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Abstract—Self-attention mechanism is primarily designed to
capture the correlation (interaction) between any two objects
in a sequence. Inspired by self-attention’s success in many
NLP tasks, some researchers have employed self-attention in
sequential recommendation to refine user representations by
capturing the correlations between the historical interacted items
of a user. However, the user representations in previous self-
attention based models are not flexible enough since the self-
attention is only applied on user side, restricting performance
improvement. In this paper, we propose a deep recommendation
model with feature-level self-attention, namely SAFrec, which
exhibits enhanced recommendation performance mainly due to
its two advantages. The first one is that SAFrec employs self-
attention mechanism on user side and item side simultaneously,
to co-refine user representations and item representations. The
second one is that, SAFrec leverages item features distilled from
open knowledge graphs or websites, to represent users and
items on fine-grained level (feature-level). Thus the correlations
between users and items are discovered sufficiently. The extensive
experiments conducted over two real datasets (NetEase music and
Book-Crossing) not only demonstrate SAFrec’s superiority on
top-n recommendation over the state-of-the-art deep recommen-
dation models, but also validate the significance of incorporating
self-attention mechanism and feature-level representations.

Index Terms—recommender system, self-attention, feature em-
bedding, deep learning

I. INTRODUCTION

In recent years, encouraged by the power of deep neural
networks (DNNs for short) in computer image, visions and
natural language processing (NLP for short), many researchers
have also imported DNNs into recommender systems [1]–[3]
to improve recommendation performance. In many deep rec-
ommendation models, attention mechanism is widely adopted
to refine user representations [4]–[6], thus more precise rec-
ommendation is gained.

More recently, the Transformer [7] built with self-attention
which is an advanced version of attention mechanism, has
exhibited perfect performance in machine translation. Inspired
by it, some researchers also imported self-attention mechanism
into sequential recommendation models [8]–[11] to enhance
recommendation performance. The attentions in these models
are designed to capture the correlations (sequential pattern)
between different items in a user’s historical interaction
sequence, based on which user representations are refined
and thus recommendation performance is improved. Although
these sequential recommendation models with self-attention

have been proven effective, they still have a great room for
improvement due to the following issues.

The first issue is that, some self-attention based recommen-
dation models [8], [9] only focus on the item-level sequential
patterns, neglecting the correlations between item features
which are beneficial to specify a user’s fine-grained preference.
Specifically, each item in those models is first represented by
a single embedding, and then each user is represented by the
union constituted by the embeddings of the user’s historical
interacted items. In fact, such item-level representations do not
reveal the correlations/similarities between items sufficiently.
As we know, seeking latent relationships between different
items in terms of features is the most important principle for
many users to filter their favorite items. For example, some
users prefer the songs sung by their idols, and some users like
to watch the movie of a certain genre. Such item correlations
(having the same singer or genre) can be discovered with fine
grain if items are represented on feature-level.

The second issue is that, all previous recommendation
models with self-attention only employ self-attention mech-
anism on the user side, causing the limitation of performance
improvement. Although some newly proposed models [11],
[12] have focused on capturing the feature-level sequential
patterns, they still employ self-attention to only refine user
representations as previous models [8], [9]. Such operations
result in that a user’s representation is fixed since his/her
historical items are fixed, no matter what candidate items are
confronted. Notably, previous attention-based models [4]–[6]
have justified that, more precise recommendation results could
be obtained if user representations are adjusted with respective
to different candidate items.

To address above issues, in this paper we propose a deep
recommendation model SAFrec towards top-n recommenda-
tion of implicit feedbacks [4], [13], [14], which is built with
the self-attention mechanism on feature-level representations.
On one hand, to capture the correlations between a user’s
historical items on feature-level, and then generate fine-grained
user representations, we first distill item features, also known
as side information, from open knowledge graphs (KGs for
short) or websites. Then, each item in SAFrec is repre-
sented based on its feature embeddings. One the other hand,
SAFrec employs self-attention module on the target user side
and the candidate item side simultaneously, which co-refines
user representations and item representations. The attentions
in SAFrec reflect a user’s preference in terms of featuresIEEE/ACM ASONAM 2020, December 7-10, 2020
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when filtering his/her favorite items. Compared with previous
recommendation models with self-attention, SAFrec’s self-
attention not only captures the relevance between different
historical interacted items of a target user, but also captures the
correlations between the features of the user and the candidate
item. Our experiments justified that such sufficient correlations
are useful for achieving more precise top-n recommendation.
Furthermore, to improve the effectiveness of SAFrec’s self-
attention further, we also adopt multi-head attention and batch
normalization.

