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Abstract—We describe and validate a system for monitoring
social contagions on Twitter: social movements, rumors, and
emotional outbursts that spread from person to person in a viral
manner. We use Twitter streams to monitor the spread of these
phenomena through human social and information networks.
This system, the contagion monitor, parses Twitter posts to
identify emerging phenomena, as captured in hashtags, URLs,
words and phrases, or account-handles, and then determines
the extent to which a particular phenomenon spreads via the
social network (in contrast to its spread via news broadcasts or
independent adoption) and locates the contagion within Twitter
communities. The monitor approximates the adoption threshold
of a social contagion by measuring the fraction of Twitter users
who were “infected” by the contagion (e.g., joined a particular
social movement) after more than one of their friends had done
so. Finally, the monitor makes a judgment about whether the
phenomenon has reached critical mass, which is defined as the
point where a social contagion begins spreading rapidly and
breaches the social boundaries of its early adopter group. We
test our prototype monitor on two data sources — an ongoing
stream of tweets grouped by user-added hashtags and a collection
of posts by a monitored set of Nigerian Twitter users — before
productionalizing. We use the Amazon Mechanical Turk platform
to evaluate the performance on both data sources. In both cases,
we find that our approach successfully distinguishes between
high-threshold and low-threshold social contagions.

I. INTRODUCTION

The past decade has seen transformative social movements,
such as the Arab Spring, Black Lives Matter, and the move-
ments which led to elections of Barack Obama and Donald
Trump to the US presidency. Recent approaches in social sci-
ence [1]–[6] seek to understand the dynamics by which social
movements break out of local contexts to become widespread
phenomena. We leverage these approaches to construct an au-
tomated tool, the contagion monitor, to detect emerging social
movements before they gain widespread popularity. Our tool
expressly seeks out the more fundamental and transformative
social movements in social media, capable of bringing about
real behavior change, and in so doing, offers an advantage
over other approaches (see section II-C) which look for trends.

We tested this tool in two large-scale empirical settings and
subsequently deployed it in a productionalized application that
is currently in daily use.

Our innovation relies on a network structural approach
that can distinguish between transient movements (e.g., viral
memes), of low social impact, and more transformative ones
(e.g., voting or protesting). We are able to make this distinction
based on how information cascades move through social net-
works, without relying on time-consuming language analysis
or contextual searches. We have augmented our tool with
network-based metrics, which enable the analyst to monitor
social contagions before they become widely relevant.

We define “social contagions” as social movements, rumors,
and emotional outbursts that spread from person to person in a
viral manner. Our social contagion monitor processes streams
of Twitter data to scan for these. For ethical reasons, we avoid
running any sort of controlled experiment on large human
populations; instead, we treat data collected from the monitor
as purely observational or “natural experiment” outcomes.

In scanning for social contagions, the monitor makes two
key algorithmic judgments about their dynamics. For each,
the tool calculates metrics that estimate the threshold of
participation in the movement [7], indicating transformative
potential; and whether the movement is about to break out
of a local network cluster [1], indicating virality. Together,
these judgments can help researchers differentiate between
three categories of movements, from the transient to beyond:

a) Low-threshold movements that have low cost to partici-
pation or network externality: these can spread quickly,
but some scholars (e.g., [7]) speculate they are unlikely
to bring about transformative political or social change.

b) High-threshold movements that have not yet broken
out of local network clusters: these movements may be
important to monitor but do not yet have the reach to
bring about transformative political or social change.

c) High-threshold movements that have broken out of local
networks: these are both costly (i.e. sufficiently “highIEEE/ACM ASONAM 2020, December 7-10, 2020
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stakes”) and have the reach to have a relatively high
probability of affecting political or social change.

We tested two setups of the monitor: the regional contagion
monitor (RCM) and the streaming contagion monitor (SCM).
These implementations differ by the type of data they consume
and the criteria for detecting emerging phenomena. The RCM
focuses on a smaller geographic region and employs significant
historical data for detecting new contagions while the SCM
processes streaming data with minimal use of historical data.

With the RCM, we test our system in a more controlled set-
ting of a fixed, more narrowly scoped community of regional
Twitter users over long time. Here, we can determine which
diffusion events - captured via hashtags, URLs, or words and
phrases - are propagating according to theoretical expectations.
If productionalized, this setup would offer regionally focused
insights into emerging movements and their transformative po-
tentials. With the SCM, we extend the scope of the monitor to
a wider range of sociocultural settings, dynamically capturing
the engaged network and allowing the setup to pick out more
recent, potentially transformative world-wide movements. The
trade-off between these setups is one of greater depth (RCM)
versus breadth (SCM) of topics and regions. We have currently
productionalized the SCM setup for daily use.

