin (tbegin)
and end (tend) of an attack. A language model is learned for
regular tweets (θUser) and compromised tweets (θAttack).
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Fig. 2: Overview of model.

user’s influence network. In our setting, it is irrelevant how
the adversary obtained access to the account. To make our
method as general as possible, we assume that no account
details are observed, meaning that we ignore the friendship
network, profile details, etc. To further cater to generality, we
don’t make any assumptions about the text, except that it was
written by a different author. In the case of an attack, we
assume that at least one message is injected by the adversary
and that at least one benign message is observed. For all
accounts we assume that they existed for more than one day.

B. General Framework

We now describe the proposed framework for identifying
compromised accounts. In accordance with our threat model,
the framework is based on the assumption that an adversary’s
textual output will deviate from a regular user’s textual output.
Let U be the set of all users u. Further, let mu

t be a message
m from user u at time t ∈ {1, 2, ..., N}. Our goal is to find
all compromised user accounts Ucomp ⊂ U . To capture the
discrepancy between language usage, we propose to divide the
tweet space of a user into two non-overlapping sets MUser and
MAttack. We randomly assign two timepoints: tstart signals
the start of the attack and tend signals its end. All mu

t with
t ∈ [tstart, tend] make up MAttack, whereas all mu

t with
t ∈ [t1, tstart−1] ∪ t ∈ [tend+1, tN ] make up MUser. We can
measure the difference between MUser and MAttack using
any similarity measure of our choice. This procedure can be
repeated multiple times for different values of tstart and tend.
t can be of different granularity, where the minimum is per-
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message and the maximum can be chosen at will. The more
often the procedure is repeated for a certain user, the higher is
the sampling rate, which makes for better approximations of
the true difference between MUser and MAttack (we study
the optimal sample rate in Section V). Thus, this strategy
provides a flexible trade-off between accuracy and efficiency.
The similarity measures can then be employed as features in
the downstream task.

C. Instantiation with Language Modeling

We describe our practical instantiation of the framework
using language modeling and supervised learning. We create
a classifier that distinguishes compromised from benign user
accounts based on a feature set, derived from our frame-
work. We measure this as the difference between two word
probability distributions of a user and an attacker. We select
KL-divergence [17] as our method of choice to compare the
difference of probability distributions. We assume that when
a user writes a message she draws words from a probabilistic
distribution that is significantly different from the distribution
an attacker draws words from. Let θUser and θAttack be two
word probability distributions (i.e., language models) for the
user and attacker. We need to select two time points tstart and
tend that mark beginning and end of the attack (Figure 1). As
described by our framework, all messages mu

t that fall within
the time interval [tstart, tend] contribute to θAttack, whereas
mu

t /∈ [tstart, tend] contribute to θUser.
Figure 2 presents an overview of our model. For a particular

user, we sample her tweet stream for random tstart, tend
pairs. As seen in the figure, the algorithm can, for example,
select t3 and tN−2 as tstart and tend, respectively. Thus, all
tweets that fall between {[mu

1 ,m
u
2 ], [m

u
N−1,m

u
N ]} contribute

to θUser. All tweets that fall in [mu
3 ,m

u
N−2] contribute to

θAttack. Then, the KL-divergence for these specific θUser and
θAttack contributes one sample for this user (D50

KL in the
figure). This process is repeated for different samples (e.g., we
used 50 samples in our experiments), where each time tstart
and tend are selected at random, with constraint tstart < tend.
Sample rates are selected empirically, depending on the best
classification performance on a development set. We select
the maximum, minimum, mean and variance of the sampled
KL-divergence scores. These features are then combined in
a Support Vector Machine (SVM) model, which learns the
optimal weighting for each feature based on the training data.
Naturally, other classifiers can also be used, but exploration
of different classifiers is out of the scope of this paper.