In summary, we have the following contributions in this
paper:

1. We propose a deep recommendation model which em-
ploys feature-level self-attention mechanism on both user side
and item side to co-refine user representations and item rep-
resentations, resulting in better recommendation performance
than previous self-attention based models.

2. Our work validates that self-attention mechanism is not
only competent for sequential tasks such as sequential recom-
mendation, but also can be applied for top-n recommendation
which is a more generalized recommendation task.

3. Our extensive experiments not only demonstrate SAFrec’s
superiority over the state-of-the-art deep models including
previous recommendation models, but also justify the ratio-
nality of incorporating feature-level self-attention for robust
recommendation performance.

The rest of this paper is organized as follows. We elaborate
the details of our model in Section 2, followed by our
experiment results in Section 3. We introduce related work
in Section 4 and conclude our work in Section 5.

II. METHODOLOGY

In this section, we introduce our proposed model in detail.
Related notations mentioned in the following texts are listed
in Table I. In general, we use a bold uppercase to represent a
matrix or a cube (tensor), and a bold lowercase to represent a
vector.

TABLE I
NOTATIONS.

notation description

u the target user
v the candidate item
e item feature embedding (vector)
U0 original user representation (cube)
U user representation (matrix)
I item representation (matrix)
L the number of a user’s recent interacted items
M feature number of an item
Z the number of attention heads
X,Q,K,V representation matrices
D,DK/V embedding dimension
A attention map (matrix)
aij affinity score between feature i and feature j
WQ/K/V/N weight matrix
Si weighted output matrix of the i-th attention head
o output vector of self-attention layer
σ Sigmoid function
ŷuv predicted probability that user u likes item v

A. Recommendation Task

In this paper, we focus on the top-n recommendation based
on users’ implicit feedbacks [4], [13], [14] which indicate
users’ preferences for items. In other words, an observed
interaction (review or rating) between a user u and an item v is
identified as a u’s feedback of value 1 reflecting u’s interest on
v. The unobserved interaction between u and v is identified as
a u’s feedback of value 0 which does not necessarily imply u
dislikes v, because u may not aware of v at all. The objective
of our recommendation task can be described as that, given a
target user u, the model should recommend top-n items to u
from candidate items based on item features and u’s preference
inferred from u’s historical interacted items. To achieve this
task, our model tries to compute the probability that u likes the
candidate item v, i.e., ŷuv . According to ŷuv for each candidate
item, u’s top-n recommendation list is generated.

B. Model Overview

The framework overview of SAFrec is depicted in Fig.
1, which consists of three layers, i.e, embedding layer, self-
attention layer and prediction layer. In the embedding layer,
a target user u is first represented by the representations
of his/her historical interacted items. Meanwhile, an item’s
representation consists of its feature embeddings, i.e., each
item is represented on feature-level. Next, u’s representation
and the candidate item v’s representation are merged into a
big representation matrix X , which is the input of the next
self-attention layer. In the self-attention layer, an attention map
(matrix) A is computed, with which X is refined. In addition,
we adopt multi-head attention and batch normalization to
generate the output of the self-attention layer, which is a vector
and denoted as o. In the last prediction layer, o is fed into a
fully-connected layer to generate the final score ŷuv through
a Sigmoid function. In the following introduction, we present
the detailed operations in each layer, respectively.

C. Model Details

1) Embedding Layer: The objective of the embedding layer
is to generate the representations of the target user and the
candidate item, which are the inputs of the next attention layer.
In most deep recommendation models including previous self-
attention based models [8], [9], [11], [12], a user is represented
by the combination of his/her favorite items’ representations.
Meanwhile, each item is represented by a single embedding
(vector) [8], [9] or the union of its feature embeddings
[11], [12]. Given the merits of feature-level representations
introduced before, an item in SAFrec is represented as the
union of its feature embeddings.