Next, we describe prior theoretical work and other social
media trend tools. In section III we describe the monitoring
systems including what data they ingest and some risks.
In section IV, we describe a framework for evaluating the
monitors’ performance embedded within two science questions
and share those results. And finally, we conclude in section V
with a discussion of results and some future work.

II. BACKGROUND

A. Social Movements and Contagion Models

Reference [8] formulated a model of threshold-based adop-
tion cascades on populations in lattice networks, where the
threshold depends on k, the number of network neighbors of a
node. Reference [7] extended [8]’s model to the Small World
[9] network model, which involves the random rewiring of
ties on lattice networks; a closer approximation to real social
networks. Reference [9] tested the spread of simulated simple
and complex contagions on Small World networks. Simple
contagions, defined by their threshold of 1/k, model the spread
of disease, information, and easily adopted behaviors that do
not require a confirmatory (and redundant) exposure to become
infected. In contrast, complex contagions, defined to have have
thresholds greater than 1/k, model behaviors like protesting,
rioting, or adoption of new conventions or technologies that
carry a greater cost to adoption and require more than one
confirmatory exposure prior to infection.

Reference [7] found that in Small World networks, complex
contagions rarely spread beyond the initial “seed” cluster,
except occasionally when these can leverage shortcuts that
result from re-wiring to new clusters. Typically, the re-wiring
reduces the confirmatory exposures available to the complex
contagion to spread. Reference [1] discovered a critical mass

point in the fraction of infected nodes beyond which the
contagion spreads through the full network quickly and with
high probability (like simple contagions). Beyond the critical
mass, the chance of sufficient exposures to leverage shortcuts
to new clusters becomes very high.

The authors in [1] confirm that complex contagions require
a dense seed cluster in the initial stages of propagation to reach
critical mass. They found that the critical mass point has a two-
part statistical signature: 1) the contagion’s rate of propagation
dramatically changes from negative (as the contagion begins
to saturate the local seed cluster) to positive (as the contagion
begins to spread in fresh network regions) and 2) there is a
sharp drop in the density of the network neighbors of new
adopters. The first indicates that the contagion has broken
out of the seed cluster while the second indicates that it is
growing in an unsaturated region. Together, these mean that
the contagion is leveraging the randomly re-wired long-range
ties and is not limited by the local structure where it begins.

B. Social Movements and Social Media

Many researchers have attempted to study viral behavior
in general, and complex and simple contagions in particular,
in online social network data. Work by [5] observed that
politically-themed hashtags behave like complex contagions,
whereas hashtags corresponding to neologisms and Twitter
idioms behave like simple contagions. Reference [4] found
evidence of social influence and complex contagions in Twitter
recruitment networks around social mobilization in Spain in
May 2011. Reference [10] compiled a large overview of
viral messages, including those related to social contagions,
and pointed to the important role for “gatekeepers” whose
influence can cause a social contagion to go viral. Refer-
ence [2] found the hashtag #bringbackourgirls, relating to the
movement to bring back hundreds of girls kidnapped by Boko
Haram in Nigeria in 2014, resembled a complex contagion.

Reference [6] found that the diffusion of campaign dona-
tions is a complex contagion driven by independent social re-
inforcement. The authors found that people are more likely to
donate if exposed to donors from different social groups than
equally many donors from the same group, which suggests
an important extension of the complex contagion model: high
threshold contagions may require not just multiple sources
of exposure but multiple independent sources. Accordingly,
we equipped our contagion monitor to be able to identify the
distribution of adopters across social groups.

C. Social Media Monitoring Tools

There are a number of social media monitoring tools,
both in academic [11], [12] and industrial [13]–[15] settings,
and our monitor offers some advantages over these. The
Observatory on Social Media and NIFTY analyze the spread
of information rather than of social contagions specifically.
Crimson Hexagon and other industrial tools focus on gen-
eral monitoring (influencer identification, trends, geo-location)
rather than the specific identification of social contagions and
analysis of their dynamics as we do. Our metrics, by design,
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identify high-threshold social contagions, more likely to be of
actionable interest. By analyzing the dynamics of information
cascades, and using simple related metrics, we offer a faster
and independent signal of emerging movements. Our monitor
is thus compatible with and goes beyond the capabilities of
existing tools.

III. METHODS AND DATA

A. IRB Compliance

Our research received an IRB exemption because we ana-
lyze publicly available data that we also de-identify. We have
made it a priority to minimize the risk of exposing sensitive
personal data, whether through a leak or hack of our data store,
or through unwitting exposure via publication.

