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Abstract—Given a domain-specific set of concepts, local tax-
onomy construction (LTC) is the problem of ‘locally’ inducing
the neighborhood of a concept (from the set of target concepts)
without being given any example links. The problem, despite
having practical importance, has received little research attention
due to its difficulty (in contrast with link prediction, a problem
that resembles it and has undergone broad study). In this paper,
we present a formalism and deep empirical study on the LTC
problem. In particular, we show that an innovative application
of representation learning approaches from the natural language
community could be adapted to tackle the problem, often quite
effectively. We also present a detailed information retrieval (IR)-
based methodology for evaluating these solutions on three real-
world product datasets of varying sizes. To the best of our
knowledge, this is the first paper to introduce the LTC problem,
especially for e-commerce applications, and offer effective, nearly
unsupervised, solutions, for addressing it on real-world data.

Index Terms—Taxonomy Induction, Local Taxonomy Con-
struction, Concept Ranking, Information Retrieval, Representa-
tion Learning, E-Commerce

I. INTRODUCTION

Frequently, in many domains, website designers and
builders of recommendation systems start from a set of
semantic categories or concepts that needs to be compiled
into a proper taxonomy. For example, as shown in Figure
1, a clothing retailer may start with a catalog of product
‘concepts’ (such as Overalls and Dresses), but needs to
impose a structure such as on the right to better organize
and understand her domain. In its most general form, this
problem is known as taxonomy induction [1], [2]. For example,
in the e-commerce domain, price shopping and comparison
websites pull in product categories (‘concepts’) from multiple
websites by the thousands. Some kind of relational ordering
between these concepts is necessary, both for developing a
deeper understanding about the domain, but also for building
practical products such as websites and catalogs that make for

Fig. 1: An illustration of the taxonomy induction problem,
using real-data from the Google Product Taxonomy (Section
V).

an intuitive and satisfying user experience. Such a taxonomy
could even serve as a simpler version of, or even the backbone
to, a final ontology that is more ‘graph-like’ and contains other
ontological components such as constraints. A knowledge
engineer would not have to begin from scratch in constructing
the ontology, but could instead start from the taxonomy as a
baseline domain model. Manually building such taxonomies
is difficult since, in real-world problem settings, there could
be thousands of concepts to organize. The total number of
possible taxonomies is exponential in this number.

Unlike the traditional link prediction problem in social
networks and knowledge graphs [3], the problem of inducing
such a taxonomy given only a set C of concepts (hereby
referred to as the concept-set) is a difficult problem because it
falls under a class of machine learning problems that have to
work without any examples. The best known examples of these
problems are clustering-based applications such as community
detection. However, taxonomy induction is different, since
we have to discover a set of highly localized links for each
concept. Another way to understand the difference between
clustering and taxonomy induction is that, for the former, the
number of clusters is often a small constant number (almost
never more than 100, and far fewer than the data points,
which can sometimes number in the tens of thousands or even
millions) while the number of links that have to be inferred
in a taxonomy induction setting is a multiple of the number
of concepts.

In this paper, we address a simpler, but still important,
version of the global taxonomy induction problem called local
taxonomy construction (LTC). We state this problem as follows
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(with more details provided in Section III): given a set C
of target concepts, and other generic ‘background’ resources
available on the Web (such as a domain-specific text corpus or
an example taxonomy from a different website or data source),
independently infer the neighbors of every concept c ∈ C. The
independence assumption is important as it gives the problem
its local flavor. An important assumption, not stated above, is
that the concepts are represented using their ‘labels’, which
is one of the few sources of information that we can use (in
conjunction with generic background resources) to guide us in
recovering local structure. As we argue in Section III, framing
the problem in this way allows us to make it tractable both
in terms of solving it and evaluating it. It is also a ‘stepping
stone’ to solving the global version of the problem.

Despite the simple formalism of the problem, solutions for
it are complex, and would clearly depend on the background
resources available (or that can be feasibly acquired online). A
naive approach, for example, might forge a link (usually, but
not necessarily, understood as having ‘super-type’ semantics1)
between two concepts if one is a sub-word of the other.
Compared to a ground-truth taxonomy, this approach only
(unsurprisingly) does slightly better than random, since so
many concepts do not share (or misleadingly share) sufficient
sub-string similarity, making it difficult to capture semantic
relations between them.

We hypothesize that a more promising way (barring avail-
ability of user experiments or human-generated training data)
to approach the problem is via representation learning, pop-
ularly known as ‘embeddings’ [4], [5]. These approaches
have been used to exceed state-of-the-art performance in
multiple applications, including information extraction, entity
resolution and sentiment analysis [6], [7], [8]. However, no
data exists on how they would perform if applied to this
problem, where no examples are available.