Specifically, for each item feature, we first project it into an
embedding (vector) e ∈ RD through looking up an embedding
matrix. Suppose M features are used to represent items, then
the candidate item v is represented by an M ×D matrix as
I = [e1; e2; ...; eM ].

For the target user u, we consider a fixed number (L) of
recently interacted items to represent u. In other words, the L
items’ representations are united as u’s original representation
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Fig. 1. Framework overview of SAFrec model consisting of three layers.

U0, i.e., U0 = [I1; I2; ...; IL]. Accordingly, U0 is an L ×
M ×D cube (tensor) as shown in Fig. 1. For the users with
less than L historical interacted items, we use padding to fill
the vacant embeddings.

The FM-based recommendation models [1], [2] have proven
that capturing feature interactions (correlations) is beneficial
to better user modeling, which can be regarded as feature
pooling. Another advantage of feature pooling is reducing
model training cost. In addition, in order to apply self-attention
on both user side and item side conveniently, it is necessary
to compress U0 into a matrix U through feature pooling. To
this end, we use a certain pooling operation to compress each
slice (matrix) in U0 into a vector. The pooling operation can
be processed in two orthogonal directions. The first one is in
feature direction, i.e., pooling all M feature embeddings of
each historical item into a single vector. That is,

U i,: = PoolMj=1(U
0
i,j,:) (1)

The second one is in item direction, i.e., pooling the j-th (1 ≤
j ≤M ) feature embeddings of all L historical items into one
vector. Hence, we have

U j,: = PoolLi=1(U
0
i,j,:) (2)

In this step, average pooling is a simple and effective choice.
For the pooling operation in Eq. 1, we can also adopt the
vanilla attention as [11], which assigns different weights for
different features when merging item feature embeddings.
Through our experiments, we have found that the average
pooling in feature direction is not only better than the one in
item direction, but also better than the vanilla-attention-based
operation in feature direction. We will discuss the reasons in
the subsequent experiment section.

If Eq. 1 is adopted, U is an L×D matrix. Then, U and I
constitute a big representation matrix X ∈ R(L+M)×D, i.e.,
X=[U ; I], which contains the information of u and v. For

clear presentation, we also name each row in X as a feature
embedding in the following texts, where the top L rows are
user feature embeddings and the bottom M rows are item
feature embeddings.

Note that the inputs of the self-attention in previous sequen-
tial models [8], [9], [11] also include position embeddings of
each items in the historical sequence, which are used to encode
sequential correlations between items. In SAFrec, we neglect
position information because we design SAFrec towards top-
n recommendation rather than sequential recommendation. It
makes SAFrec competent for the recommendation scenario
without sequential order or timestamp of historical interacted
items.

2) Self-attention Layer: The inputs of generic attention
mechanism include query matrix Q, key matrix K and value
matrix V . The standard attention operation is as follows,

Attention(Q,K,V ) = Softmax
(QK>√

D

)
V (3)

where Softmax function is used to compute the weight be-
tween a query i and a value j, corresponding to the interaction
(correlation) between query i and the key of value j.

√
D is

a scale factor used to avoid too large values of inner product
when the matrix dimension is high.

Self-attention was proposed as a special variant of generic
attention, in which Q=K=V [7]. The first operation in
SAFrec’s self-attention layer is projecting representation ma-
trix X into three representations of different spaces as below,

Q =XWQ,K =XWK ,V =XW V (4)

where WQ ∈ RD×DQ , WK ∈ RD×DK and W V ∈ RD×DV

are project weight matrices. Accordingly, Q, K and V both
have (L +M) rows, and contain the information encoded in
the feature-level representations of u and v, i.e., X .
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The self-attention mechanism in SAFrec is used to capture
the correlations (interactions) between different features of the
target user and candidate item, which are stored in an attention
map (matrix) denoted by A ∈ R(L+M)×(L+M). In order to
compute the correlations (attentions) in A conveniently, we
set DQ = DK . Formally, we compute A as

A = Softmax
(QK>√

DK

)
. (5)

Accordingly, A stores the feature correlations of both u and
v rather than only u, which is the main difference between
SAFrec and previous sequential recommendation models with
self-attention [8], [9], [11], [12], and is also one major
advantage of SAFrec.