B. Risks of Collecting Data on Social Movements

Our data collection is associated with two major sources
of risk. First, the data we collect are public Twitter posts,
which may contain personally identifying information. A Pew
internet survey of teenage use of social media [16] shows that
24% of teens used Twitter in 2012. The same survey shows that
91% of teens post a photo of themselves on Facebook, 71%
post their school name, and so on, in the same time period.
The scale of our data collection is highly likely to result in
including personally identifying information on minors, which
requires special care to store or process [17].

Our streaming and regional contagion monitors analyze so-
cial contagions, which include social movements. The second
risk associated with our data collection is that some of these
movements (like the pro-LGBT movement in Nigeria) carry
severe risks for participation, including imprisonment. The
Same Sex Marriage Prohibition Act in Nigeria “imposes a
10-year prison sentence on anyone who “registers, operates
or participates in gay clubs, societies and organization” or
“supports” the activities of such organizations” [18]. Simply
exposing the identities of Nigerian individuals involved in a
pro-LGBT hashtag on Twitter could subject such individuals
to the effect of this law. We recognize the severe risks
of improper data management when constructing the social
contagion monitor.

We do not publish tweets from our contagion monitors
except as one-off examples, in which case, we blur all
identifying information in the tweet text or metadata. In all
publications (including this one), we report summary statistics
about hashtags and other features identified by the social
contagion monitor rather than individual-level behavior.

C. Data Ingestion

1) Streaming Contagion Monitor: The SCM collects
streaming, public Twitter posts (or tweets) and extracts net-
work ties from the same to analyze a contagion. In this study,
in order to additionally evaluate complex contagion theory
from our results, we chose to scope our streaming collection
on themes identified in thirty of [14]’s library of maps.
These themes span mulitiple sociocultural contexts — US
and European politics, industry verticals such as automotive

and food, and large sports events. Reference [14] constructs
themed maps, or networks of Twitter accounts that engage
with themed conversations, and then collects the accounts’
live streaming tweet activity1, which we accessed. Importantly,
we note that these data are not filtered geographically or
by keyword, and truly represent the conversation at large on
Twitter. We deliberately chose both political and non-political
maps to capture both high-threshold social movements and
low-threshold news events.

The SCM passes these streaming tweets to our sliding
window monitor (SWM), which is capable of real-time tweet
stream processing. It does 3 main tasks: feature extraction,
tracking features, and nominating features of interest. The
SWM acts as a front line filter, reducing the volume of data
that is passed on to later analysis stages. In this study, the
features are based on hashtags alone. For each incoming
tweet, the SWM extracts the hashtag data and creates features
that represent hashtags, retweeted hashtags, hashtag pairs and
retweeted hashtag pairs. Hashtag pairs are sets of hashtags
that appear together in the same tweet. The SWM tracks the
frequency of each feature over sliding intervals of 10 minutes,
1 hour and 4 hours, reporting any features that exceed a
threshold number of appearances. The SWM aggregates the
reports to identify the most popular features over the last 24
hours and nominates the top features for further analysis.

2) Regional Contagion Monitor : We invoke the regional
contagion monitor, built and studied in [19], as a static network
on which to compute contagion measures for comparison
against the same measures computed for the SCM. The RCM
focused its data collection on networked accounts that were
likely to be located in a specific geographic region. In this
way, we approximate a physical social network that is static,
and measure its social media activity to look for contagions.

Full details of the RCM data collection are available in
[19], but we summarize some key elements here. We identified
a set of 108,744 Twitter users located in Nigeria2 between
January and mid-April of 2017, that also remained public and
active through our later data collection, and for whom we
could carefully assess location. We constructed a network of
these users by leveraging the “follows” relationship on the
platform, and collected approximately 270 million tweets3

between April and November of 2017. Our final graph, on
which we computed contagion measures, consisted of 103,659
nodes, 11,753,606 edges and an average degree of 113.

3) Productionalized Streaming Contagion Monitor: The
productionalized contagion monitor setup, which is in use
today, is based on the SCM, but is adapted to [14]’s pre-
parsed data stores and collection. It thus bypasses the SWM’s
input handling, but computes the same metrics for candidate
selection from high resolution feature (e.g., hashtags, urls)
occurrence time-streams computed from the [14] data.