This paper presents a principled and detailed empirical study
of how word embedding models could be used in a variety
of potential taxonomy induction scenarios (with availability
of different classes of background resources). Our goal is
not to present a radically new algorithm but to explore how
established representation learning algorithms, including so-
called retrofitting algorithms (which attempt to adapt a pre-
trained embedding to a specific domain using an existing
semantic lexicon such as WordNet) could be applied to this
problem [9], [10]. We also detail how different approaches
could be evaluated using a novel information retrieval-based
methodology. In our study, we use real-world e-commerce
taxonomies and embedding resources that are widely used in
the community. Based on 20GB+ worth of experimental data
collected and analyzed, we show that representation learning
offers a promising first solution (and could even be used
feasibly in practice on new concept-sets) to the local taxonomy
construction problem on practical e-commerce tasks.

1Also referred to as hypernymy in natural language versions of this
problem.

II. RELATED WORK

The research presented in this paper is related to several
existing lines of research that we briefly cover below.

Representation Learning and NLP. With the advent of
neural networks and deep learning in the last decade, repre-
sentation learning (also known as ‘embeddings’) have become
very prominent in the Natural Language Processing (NLP)
community [4], [11], [5], [12]. More recently, transformer-
based models such as BERT have become popular [11], though
much more expensive to train on a corpus (and requiring
far more data) than previous algorithms such as bag-of-
tricks [12] and Glove [5]. More intriguingly, the ability of the
former word embedding algorithms to do analogical reasoning
without any apparent supervision (e.g., the famous ‘King is
to Queen as Man is to Woman’ example), and the ability of
recent algorithms to achieve near-human performance on com-
monsense question answering raises the question of whether
such models are capable of successfully capturing the complex
semantics in natural language.

Embeddings for Structured Data. The success of word
embeddings, and similar representation learning models (e.g.,
based on autoencoders and decoders [13]) in the computer
vision community has led to similarly successful proposals
being floated both in the knowledge discovery and semantic
web communities. In the former, network embedding algo-
rithms such as DeepWalk have become popular and are based
loosely on word2vec [14]. In the Semantic Web, RDF2Vec
has become a popular choice and shown to be useful in
several Semantic Web problem areas [15]. More generally,
‘knowledge graph embeddings’ such as TransE and HolE have
become popular choices for embedding multi-relational graphs
such as DBpedia and Freebase [3]. However, such algorithms
invariably assume that (i) the node-set (what we call the
concept-set in this paper) of the graph is typically known
in advance; (ii) there exist a set of ‘positive’ links between
many of these nodes, which can be used to train a model and
‘complete’ the graph by inferring more links. The problem in
this paper is very different: we only consider one relation2,
rather than multiple relations, and the problem is a ‘from-
scratch’ problem (no example edges are available during test
time for an algorithm to exploit).

Retrofitting Pre-Trained Embeddings. While more recent
embedding algorithms such as BERT rely on the notion of
‘fine-tuning’ to derive a ‘refined’ set of task-specific embed-
dings from a set of pre-trained embeddings3 [11], the problem
of refinement and computational costs of re-training were
realized earlier in the decade in the NLP community. Some
authors showed, for example, that performance on various
downstream tasks tended to improve when pre-trained embed-
dings were ‘retrofitted’ to an existing semantic lexicon such as

2One could theoretically consider the induction of a multi-relational taxon-
omy from scratch; we leave it as a promising avenue for future research.

3Trained on a large, generic corpus of text, which usually includes, at the
very minimum, Wikipedia and/or a news corpus) that took many hundreds of
hours of computational time to train even in the industrial labs where these
algorithms were developed.
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WordNet [9], [10]. In this paper, we show that retrofitting can
be a valuable baseline for learning domain-specific models for
local taxonomy construction. To the best of our knowledge,
such methods have mostly been applied to improving the
embeddings for an NLP problem, and not on a taxonomy
construction problem as is this paper’s subject.