D. Language Modeling Details

We try to estimate the joint probability of
P (w1, w2, w3, ..., wN ) for all words w1, ..., wN in the text.
According to the chain-rule, this is equivalent to computing
P (w1)P (w2|w1)P (w3|w1, w2)...P (wN |w1, ..., wN−1).
Because of the combinational explosion of word sequences
and the extensive amount of data needed to estimate
such a model, it is common to use n-gram language
models. N-gram language models are based on the Markov

assumption that a word w1 only depends on n previous
words (P (wk|w1, ..., wk−1) ≈ P (wk|wk−n+1, ..., wk−1)).
The simplest and computationally least expensive case
is the uni-gram. Here, the Markov assumption is that
a word wk is independent of any previous word, i.e.,
P (wk|w1, ..., wk−1) ≈ P (wk). All P (wk) for k ∈ 1, 2, ..., N
make up a language model θ, which is a multinomial
probability distribution, where words in the document are
events in the probability space. The parameters for the
language models θ are estimated using maximum-likelihood.
Maximizing the likelihood of the uni-gram language model
is equivalent to counting the number of occurrences of wk

and dividing by the total word count (P (wk) = c(wk)
N ,

where c(wk) is the word count of wk). This distance
between two probability distributions can be estimated using
Kullback-Leibler-divergence [17]. In the discrete case, for
two multinomial probability distributions P and Q the
KL-divergence is given as

DKL(P,Q) =
∑
i

P (i)log(
P (i)

Q(i)
).

It can be observed that DKL(P,Q) 6= DKL(Q,P ). However,
it is common practice to still think of DKL as a distance
measure between two probability distributions [18]. An issue
with DKL is that the sum runs over i, which is the event
space of P and Q. Thus, it requires the event space to be
equivalent for both distributions. In our case θ is a language
model. Now, let v(θ) denote the vocabulary set of θ. As
a result of maximum-likelihood estimation, in most cases
v(θUser) 6= v(θAttack). Thus, we have to smooth the proba-
bility distributions such that v(θUser) = v(θAttack), which is
required in order to calculate DKL. To achieve this, we define
v(θ) := v(θUser)∪ v(θAttack). Then, we set v(θUser) = v(θ)
and v(θAttack) = v(θ) and estimate θUser and θAttack using
the Laplace estimate.

IV. EXPERIMENTAL DESIGN

We turn the compromised account detection task into a
binary classification problem, where the goal is to decide
whether a user account is compromised or not. We therefore
learn a classification function, which returns 1 if an account
is compromised and 0 otherwise.

We set up our experiments to answer the following research
questions: We first perform a feasibility analysis to (I) study to
what extend a KL-divergence measure can detect incoherence.
The second part of our feasibility analysis finds proof that
(II) the average KL-divergence can be estimated by randomly
sampling a certain number of points with different begin/end
dates. Following the feasibility study, we show how effective
the proposed language model based method is in detecting
compromised accounts in a simulated environment. We show
(III) how the proposed features compare to general state-of-
the-art text classification features and how to combine them;
(IV) how our proposed features perform in comparison to
other compromised account detection methods and how we
can further improve performance by combining their feature

419



spaces; (V) how effective is our method on a real (non-
simulated) dataset by performing a qualitative, manual inves-
tigation. We start by introducing our dataset.

A. Dataset

Previous methods on compromised account detection either
do not publish their datasets [8, 13, 16] or the original text
data is not fully recoverable due to restrictions of the social
media platform or the deletion of user data [10]. Therefore,
meaningful evaluation is especially challenging in our setting.
Since no dataset exists, we opted to follow existing prac-
tise [9, 12, 14, 15] and use a simulation method. We perform
a simulation of account attacks, which allows us to compare
different methods quantitatively to study their effectiveness.
Any bias introduced by the simulation is unlikely to affect our
conclusions as it is orthogonal to the methods that we study
and we argue that such an evaluation strategy is adequate to
perform a fair comparison of different methods.

For simulation, we leverage a large Twitter corpus from
Yang and Leskovec [19]. The dataset contains continuous
tweet streams of users. Relationships between users, etc. are
unknown. Finding compromised accounts manually within
a dataset of millions of tweets is clearly infeasible. Simu-
lating account hijackings enables us to (cheaply) create a
gold standard while having full control over the amount of
accounts compromised and begin/end of account takeovers.
For simulation, we follow our threat model introduced in
Section III-A, where the adversary’s goal is to inject messages
into regular accounts. Since we make no assumptions about the
textual content, we follow a similar methodology to VanDam
et al. [12] and Trang et al. [15], and replace part of the
consecutive tweet stream of an account with the same amount
of consecutive tweets from another random user account.
Since our algorithm has no knowledge about the begin and
end of an attack, we choose these at random, meanwhile
ensuring that only a certain predefined fraction of the tweets
is compromised. This allows us to test the effectiveness of our
method in different scenarios, where different percentages of
tweets are compromised within an account. To get meaningful
estimates for the language models θUser and θAttack, we select
the 100,000 users with most tweets in our data. According to
our threat model, we retain users with more than one day of
coverage, resulting in 99,912 users and 129,442,760 tweets.