1statuses/user_timeline endpoint – https://developer.twitter.com/en/
docs/tweets/timelines/api-reference/get-statuses-user timeline

2https://www.cia.gov/library/publications/the-world-factbook/geos/ni.htm
3statuses/user_timeline public Twitter API endpoint
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D. Candidate Hashtag Selection

1) Streaming Contagion Monitor: The candidate selector
collects the most popular features over the last 24 hours, and
then applies a multi-step filter and an exclusion-list filter. The
multi-step seeks to filter out features that have appeared in the
top 300 most popular, at any time in the past 5 days, with one
exception. If in the last 5 days, the number of communities
identified by [14] in which the feature is relevant [20] has
increased by 20%, then it is not filtered out. The exclusion-list
filter contains hashtags that are spam or regularly reoccurring
Twitter “memes” (e.g. #followfriday) that are obviously not
related to social movements.

2) Regional Contagion Monitor: For each calendar day
of tweets (assuming midnight as GMT+1 or West African
Time), the regional contagion monitor extracted all hashtags
used during that day and the 30 days prior to that. For those
hashtags used by 100 or more unique users, we classified a
hashtag as a candidate for analysis if its count for that day
was two standard deviations greater than its mean count for
the previous 30 days. Our contagion analysis for a given day
was restricted to these hashtags. We excluded from analysis
hashtags that were on our exclusion-list (common ones such
as #NP) or hashtags used by monitored users in the six
months prior to August 1, 2017. The monitor nominated 2,823
trending hashtags from August through October 2017.

E. Contagion Analysis

1) Streaming Contagion Monitor: For each feature identi-
fied by the candidate selector, the contagion analyzer collects
up to the last five days of tweets with the hashtag. From this,
it identifies adopters and constructs an adopter network [2] by
connecting users who have retweeted or mentioned (or been
retweeted by or mentioned by) any adopter. Then it computes
the following metrics for each feature:

a) Cumulative distribution, over k, (abbreviated CDFk) of
percent of users who started tweeting about the feature
after k or fewer network neighbors had done so.

b) Percent of all users who tweeted the feature before any
of their network neighbors had done so, over time.

c) Mean Tie Ratio (MTR) - Average density of connections
among the first n adopters of the feature, n = 1 to 100.

d) Number of adopters of the feature over time.
e) Average fraction of connections between adopter friends

over time.
2) Regional Contagion Monitor: For nominated hashtags,

we calculated the same measures used for the SCM. We
base the CDFk and MTR measures on the friend graph as
it existed at the beginning of the given month, using the
friends/ids query time stored with the edges. For each
hashtag, the analysis period began at the start of the first day
the hashtag had more than ten tweets, and ended on midnight
of the trending day. We compute these measures for the current
day.

In addition, we also looked at how users that adopted a hash-
tag were distributed across the network. We used the Louvain

community detection algorithm [21] to define communities
within the friend network. For each hashtag, we then computed
the community entropy as the entropy of the counts of adopting
users in each community. Lower entropy is associated with the
adopting users being restricted to fewer communities; higher
entropy associated with users being spread out across more
communities. We called this the hashtag’s community entropy.

F. Reporting

The contagion monitor generates a report of all metrics for
each feature and also saves plots of them as PDFs.

IV. RESULTS

A. Framework for Evaluating the Contagion Monitors

Here we frame our evaluation under two key science ques-
tions. CDFk, MTR, and entropy relate to first, R1, and the
remaining two relate to second.
R1. Do high-threshold social contagions spread through social

networks in a fundamentally different way than low-
threshold social contagions?

R2. Do high-threshold social contagions “go viral” and begin
to spread really quickly through social networks in certain
conditions?

For R1, the contagion monitors provide a formal encoding
of how hashtags spread through the network, via metrics a)
and c) in section III-E1. But they do not provide a human
label for what a “high-threshold social contagion” is. For such
human labels, we turn to previous research (section II-B),
which suggests that political and social movements tend to
spread like high-threshold contagions [5], [7]. This observation
naturally suggests that we can evaluate the contagion monitors
by generating human labels for whether a hashtag represents
a political or social movement, and so we do (section IV-B).

For R2, the contagion monitors provide a formal encoding
of our theoretical assumptions about conditions when a conta-
gion might “go viral,” via metrics d) and e) in section III-E1.
But they do not provide a human label for what a “viral”
contagion is. We have performed preliminary investigations of
human labels for contagion virality and found, not surprisingly,
that human labelers do not successfully identify viral vs. non-
viral contagions. As a specific test, we compared human labels
of hashtags to the number of tweets using these hashtags and
found no correlation. Therefore, R2 will require a separate
evaluation, which we leave to future work.