Specifically, if we define an affinity score as

aij =
Qi,:K

>
j,:√

DK

(6)

where Qi,: is the i-th row of Q, then the i-th row and j-th
column entry of A is computed as

Ai,j = Softmax(aij) =
exp(aij)∑L+M

j′=1 exp(aij′)
. (7)

Such Softmax computation indicates that entry Ai,j reflects
the relatedness of the j-th feature in K to the i-th feature in
Q.

Next, we utilize A to adjust all embeddings (vectors) in
V . Specifically, each feature embedding ei ∈ RDV (1 ≤ i ≤
(L+M)) in V is adjusted as

ei =

L+M∑
j=1

Ai,jej . (8)

It indicates that each feature embedding of u is adjusted
based on not only all feature embeddings of u but also all
feature embeddings of v, and vice versa, since V contains the
projected feature embeddings of both u and v. Accordingly,
u’s representation and v’s representations are co-refined.

If the union matrix of adjusted feature embeddings of u and
v is denoted by S ∈ R(L+M)×DV , we have

S = Attention(Q,K,V ) = AV = Softmax
(QK>√

DK

)
V .

(9)
The computation of S shows that SAFrec applies self-attention
mechanism on both user side and item side to co-refine u’s
representation and v’s representation. It also implies that u’s
representation will be adjusted again when u is confronted
with other candidate items, since the values of A and V both
vary.

To improve self-attention’s performance, we further import
multi-head attention which allows the model to jointly attend
to the information from different representation subspaces at
different positions. Specifically, the i-th head is denoted as the
matrix Si computed as

Si = Attention(XWQ
i ,XW

K
i ,XW

V
i ) (10)

where WQ/K/V
i is the weight matrix in the i-th head. The

number of heads is denoted as Z.
At last, we add batch normalization [15] to strengthen the

performance of SAFrec’s self-attention further. Formally, we
have

M = Concat(S1,S2, · · ·,SZ)W
N

O = BatchNorm(M +X)
(11)

where Concat(·) is matrix-wise concatenation and WN ∈
R(DV ×Z)×D is a weight matrix. Matrix M and O have the
same size as X , i.e., (L + M) × D. In order to make the
final output adaptive to the next prediction layer, we use
average pooling on each column of O and then adopt dropout
operation. Therefore, the final output of the self-attention layer
is o = Dropout

(
avg pooling(O)

)
∈ RD.

3) Prediction Layer: As we stated in Subsection II-A,
SAFrec accomplishes top-n recommendation based on making
an individual prediction whether a candidate item v deserves
to be recommended to the target user u or not. It is actually a
classic problem of binary classification. Thus we need to build
an effective classifier in SAFrec’s prediction layer.

With the final output of the self-attention layer, i.e., o, we
use a fully-connected layer and Sigmoid function to generate
the ranking score ŷuv as below, which is the probability that
the target user u likes the candidate item v.

ŷuv = σ(ow + b) =
1

1 + e−(ow+b)
(12)

where w ∈ RD is a weight vector and b is an offset.

D. Model Learning

During the process of model training, the value of each
feature embedding is tuned according to the training sam-
ples. According to the setting of implicit feedback [13],
[14], a training sample is formalized as a triplet denoted by
< u, v, yuv > where yuv ∈ {0, 1} indicating whether u likes
v. SAFrec’s training samples are extracted from observed user-
item interactions, i.e., historical interacted item sequences of
all users. We recognize a positive sample (yuv = 1) only if
u has reviewed or rated v. For gathering negative samples
(yuv = 0), we randomly selected some items which have not
been reviewed or rated by u as u’s disliked items.

We use the following binary cross-entropy as the loss
function of our model training, since binary cross-entropy is
a classic objective for training neural classifier,

L(θ) = −
∑
u,v

{
yuv log σ

(
φ[U ; I]

)
+ (1− yuv) log

[
1− σ

(
φ[U ; I]

)]} (13)

where φ represents the transformation from [U ; I] (=X) to
ow + b, which is accomplished by the whole three layers of
SAFrec.

In our experiments, we use Adam method [16] to optimize
Eq. 13, which is an algorithm for first-order gradient-based op-
timization of stochastic objective functions, based on adaptive
estimates of lower-order moments.
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III. EXPERIMENTS

In this section, we try to answer the following research
questions through our extensive experiments:

RQ1: Does SAFrec outperform the state-of-the-art recom-
mendation models?