B. Feasibility Studies

In our feasibility studies we use a subset of the data
by selecting 495 users at random, where each compromised
account contains 50% compromised tweets. For each user,
we put all tweets into daily buckets and calculate the KL-
divergence for all possible combinations of tbegin and tend.
The reason this cannot be done for the whole dataset is simply
because of computational cost. We therefore operate on this
subset to investigate whether our method is feasible and can
be approximated to avoid increased computational effort.

C. Quantitative Evaluation

Our quantitative evaluation aims to show the performance of
the algorithm using standard metrics for performance measure.
We measure classification Accuracy; Precision, Recall and F1-
score for the class representing the predictions of compromised
accounts (1-labels). In addition, we show effectiveness of our
method for different levels of difficulty. We experiment with
various settings for the percentage of compromised tweets in
compromised accounts with random begin and end dates of
account take over. More concretely, we select 50%, 25%, 10%
and 5% of tweets to be compromised, each representing a
more difficult scenario. As these ratios would not be strictly
separated in a real-world scenario, we further experiment with
random (“RND”) ratios, drawn uniformly from [5%,50%]. In
our experiments the probability of an account being compro-
mised is set to 0.5 to obtain a balanced dataset2. Furthermore,
we employ ten-fold cross validation.

D. Baselines

To study the effectiveness of our proposed features based
on language modeling (LM), we compare them to general
text classification features (i.e., word-based and Doc2Vec [20])
and task-specific features from two methods in compromised
account detection, namely COMPA [8] and VanDam [13]. We
combine them in a Support Vector Machine (SVM) frame-
work, which has been shown to be an excellent predictor for
text classification. However, our approach is general and can
be applied to any classifier.
SVM. We use SVM with linear kernels for all models.
Features are standardized by removing the mean and scaling
to unit variance. Ten-fold cross validation is performed for
all models to ensure there is minimal bias in selecting the
training/testing split of the data. All posts of a single user are
concatenated as one document. The labels for each document
were chosen as 1 if an account is compromised and 0 other-
wise.
Word-based Features. For word-based feature representation
and feature selection we follow the methodology of Wang et
al. [21]. We choose count based (COUNT) and TF*IDF based
(TF*IDF) representations of words and experiment with two
supervised feature selection strategies, namely chi-square and
mutual information. For dictionary creation we keep 100,000
uni-grams, which appear in no less than 20 and no more than
9991 (=10%) of documents, to remove very rare and very
common words.
Document-based features (Doc2Vec). We leverage the
method proposed in Le and Mikolov [20] to learn low-
dimensional vector representations for documents. As recom-
mended, we choose a vocabulary size of 2M tokens [22], 400-
dimensional document vectors and a window size of 5 [20].
We make use of the document vectors as features in our SVM
classification framework.

2In reality the amount of compromised accounts is much lower then 50%.
However, it is common in supervised frameworks for compromised account
detection to balance datasets to learn a better discriminative function [10, 12].
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COMPA [8]. This method builds behavioral user profiles and
detects compromised accounts by finding statistical anomalies
in the features. We implement features that can be derived
from our dataset: time (hour of day), message text (language),
message topic, links in messages and direct user interaction.
This method is used for stream processing; once a user profile
is build, the method checks a new message against the existing
user profile. For each feature the message will be assigned an
anomaly score, which reflects how different this message is
from the previously observed user profile. Since our method
classifies accounts as a whole, we simulate this process for
each message within an account (in temporal order of the
posting of the message). We then aggregate the anomaly
scores, per feature, as the mean of the scores of all the
account’s messages.
VanDam [13]. This work investigated the distributional prop-
erties of different features on compromised accounts and uses
them in a classification framework. We implement the fol-
lowing features from this method: hashtags, mentions, URLs,
retweets and sentiment. The authors use these features to
classify single messages as compromised. In our setting, we
aggregate each feature’s counts over all messages within an
account and use the mean of the counts as features.

E. Qualitative Evaluation

Our qualitative evaluation aims to show how well com-
promised accounts can be detected in the original dataset.
Therefore, we manually evaluate the accounts that have the
highest probability according to our classifier. Here, a major
change is that we only inject messages into the training
dataset, whereas the testing set is left untouched. We randomly
select 70% of users for training and 30% of users for testing,
with 25% of tweets compromised. Since there is no ground
truth in the testing dataset, we define four specific metrics to
evaluate whether an account is considered compromised. If
two or more of the following metrics are met, an account is
considered as being compromised: In certain time periods the
account (1) has a sharp topic change, (2) has a specific posting
frequency change, (3) has a specific language change (4) posts
repeated tweets.