B. Mechanical turk annotation

We used Amazon Mechanical Turk (AMT) to obtain human
annotations of the hashtags nominated by the SCM and the
RCM. AMT allows researchers to post Human Intelligence
Tasks (HITs), asking AMT workers (turkers) to perform a
task for a small payment. It is a common tool for obtaining
labeled data at scale, in our case, to assess labels for adoption
threshold. For our HITs, turkers were asked to read a set of
tweets corresponding to the date a hashtag was nominated,
answer a number of questions about the topic (or topics)
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associated with the hashtag, and give their judgements about
the use of the hashtag by Twitter users.

For the SCM, we restricted our analysis to hashtags that
were associated with English language tweets since many
turkers are English speakers and we wanted to avoid having
to identify turkers fluent in other languages. Language identi-
fication was carried out by running a language identification
tool4 on pseudo documents created by concatenating all of
the tokenized tweets returned for a hashtag (Public Twitter
API) after removing sentence punctuation, URLs, and emojis.
We used language predictions for documents with 25 or more
tokens and found 866 hashtags identified as English. For the
RCM, we did no screening of language since most Twitter
content we have observed from Nigeria has been in English
or Nigerian Pidgin English.

For the SCM hashtags, we split the hashtags into equal-sized
sets based on their likelihood of being a complex contagion.
We created a “complex contagion score” (CCS) as follows:

CCS =


0 log10(ρ̄ first 100 adopters) ≤ −3 ∩ CDFk(k ≥ 2) ≥ 0.7

1 log10(ρ̄ first 100 adopters) > −3 ∪ CDFk(k ≥ 2) < 0.7

2 log10(ρ̄ first 100 adopters) > −3 ∩ CDFk(k ≥ 2) < 0.7

(1)

The score is an integer that ranges from 0 (unlikely to be
a complex contagion) to 2 (very likely to be a complex
contagion). The set size was set to the number of hashtags
that had a complex contagion score of 2. Hashtags with a
score of two were the most interesting to us since they had
a high observed adoption threshold and a spread within a
dense initial network of users, both of these measures being
theoretical indicators of complex contagion. There were 127
with a complex contagion of 2. Since we were using three
hashtags per HIT, the total number of hashtags of each set was
126 giving us 126 HITs for 378 hashtags. For the RCM, 648
were selected at random without regard to contagion scores.

We deployed the HITs and required nine assignments per
HIT, meaning that we asked for judgments from nine different
turkers. There is no convenient way to restrict how many HITs
a turker does for a particular batch of HITs. This has conse-
quences since a few prolific turkers could be responsible for a
disproportionate number of annotations. Using qualifications
(a means provided by AMT to control turker’s access to HITs)
we implemented an approach using JavaScript and a custom
RESTful interface that allowed us to disqualify a turker after
they did a certain number of HITs. In this case, we restricted
turkers to one SCM HIT and ten RCM hashtags.

Each HIT contained three hashtags, with each hashtag
appearing on a separate page. At the top of each page there
was a link to a Twitter Advanced Search query showing tweets
containing the hashtag for the analysis period. Turkers were
required to click on this link, which opened in a separate tab,
and read a sample of the tweets using the hashtag before
answering any of the questions. They were also required to
answer all of the questions (shown in Table I) before advancing
to the next page or submitting the HIT. We paid $1.80 per HIT
(based on trial runs, a single HIT took about 10 minutes giving

4https://github.com/saffsd/langid.py

turkers an estimated hourly rate of $10.80). Each HIT allowed
for nine assignments to unique turkers.

We ran a total of 640 HITs and obtained annotations from
1,084 turkers across both sets of hashtags. A pair of check
questions determined whether turkers were paying sufficient
attention to the task. Results from assignments where workers
failed this check were not used. Overall, the average number
of assignments used from each HIT (out of a possible nine
assignments) was 8.20 (s.d. = 1.234) for the RCM hashtags and
7.89 (s.d. = 1.457) for the SCM ones. The average agreement
(the maximum number of responses to a question - casting all
questions as a binary choice - that were in agreement) was
6.83 (s.d. = 1.672) and 6.36 (s.d. = 1.692), respectively.

C. Analysis of annotated hashtags

From our sets of annotated hashtags we investigated the
relationship between the contagion measures (CDFk(k ≥ 2),
MTR, and, for RCM, the community entropy) and the question
responses obtained from AMT. We sought to learn how differ-
ent ways of indicating threshold (from the responses) mapped
onto the metrics. So, we specifically looked at regression
models using the responses as dependent variables and the
measures as independent variables to evaluate model fit and
the significance of the measures. We then trained and evaluated
classifiers for predicting positive question responses (as binary
labels) using the measures as features.