Taxonomy and Ontology Induction. Taxonomy (and more
generally, ontology) induction has been studied for some
time now, but the underlying data on which the taxonomy
is induced tends to be textual or context-rich (and in most
cases, involves a body of generic nouns, such as WordNet
extensions [1]). Examples include the work by [1], [16], [2]
and [17]. Most importantly, these works rely significantly
on help from extra resources during test time for semantic
understanding, which is understandable since many of them
preceded the advances in representation learning that occurred
in the last decade. The work by [1] starts from the WordNet 2.1
base, which means some links are already available. In [16],
the authors present OntoLearn Reloaded, which relies on a
specific set of text documents and Web documents for context,
and is not constrained by a set of specific concepts over
which a taxonomy must be induced. In contrast, the problem
considered in this paper starts from the concepts, which the
domain expert has decided must be included in the taxonomy.
A text corpus is not guaranteed, though we do consider the
possibility in one set of experiments in this paper. We show,
in fact, that the best approaches do not need a domain-specific
corpus for training, if a sufficiently robust embedding has
been trained on a generic corpus. More recently, [2] and
[17] used hypernym subsequences and reinforcement learning
respectively. The former considers a problem definition that
is most related to this work, but the domains used in the
evaluation are still very closely related to generic domains
(e.g., food) rather than complex, specific domains such as e-
commerce that we consider in the evaluations in this work. For
near-generic domains such as food, a resource like WordNet
already contains many links, which makes the problem less
challenging than a typical e-commerce application .

More broadly, there is no current work that has proposed
to use representation learning for addressing this problem. For
other problem domains such as information extraction and en-
tity resolution [6], [7], similar work has shown that reasonable
representation learning models can often outperform the state-
of-the-art, sometimes on problems (e.g., relation extraction)
that had proven too difficult to tackle before, especially in
minimally supervised settings (such as involving weak or
distant supervision) [6]. We attempt to prove the same for local
taxonomy construction through a carefully designed empirical
study.

III. LOCAL TAXONOMY CONSTRUCTION

The general problem of taxonomy induction may be stated
as one of inducing a taxonomy T given a concept-set C,
potentially given some background or ‘training’ resource (or
a set of resources) B. T , in this context, may be thought of
as a ‘tree’ over C: T = {(ci, cj)|ci, cj ∈ C × C, ci 6= cj}.

Taxonomies could be defined in more general ways, but in
practice, product taxonomies often are modeled along the lines
of a tree as they are meant to guide product categorization
and website navigation4. Formally, to ensure that a concept
can have at most one parent, we assume the constraint that
if (ci, cj) ∈ T and (ck, cj) ∈ T , then it must necessarily be
the case that ci = ck. We call ci the parent (equivalently,
super-type) of cj . This is an abstract relation with reasonably
well-defined semantics (though usually of a domain-specific
nature): in the natural language community, it tends to go by
the name hypernymy while in the Semantic Web, the RDFS
rdfs:subClassOf predicate is the best fit. Note that, since there
may be ‘upper-level’ nodes {c1, . . . , cm} that do not have
parents, we assume (without loss of generality), that there is a
single artificial root node cR that is introduced after taxonomy
induction and that serves as the parent of every concept in
{c1, . . . , cm}.

Inducing a taxonomy given just C is a difficult problem
that has not been addressed much in the literature, though
the previous section covered some relevant work. In practice,
inducing the full taxonomy is not necessary. Instead, we tackle
the more manageable problem of determining the neighbors
of a concept without being given any training data (existing
neighbors). While this problem is more difficult, it is somewhat
immune from the problem of error cascading that would ensue
if we were trying to recover a single global taxonomy by
combining local ‘fragments’ in some principled way.

With the terminology above, local taxonomy construction
(LTC) can be stated in similar terms as full taxonomy induc-
tion (henceforth called taxonomy induction). Given a concept
ci ∈ C, an LTC approach would aim to determine the
neighbors (including the super-type) of ci in the underlying
unknown taxonomy T (though in evaluations we only use
known taxonomies as ground-truths). Similar to taxonomy
induction, LTC can also draw upon a background resource
B.

The formulation above raises two important questions. First,
what is the nature of B? We present several choices in the next
section, based on representation learning, including a domain-
specific text corpus, a pre-trained embedding model and a
taxonomy over the same domain but on a different concept-
set. Second, regardless of an actual approach used, how do
we evaluate T ? It is reasonable to assume that, on average,
a ‘good’ LTC system would aim to retrieve true neighbors
(in the underlying taxonomy) while minimizing false positives
and negatives. In practice, to make a solution more robust, we
would frame it in terms of Information Retrieval (IR), used
by all major search engines to evaluate the efficacy of their
ranking algorithms [18]. We describe the IR-based evaluation
protocol and its rationale in more detail in Section V-C.