V. EXPERIMENT RESULTS

A. Language Model Similarity of Compromised Accounts

In the first part of our feasibility analysis we answer re-
search question (I) and study to what extend a KL-divergence
measure can detect incoherence.

To achieve this, we manually inspect the differences in user
accounts by leveraging a heatmap as a visual cue. Figure 3
depicts four heatmaps of two benign (Figures 3a, 3b) and
compromised user accounts (Figures 3c, 3d). The x-axis of
each figure depicts different values for tbegin, while the y-
axis depicts different values for tend. The color palette ranges
from blue (low KL-divergence) to red (high KL-divergence).
The left part of the plot below the diagonal is intentionally left
empty, since these values would represent nonsensical variable
assignments for tbegin and tend.

It is immediately evident that we find more high KL-
divergence values for compromised compared to benign ac-
counts. In the figures, high values are expressed by red and
dark red colors. From this observation it can be inferred that
the average KL-divergence will be higher for accounts that
are compromised. By manually inspecting over 100 of these
user account heatmaps we find that many of them follow this
general trend. We understand this as preliminary evidence
that a method which utilizes KL-divergence for detecting
compromised accounts is feasible.

We further noticed in Figures 3c and 3d that the account
takeover happened where the KL-divergence reaches its max-
imum (see the dark circle in Figure 3c and tip of the pyramid
in Figure 3d). Unfortunately, this is not true for all inspected
accounts, but it gives reason to believe that there might be
potential to find the most likely period of an account takeover
with our current framework. This could be done by finding
tbegin and tend that maximizes the difference of the language
models θUser and θAttack.

B. Estimate KL-divergence Using Random Sampling

In our second feasibility analysis we investigate research
question (II), whether the average KL-divergence of a user
account can be approximated using random sampling. More
specifically, we try to find a reasonable estimate by calculating
the KL-divergences only for a subset of the tbegin and tend
pairs.

Since we have calculated the KL-divergence for every
possible combination of tbegin and tend for all of the 495
users, we know the actual average KL-divergence. We then try
different sampling rates. For every sampling rate we average
over the samples and compare them to the actual average that
is calculated using all tbegin, tend pairs. The result is shown
in Figure 4. In the figure we plot the actual average KL-
divergence for compromised and benign against the averaged
samples for different sample rates. The sample rates range
from 1 to 121. The plot shows that the average KL-divergence
for compromised accounts is about 0.1 higher than for benign
accounts. This confirms our findings in Section V-A. Further-
more we see that for small sample rates (< 81) there are
minimal deviations for the average (±0.01). The higher the
sample rate the lower these deviations become, as our estimate
gets better.

Since our estimates only deviate slightly we also investigate
the mean squared error (mse). Here, the mse is defined as:
1
n

∑
u∈Utest(sampled avg(u)−actual avg(u))2. In Figure 5

we plot the mse for compromised and benign accounts. For
very small sampling rates (< 50) we see errors of over
0.07 and over 0.06 for compromised and benign accounts,
respectively. Once the sample rate is greater than 101 the mse
is close to 0. We therefore conclude that a sampling rate in
the range of [50, 100] is sufficient for our experiments.

C. Effectiveness on Simulated Data

In this subsection we show the effectiveness of our language
model based method when detecting compromised accounts
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(a) Benign user account (b) Benign user account (c) Compromised user account (d) Compromised user account

Fig. 3: KL-divergence heatmap for different benign (Figure 3a and 3b) and compromised user accounts (Figure 3c and 3d).
The x-axis of each figure depicts different values for tbegin, while the y-axis depicts different values for tend. The color palette
ranges from blue (low KL-divergence) to red (high KL-divergence).
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in a simulated environment. We answer research question
(III), compare the performance to general state-of-the-art text
classification features and (IV), show that improvements can
be made when combining the language model features with
other specialized approaches, proposed in previous work in
compromised account detection.

We perform an ablation study in Table I, which shows the
performance of all features together and individually. In this
experiment 50% of the tweets of a compromised account are
compromised. We observe that we gain maximum performance
over all metrics when all features are utilized (see column

TABLE I: Ablation study using different measures.