1) Spam Filtering: While the SCM candidate hashtag selec-
tion infrastructure filters out spam-related hashtags, the RCM
does not - other than initially filtering out hashtags spread
exclusively by extremely productive or isolated, friendless
accounts. We took the extra step of analyzing bot activity in the
RCM data after noting the presence of hashtags with very low
CDFk(k ≥ 2) values (a high percentage of instigators) and
low community entropy values (the accounts are isolated to a
relatively small number of communities). Further examination
of this data found that multiple accounts were tweeting the
same links and hashtags simultaneously9. A group of these
accounts showed the same behavior over a number of hashtags
and had a higher than expected connectivity within the friend
network, suggesting they were part of a bot network. Forty-
nine of the 648 hashtags were almost completely dominated
by these accounts. They were removed, giving us a set of 599
hashtags for the following analysis, together with the hashtags
from the SCM. The bot activity in the RCM dataset is of
interest in and of itself, but will be left to follow on research.

2) Linear Regression: We calculated the mean of the nine
responses to each HIT question for both sets of hashtags. For
the yes/no questions, we interpreted a mean value of 0.5 or
more as a positive response; for the five-level Likert scale
questions, a mean value of 2.5 or more was taken as positive.
Questions with less than 5% positive responses were ignored.

Linear regression models were generated for each question
using all three measures. For brevity, we focus on four

9Millisecond resolution is not available in the metadata returned by the
search API, so ‘simultaneously,’ in this case, is at resolution of one second.
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TABLE I: HIT questions.
1. After reading the tweets, please provide a careful description of what the hashtag is about. (text response)
2. What general topics does this hashtag reference? Check all that apply. (Multiple choice5 + optional text response)
3. Have you heard of this hashtag outside of this HIT? (Yes/No)
4. How often have you seen this hashtag used in a Tweet or Retweet? (not counting the tweets you read for this task) (five-point Likert scale: strongly disagree - strongly agree)
5. Does this hashtag get used in tweets from two or more groups with opposing messages? (Yes/No)
6. The hashtag is controversial (defined as “prolonged public disagreement or heated discussion”) (five-point Likert scale strongly disagree - strongly agree)
7. The hashtag expresses an opinion. (five-point Likert scale strongly disagree - strongly agree)
8. The hashtag expresses an opinion that matches my own. (six-point Likert scale strongly disagree - strongly agree + no opinion expressed)
9. I find this hashtag funny. (five-point Likert scale strongly disagree - strongly agree)

10. I find this hashtag interesting. (five-point Likert scale strongly disagree - strongly agree)
11. I would be uncomfortable using this hashtag. (five-point Likert scale strongly disagree - strongly agree)
12. I would be uncomfortable if my friends used this hashtag. (five-point Likert scale strongly disagree - strongly agree)
13. I find this hashtag to be offensive. (five-point Likert scale strongly disagree - strongly agree)
14. Using this hashtag would send a disturbing message. (five-point Likert scale strongly disagree - strongly agree)
15. This hashtag is related to a political movement. (five-point Likert scale strongly disagree - strongly agree)
16. Many Twitter users would be concerned about offending other users if they used this hashtag. (five-point Likert scale strongly disagree - strongly agree)
17. Check all of the following reasons why someone might NOT want to use this hashtag. (Multiple choice6 + optional text response)
18. How contagious is this hashtag? (defined as spreading from one person to another) (four-point Likert scale7)
19. My friends would start using this hashtag. . . (choose the earliest option that is true). (six-point Likert scale8)

responses: controversial and political (which should corre-
spond to high-threshold contagions) and news events (labeled
as “events”) and sports (which should correspond to low-
threshold contagions). The results are in Tables II and III.

The results show that CDFk(k ≥ 2) has a positive and
significant relationship with controversial and political hash-
tags, and a negative and significant relationship with sports and
news events hashtags (except for the RCM monitor, where the
measure has a positive and significant relationship with news
events hashtags).

For both the monitors, the coefficients for MTR are negative
and statistically significant. This result is in contrast with
complex contagion theory, which indicates that political and
controversial hashtags would be more likely to emerge in
denser network neighborhoods. We investigated this pattern
further by visualizing the relationship between MTR and the
hashtag labels. It follows the general pattern shown in Fig. 1.

The pattern shows an increase in Controversial Score for
0 ≤ MTR ≤ 0.1 and a rapid decrease in Controversial score
thereafter. We manually examined hashtags identified by the
RCM with MTR > 0.1. A sample is shown in Table IV.
Many of these hashtags seem related to marketing or spam.
While Fig. 1 does not suggest an explicit cutoff for MTR, these
observations suggest that the cause of the negative coefficient
for MTR in tables II, III is a set of spam-related hashtags with
extremely high mean tie ratios.