Before presenting some viable approaches for LTC, we
present two reasons why it is expected to be a more chal-
lenging problem than (for example) more traditional ‘edge-

4However, in principle, future work could consider generalizing the problem
to one of ‘graph induction.’
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discovery’ problems such as link prediction, even when given
as background resource, a ‘training’ taxonomy T ′. First, while
the training taxonomy is valuable and it is also domain-specific
(e.g., also from the product domain, perhaps scraped from a
different website), it usually has little or no overlap between
C and its own concept-set, denoted as CT ′ (equivalently, CT ′

is just the set of nodes in the graph-theoretic definition of T ′).
Otherwise, a simple solution would have been to just induce
a sub-graph on T ′ (over the overlapping nodes between CT ′

and the ‘target’ concept-set C over which we are trying to do
local taxonomy construction) and then apply a link prediction
algorithm to deduce the remaining edges. We do not discount
the possibility of some overlap, but in empirical practice, the
chance of overlap is minor and it is rarer still for an edge
in the ground-truth taxonomy to overlap with an edge in a
background taxonomy5.

The second challenge arises because concepts are assumed
to be represented by their labels, which may be single words,
but could also be multi-word phrases. A good method should
be able to generalize to all such cases. Another important
aspect to note is that, while C and CT ′ are not necessarily
large, they are still too large6 to manually parse and build a
taxonomy or ‘ontology’ (using completely manual techniques).

Another challenge, specific to using embedding-based solu-
tions for LTC, is that for a structured (i.e. link prediction)
problem such as this, the typical approach is not to use
‘natural language’ embeddings such as word2vec or BERT [4],
[11], but knowledge graph (KG) embeddings like RDF2Vec
and TransE [15], [3]. However, such embeddings assume the
existence of a multi-relational KG where each entity has plenty
of context (such as many relations and paths to other entities)
to draw on, when inferring other ‘missing’ edges. The goal
of these algorithms is to do prediction or completion on this
semi-complete and partially noisy KG. This is also true for
‘network embeddings’ such as node2vec, DeepWalk and LINE
[14], [19], [20]. A disadvantage of network embeddings that
they only rely on structure and not labels. In our case, we
begin with no ‘structure’ (pre-existing edges or links) and we
have to only rely on labels. At the same time, there is structure
in the training taxonomies that do not have label overlap, but
contain domain-specific information that could be useful.

Given these challenges and observations, in the next section,
we argue that representation learning approaches from the
natural language community can be a good way to address
the challenges above, if properly used and adapted to the
problem of LTC. We present some reasonable approaches by
adapting publicly available resources in an innovative way.
We implement and investigate the approaches empirically in
Section V.

5For example, it may be that even if both taxonomies contain the concepts
‘baby clothes and toys’ and ‘diapers’, one taxonomy has an edge between
them, but the other does not, meaning that the intersection would actually lead
to noise when doing local taxonomy construction on the second taxonomy.
The reason why this might happen is because there might be a better super-
type for ‘diapers’ (e.g., ‘baby essentials’).

6A general rule of thumb is several hundreds or even thousands of concepts,
but not tens of thousands, of concepts.

IV. REPRESENTATION LEARNING APPROACHES FOR LTC

One of the questions raised in the previous section was
the nature of the background resource, B. In this study, B
is related to, or used by, a representation learning algorithm
R. We assume that R is a word embedding algorithm, since
graph embeddings are not applicable here without significant
algorithmic innovation (which is not the purpose of this paper),
due to ‘nodes’ in the concept-set C not having any links
to begin with. The core idea is to obtain a model from
B, either directly (such as in the case of the pre-trained
embedding described below) or indirectly (by training our
own embedding on a domain-specific corpus, or retrofitting
an existing embedding to a related or ‘training’ taxonomy, as
was mentioned earlier and is also described below). During
test-time, when the concept-set C is revealed or becomes
available, this model, which we also generically denote as B
in a slight abuse of notation, is used to map each concept c
in C to a vector ~c, which is dense and real-valued in modern
representation learning frameworks, usually comprising a few
hundred dimensions. In vector space, we now have a number
of options to induce a tree. Below, we first describe the
different forms that B can take, followed by how to use the
vectors obtained by a model for taxonomy induction.

Pre-trained Embedding Model A pre-trained embedding
model P , on which further details are provided in Section V-B,
is perhaps the best example of B. Such models are trained
on a large (usually, but not always, openly available) corpus,
such as Wikipedia and Google Books. The ‘corpora’ undergo
significant preprocessing, including chunking and removal of
wayward characters and punctuation, and are generally input
to a word embedding algorithm such as Glove or word2vec
[5], [4] as multi-sets of sequences of words. The output is a
vector ~w for word w in the sequence. In recent years, pre-
trained models have been used with great success in a variety
of tasks (see e.g., [8]).