Measure All Max Min Mean Var.
Accuracy 0.80 0.59 0.76 0.75 0.48

F1 0.78 0.57 0.72 0.72 0.35
Precision 0.90 0.61 0.87 0.83 0.47

Recall 0.68 0.53 0.61 0.64 0.27

“All”). The classifier reaches an accuracy of 0.80, high preci-
sion (0.90) and Recall at 0.68. Both measures are combined
in the F1-score, which reaches 0.78. We would like to note
that a precision of 0.90 can be sufficient for many practical
applications, where the system could alert users or platform
providers. When features are investigated individually, we
find that the features “Max” and “Variance” perform worst.
The features “Min” and “Mean” perform almost equally in
isolation and much better than the other two. We find the
minimum sample of the two probability distributions to be a
strong signal. This further confirms our earlier observations
that compromised accounts can be distinguished by their
higher average KL-divergence.

We turn to research question (III) and investigate how our
language model based features compares to state-of-the-art
text classification features. Table II lists the results for our
features (LM) and Doc2Vec. Best performance is reached when
50% of tweets are compromised, with accuracy at 0.80 and
0.71, respectively. When the number of compromised tweets
is reduced by half, the accuracy drops to 0.75 and 0.69. When
the amount of compromised tweets is set to 10% and 5%,
accuracy further reduces for both features. For random ratios,
the performance is slightly lower than for the fixed 25% ratio.
It is expected that this performance falls somewhere within
the lower (5%) and upper (50%) bounds for performance.
Summarizing, we see that LM achieves higher Accuracy and
Precision, whereas Doc2Vec achieves higher Recall.

In Table III we compare LM to general text classification
features and their combinations. It can be seen that Doc2Vec
performs better than the word based models. This might
be due to the fact that Doc2Vec is able to learn a better
representation for each document, compared to TF*IDF and
COUNT . Doc2Vec outperforms the TF*IDF model by up to
15 percentage points (≈27% relative improvement), if the
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TABLE II: LM and Doc2Vec features, with different percentages of compromised tweets.

LM Doc2Vec
% Accuracy F1 Precision Recall Accuracy F1 Precision Recall
50 0.80 0.78 0.90 0.68 0.71 0.71 0.72 0.71
25 0.75 0.71 0.82 0.63 0.69 0.69 0.70 0.69
10 0.65 0.62 0.69 0.56 0.63 0.63 0.64 0.63
5 0.59 0.56 0.60 0.52 0.59 0.59 0.59 0.59

RND 0.75 0.70 0.81 0.61 0.68 0.68 0.69 0.68

TABLE III: Accuracy for different features and their combinations. Our method (LM) is compared to general text representations.

% COUNT TF*IDF Doc2Vec Doc2Vec +
TF*IDF

LM LM +
TF*IDF

LM +
Doc2Vec

all

50 0.53 0.56 0.71 0.72 0.80 0.81 0.87 0.87
25 0.53 0.55 0.69 0.69 0.75 0.75 0.82 0.82
10 0.52 0.54 0.63 0.63 0.65 0.65 0.70 0.71
5 0.52 0.53 0.59 0.59 0.59 0.59 0.62 0.62

RND 0.53 0.55 0.68 0.68 0.74 0.74 0.80 0.80

amount of compromised tweets reaches 50%. The performance
improvement is less drastic when only small amounts of tweets
are compromised. We further find that LM performs best, as
it outperforms TF*IDF and Doc2Vec with 6 and 7 percentage
points when only 5 percent of tweets are compromised,
respectively. The most distinguishing performance is achieved
when the amount of compromised tweets reaches 50%. There,
LM outperforms Doc2Vec with 9 percentage points (≈13%
relative improvement) and TF*IDF with 24 percentage points
(≈43% relative improvement). We argue that this is strong
evidence for the superiority of the LM feature compared to
other general text classification features.

When combining features, we find that adding Doc2Vec
features to LM results in the highest performance improve-
ments, with up to 7 percentage points over LM alone (column:
“LM + Doc2Vec”). Adding TF*IDF to LM or Doc2Vec does
only have a negligible effect (columns: “LM + TF*IDF” and
“Doc2Vec + TF*IDF”). The same minimal improvements are
observed when adding TF*IDF to LM and Doc2Vec (column:
“all”). Thus, we conclude that the proposed LM features add
meaningful signals to general text classification features.