Finally, the results show that Entropy does not have a
statistically significant relationship with any of the labels,

TABLE II: Regression results for SCM hashtags
Question Intercept 1-CDF(k=2) Mean Tie Adjusted

Ratio R-squared

controversial
1.77 0.00
1.06 3.00*** 0.22
1.12 3.38*** -7.81*** 0.25

news events
0.36 0.00
0.37 -0.05(0.55) 0.00
0.38 0.03(0.74) -1.54** 0.03

politics
0.42 0.00
0.18 1.01*** 0.23
0.21 1.18*** -3.41*** 0.29

sports
0.09 0.00
0.17 -0.33*** 0.05
0.18 -0.31*** -0.43(0.41) 0.05

TABLE III: Regression results for RCM hashtags
Question Intercept 1-CDF(k=2) Mean Tie Entropy Adjusted

Ratio R-squared

controversial

1.05 0.00
0.91 0.55*** 0.03
0.91 0.94*** -1.62*** 0.08
1.45 0.83*** -2.15*** -0.39** 0.10

news events

0.24 0.00
0.19 0.18*** 0.03
0.19 0.29*** -0.47*** 0.08
0.11 0.31*** -0.39*** 0.06(0.13) 0.10

politics

0.12 0.00
0.02 0.35*** 0.03
0.03 0.44*** -0.37*** 0.08
0.12 0.42*** -0.46*** -0.07(0.06) 0.10

sports

0.32 0.00
0.49 -0.61*** 0.03
0.49 -0.41*** -0.84*** 0.08
0.32 -0.38*** -0.68*** 0.12(0.08) 0.10

TABLE IV: Sample hashtags with high MTR
streetmediapromotions, formularbyweflo, formulaoutsoon, doit,

goosebumpsvideobytobe, watchformulavideo, akwaibomtotheworld,
formulavideo, lilayunchangeable, nozippy, pmfa2017, viktohybnl,
smirnoffnightuyo, kissmebyoludre, sirehabbiibbpr, nammkpohmfo,

thecypher, ipoetry, factswithkulqee, 2daystorepurclubuyo, afrima2017,
smoothsummersplash, marryjuanabykamartachio, hypaft9ice

except for controversial, where the relationship is negative.
3) Classification: We constructed a classifier for HIT ques-

tions, using CDFk(k ≥ 2), MTR, and Community Entropy
(where applicable). For the classification experiments we used

Fig. 1: Mean Tie Ratio vs. Controversial Score for RCM.
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TABLE V: Classification results for SCM and RCM hashtags.
Question Model SCM RCM

Sensitivity Specificity Accuracy Baseline Sensitivity Specificity Accuracy Baseline
Accuracy Accuracy

controversial
1-CDF(k=2) 0.63 0.78 0.72 0.63 0.45 0.68 0.67 0.95
1-CDF(k=2) + MTR 0.62 0.76 0.71 0.63 0.73 0.68 0.68 0.95
1-CDF(k=2) + MTR + ENTROPY 0.68 0.70 0.70 0.95

events
1-CDF(k=2) 0.74 0.37 0.48 0.71 0.44 0.72 0.68 0.87
1-CDF(k=2) + MTR 0.57 0.68 0.87 0.87 0.57 0.68 0.68 0.87
1-CDF(k=2) + MTR + ENTROPY 0.62 0.62 0.62 0.87

sports
1-CDF(k=2) 0.81 0.52 0.54 0.93 0.45 0.46 0.57 0.68
1-CDF(k=2) + MTR 0.82 0.51 0.53 0.93 0.73 0.49 0.61 0.68
1-CDF(k=2) + MTR + ENTROPY 0.68 0.55 0.66 0.68

politics
1-CDF(k=2) 0.61 0.76 0.69 0.53 0.65 0.75 0.74 0.90
1-CDF(k=2) + MTR 0.61 0.76 0.69 0.53 0.66 0.74 0.73 0.90
1-CDF(k=2) + MTR + ENTROPY 0.68 0.68 0.74 0.90

a 70%–30% training–test split and trained a model using a
support vector machine with a linear kernel. The positive
classes (turkers said ”yes” or agreed with the the question)
were the minority class for all questions. The average positive
response rate was 0.28 (0.137) for the SCM hashtags and
0.16 (0.114) for the RCM. To address this class imbalance we
used minority class oversampling using the SMOTE algorithm
[22]. We then ran the model against the held-out test set and
calculated sensitivity (the true positive rate or recall), the sen-
sitivity (the true negative rate), the accuracy, and the accuracy
of a baseline classifier that always selects the majority label.
This procedure was repeated on 10 random training–test splits
and the performance measures were averaged across trials. For
each trial we used a grid search to find the best value of C,
the regularization term for the linear kernel. The results for a
selection of the questions from the the two sets are shown in
Table V. The table shows that for the SCM, 1−CDF (k = 2)
produces the best results by accuracy, though for the RCM,
the inclusion of MTR as a feature provides an accuracy boost.
Overall, both classifiers show best performance at predicting
controversial and politics-related hashtag labels.