Domain-specific Embedding Model. If the domain is
sufficiently different, the words in the corpus used for pre-
training could carry a very different meaning (at least in the
statistical sense that is relevant for word embeddings), both
in theory and practice, compared to ordinary parlance. Some
words simply do not show up often enough for meaningful
representations to be learned (especially in legal, commercial
and biomedical domains). It has become commonplace to
‘pre-train’ the embedding on a domain-specific corpus in
order for it to be useful in those domains. Examples include
BioBERT and Law2Vec [21], [22]. However, many domains,
such as e-commerce, to which taxonomy induction tends to be
applied in practice share considerable semantic overlap with
Wikipedia or the Google news corpus. In part, this is expected
because the users and customers in these domains are ordinary
people, who may get confused if a word suddenly takes on
a different meaning. Nevertheless, there are confounds, since
pre-trained models may not make some important distinctions
e.g., between the fruit ‘apple’ and the company ‘Apple’.

For this reason, it is also worthwhile considering (as another
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potential approach) an embedding trained from scratch on a
domain-specific corpus D. In this formulation, the background
resource is not the pre-trained embedding model P but the
corpus D, which has been acquired from a domain-specific
Web resource. The embedding trained on D can then be used
to infer links in the same way as P (described subsequently
in the Using the Vectors for Taxonomy Induction sub-section).

Retrofitted Embedding. Finally, we consider another tax-
onomy, called the ‘training’ taxonomy T ′, as another back-
ground resource. The training taxonomy is not a ‘true’ training
dataset because the concept-set on which T ′ was constructed
is different from C. Hence, link prediction or knowledge
graph embedding algorithms cannot be applied, due to the
node disjointness problem (this bears resemblance to the cold-
start problem observed sometimes in recommender systems
[23]). Nevertheless, we assume that, by ‘retrofitting’ the pre-
trained embeddings to another taxonomy from the domain,
we may obtain a better embedding without re-training the
whole embedding on a domain-specific corpus such as D.
To this effect, we use the retrofitting algorithm implemented
in [9] and traditionally used for retrofitting word embeddings
to WordNet. The intuition behind that algorithm is relatively
simple. For any two words in the pre-trained model P that are
connected by an edge in the training taxonomy, the retrofitting
algorithm’s objective function ‘pushes’ the two vectors closer
together. The algorithm is allowed to run for several iterations.
In this way, the final word embeddings output by the algorithm
capture not only the ‘usual’ semantics of the words captured in
ordinary corpora, but the domain-specific semantics embodied
in the training taxonomy. For example, if ‘diapers’ and ‘baby
clothes’ are neighbors (or even a short distance away) in the
training taxonomy, the retrofitting will bring their embeddings
closer together than would otherwise be entailed in an off-the-
shelf pre-trained model.

An important detail to mention here is how we treat un-
known words and multi-word phrases (such as ‘baby clothes’)
in either the training or test taxonomy. When dealing with
unknown words and multi-word phrases in the test taxonomy,
the approach adopted is similar for all embedding methods.
If the concept occurs directly as a vocabulary item in the
embeddings, we use that embedding. Otherwise, we average
the individual word embeddings (of words in the phrase),
ignoring unknown words.

Using the Vectors for Taxonomy Induction Once the
vectors have been obtained, we have to use them for the
LTC task. We propose an Information Retrieval (IR) approach,
based on established methodology, for doing so. Technical
details on parameter settings that will be relevant for the
empirical study are described in the next section.

The IR approach treats each concept c ∈ C as a query q
similar to keyword and other queries issued to search engines
and other similar systems in the IR literature. Specifically,
given a query-concept q ∈ C, where C is the concept-set
over which we must induce the local taxonomy around q, we
can rank all members of C − q in descending order of each

member’s cosine similarity7 (of its embedding) and the query
embedding ~q. In Section V, we describe how IR metrics can be
used to evaluate the ranked list in response to a query. This is
a decentralized way of constructing the tree, since we evaluate
the method by independently computing IR metrics for each
query-concept, followed by averaging8. It is well-suited to the
LTC problem, though whether it can be similarly extended to
the global taxonomy induction problem is for future work to
address.

V. EXPERIMENTS

A. Data

We consider three taxonomies for evaluating our approach:
Google Product Taxonomy (GPT), PriceGrabber and Walmart.
Key statistics are provided in Table I. The GPT is a list
of thousands of ‘product categories’ designed by Google
to uniformly categorize products in a shopping feed. It is
publicly available at the following link9 and has undergone
some updates in recent years. We use the latest version for
the experiments. PriceGrabber10 is a ‘smart shopping’ website
that helps customers find savings and discounts on a broad
category of products. The PriceGrabber taxonomy can be
downloaded through an API provided to affiliate partners
(merchants or publishers of product links via reviews or other
useful information for potential purchasers). Walmart refers to
the website11 of the well-known retailer of the same name;
we obtained the taxonomy (which is technically a graph
with a taxonomy-like structure) by crawling product pages
starting from the sitemap12. We extract ‘product paths’ (e.g.,
‘Home/Appliances/Freezers’) from these crawled pages, and
re-construct the ground-truth taxonomy from the paths.