D. Comparison with Existing Detection Methods

For answering research question (IV), we show how LM
performs in comparison to other compromised account de-
tection methods and that improvements can be made by
combining LM with these methods. The baseline features
here differ in the way that they are specifically designed for
compromised account detection, whereas the previous features
were general textual representations.

We compare all models in Table IV. The first three rows
compare the compromised account detection features on their
own. Our model outperforms the strongest baseline (COMPA)
over all metrics, with the highest gains made in accuracy
and precision, increasing 19.4% and 26.6%, respectively. The
fifth through seventh row show the combination of the LM
features with the two baselines alone and in combination.
Here we find that our method can further improve when the
baseline features are added. We argue that our features are
orthogonal to existing work, as evidenced by the performance

improvement due to combination of the feature spaces. The
second-to-last row shows the performance, when all baseline
features are combined with the LM model. This results in the
best performing model, with gains over all metrics.

E. Effectiveness on Real Data

The final question we answer qualitatively is (V), how
effective is our method on non-simulated data. We sort 20
accounts with the highest probability of being compromised
into six categories, shown on the left in Table V. We find
that most of these accounts belong to categories with high
variation in language, i.e., news, spam, re-tweet bot. One of
the accounts is found to be compromised. This result needs
to be seen in perspective, since the classifier was trained on
simulated data. We would expect the percentage of compro-
mised accounts to be much higher, if training data with “real”
labels are used. These results show that our algorithm can also
detect “unusual” accounts and users, thus potentially enabling
development of novel text mining algorithms for analyzing
user behavior on social media, which should be an interesting
future research topic.

We further inspect the current state of each account on the
right side of Table V. We find that most accounts are aban-
doned and one account was suspended by Twitter. The account
that was identified as compromised was set to protected, which
could be an indicator that this user had become more conscious
about tweets that were posted from her account and therefore
decided to not share her tweets publicly. While manually
investigating the account’s tweets, we find that after discussing
general topics a near-duplicate message is posted hundreds of
times with only brief pauses between tweets. Different users
were addressed directly, which were most likely followers of
the account. With this scheme the attacker tries to directly
grab the attention of a targeted user. The messages included
one of two links that were identified as suspicious by the link-
shortening service the hacker utilized to hide the actual URL.
After the attack, the tweets return to discuss similar topics as
before. From the content of this messages we conclude that
the hacker was pursuing a led generation scheme [4], where
users are lured into clicking a link. It is reasonable to assume
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TABLE IV: Comparison to features from related methods. The dataset has random percentages of tweets compromised (RND).

Model Accuracy F1 Precision Recall
COMPA [8] 0.62 0.60 0.64 0.56
VanDam [13] 0.50 0.47 0.50 0.45
LM 0.74 0.70 0.81 0.61

improvement LM over best baseline 19.4% 16.7% 26.6% 8.9%
LM + COMPA 0.75 0.73 0.81 0.66
LM + VanDam 0.74 0.71 0.82 0.62
LM + COMPA + VanDam 0.76 0.73 0.81 0.67

improvement over LM 2.7% 4.3% 1.2% 9.8%
LM + Doc2Vec + TF*IDF + COMPA + VanDam 0.81 0.79 0.85 0.75

improvement when adding standard features 6.6% 8.2% 4.9% 11.9%

TABLE V: Statistics of manually evaluated accounts.

Category Count Status Count
News 5 Abandoned 7
Spam 4 Active 6

Re-tweet Bot 2 Deleted 4
Compromised 1 Protected 2

Regular 7 Suspended 1
Unknown 1

that if our algorithm were applied at much larger scale to all
the Twitter users, it would most likely be able to detect many
more compromised accounts.

VI. CONCLUSION AND FUTURE WORK

We proposed a novel general framework based on semantic
text analysis for detecting compromised social media accounts.
Following the framework, we proposed a specific instantiation
based on uni-gram language models and KL-divergence mea-
sure, and designed features accordingly for use in a classifier
that can distinguish compromised from benign accounts. We
conclude that (1) the proposed LM feature is most effective,
even when used as a single feature-based detection method.
(2) LM captures new signals that haven’t been captured in the
existing methods and features, which is shown by the further
improvement when added on top of the baselines. (3) The best
performing method would combine the proposed LM with all
the existing features. Although LM is motivated by a security
problem, our general idea of performing differential semantic
analysis of text data may be applicable to other domains where
incohesion (or outlier) in text data needs to be captured.
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