V. DISCUSSION AND CONCLUSION

The regional (RCM) and streaming (SCM) implementations
of the social contagion monitor that we have built successfully
process a large volume of data to identify emerging hashtags,
representative of low- and high-threshold contagions. These
tools let us test complex social theories at a large scale and
over long periods of time. We hope to extend the monitors
further to collect other public data and integrate additional
social theories, such as homophily, into their analytic toolkit.

Our evaluation of the contagion monitors shows that hash-
tags with more social reinforcement are more likely to be
labeled as political and controversial. The streaming contagion
monitor also shows that hashtags with less social reinforce-
ment are more likely to be labeled as news events and
sports. These findings are in precise accordance with complex
contagion theory [7]. The regional contagion monitor diverges
from this pattern mildly to show that hashtags with more
social reinforcement are also more likely to be labeled as
news events. It is interesting to consider whether sharing news
events is a higher-threshold behavior in Nigeria than globally,
or whether a different confound accounts for this pattern.

We have observed a surprising negative relationship between
Mean Tie Ratio and controversial and political hashtags. This
relationship is inconsistent with complex contagion theory,
which states that complex contagions are more likely to arise
in more dense neighborhoods. However, a closer investigation
of the relationship shows that it is driven by hashtags with
extremely high MTR, which may be spam related. We do not
see this finding as ultimately at odds with complex contagion
theory, but an interesting development of the same. Perhaps
organizers of spam related hashtags form dense networks to
facilitate the spread of content due to social reinforcement.

Our classification results demonstrate that a) both mon-
itors perform best when predicting labels of controversial
and political hashtags, and b) most accuracy gain comes
from including 1 − CDF (k = 2) as a feature, with MTR
and Entropy contributing far less to accuracy gain. These
results are also consistent with our interpretation of complex
contagion theory: we use CDFk as a proxy measure for
contagion threshold, so it is the key differentiator between
complex and simple contagions. The other two metrics provide
circumstantial evidence for contagion threshold, as complex
contagions can leverage redundant ties more easily in adopter
networks with higher MTR and lower community entropy.
Since we only evaluated linear classifiers, it is possible that
higher-dimensional classifiers may achieve more accuracy gain
from these measures. We leave this investigation for future
work.

The classification performance of the streaming contagion
monitor beats the baseline for controversial and political
hashtags using only a linear classifier and two or three features.
To our knowledge, our findings have never been replicated
with the same instrument across multiple social, cultural, and
linguistic settings and our paper is also the first to label
hashtag categories and evaluate complex contagion theory in
the context of a productionalized tool.

Overall, we have found the social contagion monitors
to successfully identify emerging low- and high-threshold
movements in both regional and global Twitter settings. One
shortcoming of our approach, beyond the inherent limitations
of using ”digital traces” to model diffusion in social networks,
is that we model complex contagions as separate events. How-
ever, movements that lead to behavioral change can inspire
one another, requiring them to be modeled together and not
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in isolation. We leave such modeling efforts for future study.
We recognize further that this tool may surface dis- or

mis-information instead of real transformative movements,
resulting from our focus on data quantity over data quality. We
hope in future work, to combine the contagion monitor with
methods for verifying the quality of an information stream,
either in automation [23] or along with expert human review.

A sign of the Contagion Monitor’s continuing predictive
ability was seen in the productionalized version’s use in 2018
to discover two rising artists go from fringe to mainstream.
We had added the ability to study Twitter @mentions to the
monitor. In March of 2018 we analyzed social contagions in
a commercial environment – Twitter activity around the South
By Southwest (SXSW) music festival, to look for up and
coming musicians and artists (where supporting a new artist
has a higher social cost due to their lower popularity). We
found the Twitter handles of Desus and Mero, a comedian
and a DJ, had both a high adoption threshold and had
reached critical mass. We followed these artists over a longer
time period, and observed how their rapid spread on social
media was followed by commercial success [24], including a
successful performance tour and a dedicated program on the
Showtime channel. The performance of the contagion monitor
suggests that it can be a powerful tool for identifying both
politically and commercially relevant content in social media.

APPENDIX

See Tables VII and VI for topics and Likert scale descrip-
tions for questions listed in Table I.
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