All three of these datasets are used heavily in the real world
and offer alternate perspectives of a given domain (which
may be broad, such as e-commerce and online shopping,
and not easily definable using formal language). The three
taxonomies share some similarities such as overlap in some
product categories, but differ significantly both in size and the
purposes to which they have been applied in practice. This
allows us to assess the effectiveness and robustness of both the
representation learning methods and the super-type classifiers
(described in the next section) in a controlled setting.

B. Methods and Parameters

In Section III, we presented three methods that relied pre-
dominantly on representation learning, each with a slightly dif-
ferent rationale. We evaluate all three methods in this section to
determine which one is appropriate for deriving a taxonomy

7Given two vectors, ~a and ~b, the cosine similarity is ||~a.~b||
||~a||||~b||

8Since every concept in C will be treated as a ‘query’ exactly once, the
averaging will occur over |C| computations of an IR metric such as the NDCG
(Section V-C).

9https://support.google.com/merchants/answer/6324436?hl=en
10http://www.pricegrabber.com/
11https://www.walmart.com/
12The sitemap is itself a hierarchy and can be accessed at: https://www.

walmart.com/robots.txt
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TABLE I: Statistics on taxonomies used for the evaluation.

Name Num. Concepts Num. Edges Avg. Num. Children/Node
GPT 5,582 5,561 6.36

PriceGrabber 948 947 12.62
Walmart 10,166 11,040 14.17

given only a concept set. Note that the retrofitting method
relies on an example (‘training’) taxonomy. The methods and
their parameterization are briefly enumerated below. Recall
that each method can be thought of as outputting a ranked
list of concepts, given a query concept. Earlier, Section IV
described how we deal with phrases.

Method 1 (Pre.): Pre-trained Embeddings. We down-
loaded the English pre-trained fastText embeddings at the fol-
lowing link13. We believe that the ‘bag-of-tricks’ approach in
fastText is particularly useful in our scenario (even compared
to more transformer-based language models such as BERT)
because its faster training (and re-training) speed allow us
to perform uniform comparison between embeddings. Also,
acquiring word vectors is relatively simple, and the model is
robust to misspellings and uncommon words (but which are
common in specific domains). The vocabulary size of the pre-
trained embeddings is 1 million words and the model was
trained on the combined corpus of Wikipedia 2017, UMBC
WebBase corpus and the statmt.org news dataset (16B tokens).

Method 2 (Dom.): Domain-specific Corpus-trained Em-
beddings. We used the fastText model to obtain a domain-
specific corpus-trained embedding model. We obtained the
corpus as follows. First, we downloaded the Product-specific
subset of schema.org data available on Web Data Commons14.

Although not very well known outside the Web community,
schema.org has seen steady growth as structured markup
embedded within HTML webpages [24]. According to the
schema.org website, over 10 million sites use Schema.org to
markup their web pages and email messages. Many applica-
tions from Google, Microsoft, Pinterest, Yandex and others
already use these vocabularies to faciliate a rich suite of
applications. The WDC schema.org project, which relies on
the webpages in the Common Crawl, is able to automatically
extract schema.org data from webpages due to its unique syn-
tax and make it available as a dataset in Resource Description
Framework (RDF). Since text attributes are an important part
of this data, we were able to use them to construct our domain-
specific corpus, as described below.

Since the Product-specific component of the overall
schema.org data on WDC is a massive, multi-lingual corpus
(more than 100 GB+ in compressed form), we downloaded
the first 20 chunks of the data (about 25 GB compressed),
and extracted all the English language text literals from the
product entities (by checking for @en and @en-US language

13https://dl.fbaipublicfiles.com/fasttext/vectors-english/
wiki-news-300d-1M.vec.zip

14http://webdatacommons.org/structureddata/2018-12/stats/schema org
subsets.html

tags). If a text literal is fully numeric, or only contains a URL
(which sometimes appear within the quotes of text literals)
we discard the literal. We also did standard15 pre-processing
by removing unicode symbols, newlines and tabs. The final
uncompressed text corpus, after cleaning and preprocessing
was 5 GB, a big enough corpus to train the fastText model.
We used the skipgram model (with vector dimensionality set
to 300, min and max context size set to 1 and 5 respectively,
and all other parameters set to their default values) for training
the model. While the original corpus had 744 million words,
many of these only occurred once and were spelling variations
of a more frequent word. Since fastText is capable of handling
such variations within the model, we took the top 1 million
frequently occurring word embeddings and discarded the rest
for the experiments. Before using this model, we validated
its quality for taxonomy induction qualitatively by retrieving
nearest-neighbors of some domain-specific words such as
‘appliance’ and ‘home’ and verifying effectiveness.