RQ2: Is it worthwhile to feed SAFrec with feature-level
representations?

RQ3: Is employing self-attention mechanism to co-refine
user representations and item representations more useful than
employing self-attention to only refine user representations?

RQ4: Does SAFrec sufficiently capture the correlations
between a user’s historical interacted items and his/her next
interacted items on feature level?

A. Experiment Setup

1) Experiment Datasets: We conducted our experiments
over two datasets, i.e., NetEase music1 and Book-Crossing 2.
In the two datasets, user reviews on songs and user ratings on
books were both regarded as positive feedbacks (interactions).
To better compare all models’ performance, we filtered out the
users only having few interacted items. The related statistics
of the datasets are listed in Table II. In addition, we selected
singer, composer and album as song features, and selected
author, publisher and publication year as book features, thus
M=3. Our used datasets and SAFrec’s codes have been
published on https://github.com/DeqingYang/SAFrec.

TABLE II
STATISTICS OF THE TWO EXPERIMENT DATASETS.

domain # user # item # interaction

NetEase Music 3,065 33,138 110,077
Book-Crossing 6,781 50,000 201,941

2) Sample Collection: For each user in the datasets, we
randomly selected 5 items he/she has interacted (reviewed or
rated) and 50 negative items (not interacted items) to constitute
the test samples, since a user’s uninterested items are much
more than his/her favorite items in real life. The rest interacted
items of the user were used as his/her historical interacted
items, i.e., the positive samples in the training set. The positive
samples in the test set were regarded as the next interacted
items of users since our datasets have no timestamps. As other
recommendation models’ popular setting [4], [13], the ratio of
positive items to negative items of a user in the training set is
1:4.

3) Baselines: We further introduce some state-of-the-art
deep recommendation models including previous self-attention
based models, to be compared with SAFrec.

AFM [1] and NFM [2]: These two models are the neural
versions of factorization machines (FM) [17] which capture
the second-order and high-order (item) feature interactions
respectively, to improve recommendation performance.

KE [18]: It is built with the same feature-level embedding
layer as SAFrec, but without self-attention module. It uses a

1https://music.163.com
2http://www2.informatik.uni-freiburg.de/∼cziegler/BX/

multi-layer perceptron (MLP) fed with user representation and
item representation to output the final score.

RippleNet [19]: This is a state-of-the-art KG-based model
in which the utilized knowledge is just the item features.

SA [8]: In this self-attention based model, each item is first
represented by a single embedding (item-level) initialized in
random rather than item feature embeddings. Furthermore, its
self-attention module is only applied on user side to refine
user representations.

FDSA [11]: It also incorporates feature-level representations
but only employs self-attention on user side. Note that FDSA
and SA were not fed with position embeddings in our ex-
periments since our datasets have no timestamps of user-item
interactions.

Furthermore, we use SAFrec and SAFrec⊥ to denote our
model with the average pooling in feature direction (U has L
rows) and in item direction (U has M rows), respectively. And
SAFrecva denotes the variant of our model with the vanilla-
attention-based merging in feature direction.

4) Performance Metrics: We select some popular metrics of
top-n recommendation performance, i.e., MRR (Mean Recip-
rocal Rank), HR (Hit Ratio), MAP (Mean Average Precision),
nDCG (Normalized Discounted Cumulative Gain) [20]. For
each model running, we recorded performance scores of top-n
recommendations averaged on all test users. To avoid statistics
bias, the results of each model reported in the following tables
are the average scores of 5 runnings.

B. Experiment Results

1) Hyper-parameter Tuning: We first studied the perfor-
mance influence of our model’s hyper-parameters. Due to
space limitation, we only display the results of tuning three
important hyper-parameters, i.e., embedding dimension D, the
number of considered historical interacted items L, and the
number of attention heads Z. Note that we set the rest hyper-
parameters to their optimal values when we tuned one hyper-
parameter.

TABLE III
TOP-5 NETEASE MUSIC RECOMMENDATION PERFORMANCE OF SAFREC

WITH DIFFERENT EMBEDDING DIMENSION D.