Method 3 (Retro.): Retrofitted Embedding Transfer with
Super-Type Classification. Finally, we use the retrofitting
approach described in Section IV. As described in that section,
we retrofit the embeddings in Pre using the (pre-processed)
training taxonomy and the retrofitting algorithm described in
[9]. We also obtain a binary super-type classifier (described
further below) by training a random forest model. To use the
super-type classifier, during the ranking phase (given a query
concept), a two-step approach is adopted. First, we obtain the
ranked list in descending order of cosine similarity scores, as
described earlier. Next, we apply the classifier to determine the
top16 3 most likely super-type candidates for the query node
and move those top 3 candidates to the top of the ranked list.
In preliminary experiments, this approach was found to yield
empirical benefits to standard retrofitting.

We consider two ‘supervised’ methods that build on tradi-
tional machine learning classification and are only dependent
on representation learning for their features. The idea behind
the classifier is to predict the super-type of a concept node
given a classifier model such as logistic regression or random
forest. Since this is a supervised model, it needs to be trained,
and is only applicable in the setting when a training taxonomy
T ′ is available as background resource. Details are given
below. We consider two different feature sets to fully assess
the merits of the approach, described below.

Method 4 (Spre): Super-type Classification using Pre-
trained Embeddings. This model is trained using the pre-
trained embeddings (Pre) as features. We use a random forest
model with default parameters, but with number of estimators
set to 200. We frame the problem as binary classification, using
the difference of the embedding between the query node and
a candidate node as the ‘feature vector’. To train the model,
we use the training taxonomy T ′. Specifically, for each node

15A key reference being https://fasttext.cc/docs/en/python-module.html#
important-preprocessing-data--encoding-conventions.

16We tried multiple values for this ‘reranking’ parameter; 3 was found to
work well across all datasets. Reranking was also found to yield superior
results compared to using retrofittings without reranking.
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ci in T ′ that has a parent cj (recall that there might be a set of
upper-level nodes that may not have a parent), we construct
the translational feature vector ~cj−~ci and assign it the positive
label. We randomly sample a sibling of ci (say, ck) and assign
the feature vector ~ck− ~ci the negative label, thereby obtaining
a balanced training set, using only concepts in T ′. We obtain
the full ranked list on the actual (i.e. the test) concept set
C by ranking all candidates in C − q (q being the query)
according to the probability scores output by the classifier
(higher probability indicating higher likelihood of that concept
being a super-type of q).

Method 5 (Sretro): Super-type Classification using
Retrofitted Embeddings. This model is identical to the above,
except that we use the embeddings obtained from Method
3 (Retro) for deriving the features. This baseline also of-
fers us the opportunity to study the difference between this
method and Method 4 in a second-order context (where the
embeddings are themselves input to a model), rather than used
directly (via cosine similarity) for obtaining the rankings. Note
that this model is also used in the second step of the two-step
model previously described for Retro.

C. Methodology and Metrics

We stated in Section III that an Information Retrieval (IR)-
based methodology could be used to evaluate the effectiveness
of any ranking-based approach to local taxonomy construction.
In the IR methodology, we treat each concept in the concept-
set C as a query, and compute a ranking over all other
concepts in the concept-set. All the methods described in
the previous section can be tuned to return a ranking of all
concepts, given a concept. Since we know the ground-truth
taxonomy for the concept-set, we know which concepts in
the ranking (for each ‘query’ concept) are ‘relevant’ (to use
IR terminology); these are precisely the concepts that are
neighbors of the query concept in the ground-truth taxonomy.
IR is a well-studied field with several metrics; below, we
consider two important ones.

Normalized Discounted Cumulative Gain (NDCG). To
compute the NDCG, we first have to calculate the DCG for
query q, defined by the following equation:

DCGq = rel1 +
n∑

p=2

reli
log2(i+ 1)

(1)

Here, reli is the relevance of the ith item in a ranked list
of size n. In our case, this is either a 1 (if the concept at
that rank is a neighbor of the query concept in the ground-
truth taxonomy) or a 0. We can compute the DCG of both
the actual ranking and of an ideal ranking (where all relevant
items are ranked at the top), the latter denoted as the IDCG
(Ideal DCG). The NDCG is then given by:

NDCGq =
DCGq

IDCGq
(2)