D MRR HR@5 MAP@5 nDCG@5
50 0.4478 0.2683 0.1945 0.2801

100 0.4476 0.2799 0.2059 0.2900
150 0.4704 0.2887 0.2156 0.3020
200 0.5004 0.3096 0.2333 0.3242
300 0.5223 0.3219 0.2517 0.3405
400 0.5127 0.3218 0.2276 0.3383

Table III lists SAFrec’s top-5 NetEase music recommenda-
tion performance as the function of embedding dimension D.
The results show that D=300 is the best setting. Thus, we
set D=300 when we ran SAFrec in the following comparison
experiments. Furthermore, we set DK=DV =120 which have
also been proven to be optimal through our empirical studies.

Table IV lists the results of considering different number
of historical interacted items (L) when representing a user.
The results show that small L can not represent a user
abundantly resulting in inferior performance. Howbeit, bigger
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TABLE IV
TOP-5 NETEASE MUSIC RECOMMENDATION PERFORMANCE OF SAFREC

WITH DIFFERENT NUMBER OF CONSIDERED HISTORICAL INTERACTED
ITEMS.

L MRR HR@5 MAP@5 nDCG@5
3 0.4310 0.2868 0.2068 0.2968
5 0.4893 0.3034 0.2252 0.3153

10 0.5223 0.3219 0.2517 0.3405
15 0.4867 0.2938 0.2151 0.3059
20 0.4276 0.2746 0.1973 0.2844

TABLE V
TOP-5 NETEASE MUSIC RECOMMENDATION PERFORMANCE OF SAFREC

WITH DIFFERENT NUMBER OF ATTENTION HEADS, I.E., Z .

Z MRR HR@5 MAP@5 nDCG@5
1 0.4298 0.2703 0.1942 0.2766
3 0.4899 0.3072 0.233 0.3208
5 0.5223 0.3219 0.2517 0.3405
8 0.5217 0.3161 0.2433 0.3349

L does not lead better performance because many users are
not found having enough historical interacted items in our
datasets. In this scenario, more paddings are used to fill user
representations, incurring more noises. According to the tuning
results, we set L=10 in NetEase music recommendation.

Since we import multi-head attention into SAFrec to further
enhance the model’s capability, an interesting question is how
many heads are optimal? To answer this question, we evalu-
ated SAFrec’s performance under different Zs. Table V lists
SAFrec’s top-5 NetEase music recommendation performance
as the function of Z. The results show that using 5 attention
heads is the best setting for SAFrec’s performance.

2) Effectiveness on Top-N Recommendation: To answer
RQ1, we compared all models’ performance on music rec-
ommendation and book recommendation. Table VI lists all
models’ top-3/5 recommendation performance where we set
L=3 in book recommendation since user-item interactions in
Book-Crossing is more sparer. The results shows that SAFrec
outperforms its competitors remarkably.

SAFrec’s superiority over SA gives yes answer to both RQ2
and RQ3. The reason of SA’s inferior performance is two-
fold. One reason is SA only uses item-level representations.
The other reason is SA only applies self-attention mechanism
to refine user representations. Although FDSA also incorpo-
rates feature-level representation as SAFrec, it is defeated by
SAFrec implying that employing self-attention on both user
side and item side is more effective than just on user side.

SAFrec’s advantage over SAFrec⊥ and SAFrecva justifies
the average pooling in feature directions is a better strategy
to compress U0 into U . One possible reason of SAFrec’s
superiority over SAFrec⊥ is that, a user in SAFrec is rep-
resented by more embeddings (in U ) since L is bigger
than M in general. Although vanilla-attention operation is
more complicated than average pooling and considers different
weights for different features to represent an item, SAFrec also
outperforms SAFrecva. It is possibly because that, the self-
attention mechanism in SAFrec can capture the correlations
between the candidate item’s features and a user’s historical
items, which are used to assign different weights for different
features to refine user/item representations. As a result, the

vanilla-attention operation in generating U may disturb the
self-attention’s effectiveness.

Although KE and RippleNet both incorporate knowledge,
i.e., item features, they are inferior than SAFrec. It justifies
that employing self-attention to generate adaptive user/item
representations can improve recommendation performance fur-
ther. SAFrec’s superiority over AFM and NFM shows that the
feature correlations (interactions) captured by SAFrec’s self-
attention are more useful than those captured by AFM and
NFM in terms of recommendation performance.

(a) Global attention map

(b) User a’s attention map (c) User b’s attention map
Fig. 2. The self-attention map (matrix) of all NetEase users and two special
users.

3) Insights into Self-Attention Map: To answer RQ4, We
exhibit the correlations between a user’s next interacted item
and his/her historical interacted items which are captured by
SAFrec’s self-attention. To this end, we visualize the heat
map of attention matrix A computed by SAFrec in macro-
level and micro-level, respectively. Due to space limitation,
we only show the investigation results of NetEase music
recommendation.

a) Macro-level Analysis: In order to exhibit the cor-
relations between a user’s next reviewed songs and his/her
historical favorite songs, we first filtered out 712 users who
have more than 10 positive songs in the training set since
we set L = 10. The reason of such filtering is to avoid the
influence of paddings in user representations. We took each
test user’s positive songs as the next reviewed songs, except
for the 10 songs regarded as the user’s historical favorite songs.
After model training, we fed each user u along with each of
u’s next reviewed songs into SAFrec, to compute A where
multi-head attention is not used. Then, u’s attention map is the
average of all As computed w.r.t. each of u’s next reviewed
songs. Fig. 2(a) is the average heat map of all users’ attention
maps. According to Eq. 7, A is not a symmetrical matrix,
and the i-th column in A reflects the importance of the i-th
feature to other features including 10 historical favorite songs.
Accordingly, the column of singer has the highest attention
values, showing that the singers of a user’s next reviewed
songs are most correlated with his/her historical reviewed

499



TABLE VI
PERFORMANCE COMPARISONS OF TOP3/5 RECOMMENDATION ON MUSIC RECOMMENDATION AND BOOK RECOMMENDATION.

domain Model MRR HR@3 HR@5 MAP@3 MAP@5 nDCG@3 nDCG@5

AFM 0.4655 0.2904 0.2564 0.2322 0.1878 0.2908 0.2744
NFM 0.4726 0.2657 0.2390 0.2182 0.1745 0.2836 0.2613
KE 0.4841 0.3351 0.3131 0.2764 0.2333 0.3383 0.3222
RippleNet 0.4940 0.3258 0.2994 0.3012 0.2516 0.3186 0.3001

NetEase Music SA 0.4870 0.3353 0.2588 0.3114 0.2512 0.3373 0.3165
FDSA 0.4924 0.3325 0.3043 0.2701 0.2217 0.3370 0.3165
SAFrec⊥ 0.4641 0.2986 0.2639 0.2432 0.1922 0.3059 0.2801
SAFrecva 0.4669 0.3138 0.2862 0.2514 0.2074 0.3169 0.2971
SAFrec 0.5223 0.3624 0.3219 0.3083 0.2517 0.3706 0.3405

AFM 0.7244 0.5028 0.4284 0.4436 0.3459 0.5253 0.4679
NFM 0.5258 0.3838 0.3502 0.3298 0.2109 0.4212 0.4012
KE 0.7102 0.5007 0.4208 0.4401 0.3444 0.5224 0.4664
RippleNet 0.7383 0.5289 0.4387 0.4423 0.3512 0.5337 0.4767

Book-Crossing SA 0.5974 0.3542 0.3002 0.3251 0.2629 0.3737 0.3311
FDSA 0.6285 0.4227 0.3751 0.3442 0.2732 0.4330 0.3975
SAFrec⊥ 0.7178 0.5051 0.4345 0.4428 0.3479 0.5268 0.4722
SAFrecva 0.7204 0.5016 0.4278 0.4413 0.3437 0.5251 0.4678
SAFrec 0.7459 0.5558 0.4744 0.4914 0.3874 0.5770 0.5152

songs. It implies that singer is the most significant feature to
generate precise music recommendation results. In addition,
A12,11’s big value indicates singer’s significant correlation
to album. It is unsurprising since an album only has fixed
singer(s). Comparatively, A11,12 is not so big because a singer
generally owns several albums.

b) Micro-level Analysis: Furthermore, we also investi-
gated two special users (a and b) and depicted their attention
maps in Fig. 2(b) and 2(c), respectively. These two maps also
indicate that singer is still the most significant feature for
them. However, besides singer, user a pay more attention to
composer while user b focus more on album. Such results
validate that many users select their favorite in terms of
different features, which poses a great challenge to the design
of personalized recommendation models.