Since the DCG is always less than the IDCG, the NDCG is
between 0 and 1. For the performance over the entire concept-

set we average the NDCG over all queries.
Mean Average Precision (MAP). Intuitively similar to

the NDCG in its theoretical rationale, the MAP is formally
defined as the mean of the Average Precision (AP), computed
as follows. Given a ranked list of size n in response to
query q and assuming m relevant items in the ground truth
for q at ranks r1, . . . , rm, we compute the precision at rank
ri as the total number of relevant items in the ranked sub-
list [1, . . . , ri] divided by ri. The AP is the average of the
precision computed at ranks r1, . . . , rm. The MAP is the mean
of all APs computed over the entire query set. More details
on these metrics can be found in any standard reference on
IR [18]. For each of the two metrics, we obtain a single
number between 0 and 1 (with the higher number indicating
better performance) per query. In principle, this permits us
to compute the distribution of values, if necessary for further
error analysis, though we only take the average over all queries
for this study.

D. Results and Discussion

Table II contains the results for all combinations of train-
ing/test taxonomies using the IR-based methodology described
in the previous section. From the table, we find that the max-
imum NDCG/MAP scores for each train/test setting always
corresponds to one of the representation learning algorithms,
as opposed to the super-type classifiers. This shows that, at
least on a per-query basis, direct use of embeddings is a
better choice than using the embeddings in a downstream
machine learning model. Reinforcing this conclusion, the rank
correlation between MAP and NDCG is also high i.e. if we
rank the five approaches either by MAP or by NDCG we get
very similar results.

Importantly, we observe that the retrofitting embedding
Retro tends to outperform Pre when the training taxonomy
is large (as in the case of Walmart) and when the testing
taxonomy is small (as in the case of PriceGrabber). However,
noise also plays a role, since the GPT taxonomy is (arguably)
the ‘cleanest’ of all the taxonomies, having been meticulously
designed at Google with several iterations over the years.
We hypothesize that, for this reason, the best performance
achieved by Retro is in the GPT/PriceGrabber setting rather
than the Walmart/PriceGrabber setting, although it also does
quite well (both absolutely and relatively) on the latter.

An overall comment that we make with respect to these
results is that the numbers clearly show that there is usually
at least one relevant entry in the top 3. Typically, this is
necessary to achieve an NDCG or MAP of greater than 33%.
This is encouraging, since it hints towards the feasibility of
the problem. Furthermore, the inferior performance of Dom.
compared to the other representation learning models suggests
that that pre-trained embeddings are sufficient, and that it
is not necessary to invest significant amounts of time in
preprocessing and preparing domain-specific corpora for re-
training embedding models.
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TABLE II: Information retrieval metrics (NDCG/MAP) on each of the six train/test settings. Except for Spre and Retro
on the Walmart/PriceGrabber case (last row), all results are significant at the 95% level. Furthermore, except for Dom
(GPT/PriceGrabber, Walmart/PriceGrabber), all results are significant at the 99% level. Maximum values at the row-level
for each of the two metrics are in bold. Since not all methods use the ‘training’ taxonomy, some results may be repeated.

Train Test Retro. Pre. Dom. Spre Sretro

GPT PriceGrabber 0.44/0.30 0.38/0.23 0.37/0.22 0.26/0.10 0.34/0.18
GPT Walmart 0.27/0.13 0.29/0.16 0.29/0.15 0.14/0.023 0.19/0.07
PriceGrabber GPT 0.34/0.18 0.38/0.23 0.37/0.21 0.17/0.04 0.23/0.096
PriceGrabber Walmart 0.25/0.11 0.29/0.16 0.29/0.15 0.13/0.017 0.18/0.056
Walmart GPT 0.35/0.20 0.38/0.23 0.37/0.21 0.16/0.03 0.29/0.156
Walmart PriceGrabber 0.39/0.25 0.38/0.23 0.37/0.22 0.23/0.07 0.38/0.23

VI. FUTURE WORK AND CONCLUSION

This paper described the local taxonomy construction prob-
lem, which is a more tractable version of the global taxonomy
induction problem, but still significantly more difficult than
ordinary link prediction. We also found that representation
learning algorithms, derived and adapted from the NLP com-
munity, can be viable solutions for the problem, but that there
is considerable room for improvement.

An important avenue of future work is to develop method-
ologies and algorithms that are applicable to the global taxon-
omy induction problem. As we stated earlier, this problem
is very different from standard link prediction and triples
classification problems (in the knowledge graph community)
due to the complete lack of initial structure or network. In
fact, it is not even completely clear how one would evaluate
such an induced taxonomy with respect to a ‘ground-truth’
taxonomy. IR cannot be applied in an obvious way, unlike the
LTC problem described here, and neither can measures like
tree edit distance and graph edit distance due to their quadratic
time and space complexity (in the number of nodes). Hence,
new metrics may be required to evaluate these algorithms.
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