IV. RELATED WORK

a) Attention-based Models: The attention mechanism in
DNNs is inspired by the intuition of the visual attention
found in humans. It learns to pay attention only to the most
important parts of the target. Attention mechanism has been
widely employed in various tasks such as image captioning
[21] and machine translation [22]. The idea behind attention
is that each output depends on relevant parts of inputs (with
different weights) that the model should focus on successively.
In recent years, attention mechanism has been imported into
recommender systems successfully [1], [5], [23]. For example,
AFM [1] learns the weight of each feature interaction for
content-aware recommendation. The authors in [4], [5] used
attention network to generate adaptive user representations
based on the similarity/correlation between the candidate item
and historical items. More recently, Google researchers pro-
posed a purely attention-based sequence-to-sequence model
Transformer [7], which has been proven to exhibit better
performance and efficiency than RNN/CNN-based models on
machine translation. They used such self-attention mechanism
to capture complex structures in sentences, and thus retrieve

relevant words in input sequence for generating the next
word in output sequence. Inspired by this work, the authors
in [8], [9], [11], [12] also employed self-attention module
into a sequential recommendation model. Specifically, [8], [9]
only adopt item-level representations which restrict recom-
mendation performance. Although [11], [12] import feature-
level representations as our SAFrec, they and the former two
self-attention-based models use self-attention to capture the
correlations between different items (or behaviors) in a user’s
historical interaction sequence, and then to refine user rep-
resentations rather than the candidate items’ representations.
Therefore, there is still space for improving these models.

b) Deep Recommendation Models: In recent years, many
researchers have employed various DNNs into recommender
systems for broad recommendation tasks. Traditional recom-
mendation algorithms such as CF and matrix factorization, are
proven to be improved by DNN-based models. For example,
[24] proposed a novel AutoEncoder (AE) framework for CF.
[25] proposed deep matrix factorization, and NFM [2] is
a neural version of FM [17]. NCF model [13] integrates
generalized matrix factorization model and MLP to predict
CF-based implicit feedback. Inspired by CNN’s power in
computer vision processing, the authors in [26] strived to
bridge the semantic gap in music by training CNNs to predict
latent factors from audio. In addition, various DNN-based
encoders and decoders are also imported, including Bayesian
aSDAE [27] which is utilized to enhance CF-based recommen-
dation [28]. For sequential recommendation, GRU4Rec [29]
employs GRU [30] and KSR [31] utilizes a key-value memory
network. DIN [32] is also a deep recommendation model
with feature-level representations, but it does not employ self-
attention mechanism.

c) KG-based Recommendation: Existing KG-based rec-
ommender systems can be categorized into three classes:
embedding-based method, path-based method and unified
method [33]. In embedding-based methods, the KG infor-
mation about items and users is first encoded into low-rank
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embeddings by a KG embedding model, and then a user’s
preference on an item is computed by a function mapping the
user embedding and the item embedding, which can be inner
product or DNN. This class includes DKN [5], CKE [14], KSR
[31] and KTGAN [34]. KE [18] and our SAFrec also belong
to this class. Path-based methods build a user-item graph and
leverage the connectivity patterns among the entities in the
graph for recommendation. The graph is often recognized
as the heterogeneous information network since it contains
multiple types of nodes and edges. This class includes the
models and algorithms in [35]–[37]. To fully exploit KGs for
better recommendations, unified methods have been proposed
which is based on the idea of embedding propagation. These
methods refine the entity embeddings with the guidance of
the structure information in KGs, integrating the merits of the
aforementioned two methods. The representative models of
this class include KGAT [38] and RippleNet [19] etc.

V. CONCLUSION

In this paper, we propose a deep recommendation model
with feature-level self-attention, namely SAFrec. In order to
learn more flexible and adaptive representations of users and
items for enhanced recommendation, SAFrec employs a self-
attention mechanism of feature-level on user side and item
side simultaneously. Compared with the self-attention built in
previous sequential recommendation models, SAFrec’s self-
attention captures the correlations between the candidate item
and the target user on feature-level, achieving recommendation
performance gains. The extensive evaluations over two real
recommendation datasets justify SAFrec’s superiority over
the state-of-the-art deep recommendation models including
the recommendation models with self-attention and KG-based
recommendation models.
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