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Abstract—We study the community detection problem by
embedding the nodes of a graph into a 𝑛-dimensional space such
that similar nodes remain close in their representations. There are
many state-of-the-art methods, like node2vec and DeepWalk to
compute node embeddings with the use of second order random
walks. These techniques borrow methods like the Skip-Gram
model, used in the domain of Natural Language Processing (NLP)
to compute word embeddings. This paper explores the idea of
porting the GloVe (Global Vectors for Word Representation)
model, a popular technique for word embeddings, to a new
method called GloVeNoR, to compute node embeddings in a
graph, and creating a corpus with the use of second order random
walks. We evaluate the model’s quality by comparing it against
node2vec and DeepWalk on the problem of community detection
on five different data sets. We observe that GloVeNoR discovers
similar or better communities than the other existing models on
all the datasets based on the modularity score.

Keywords - Community detection, global vectors, word
embeddings, node representation, graphs, random walks,
clustering.

I. INTRODUCTION

A graph is a powerful way to represent a real world
complex network of entities and relationships between them.
For instance, a graph can be used to model protein to protein
interactions in bioinformatics, social media users interactions,
web pages with their hyperlinks, etc. Moreover, once modeled
as a graph we can analyze that complex network to extract
useful information and discover patterns of entities and rela-
tionships. In order to be able to apply Machine Learning (ML)
techniques for the analysis it is required that the input data
is represented as 𝑛-dimensional vectors of relevant features,
called feature vectors or embeddings. The quality of the results
depends on the number and quality of the selected features.

The task of selecting features using domain knowledge is
called feature engineering, and is difficult in the case of graphs
because of their size and unordered nature. There has been a
lot of research in the past few years focused on computing
representation of graph entities using Deep Learning (DL) and
ML models.

A. Natural Language Processing approaches used in graphs

Most of the recent research extends approaches of Natural
Language Processing (NLP), that obtains vector representation

of words (word embeddings), but in the case of graphs with
some tweaks. As a result, some state-of-the-art methods like
node2vec [1] have been developed which borrows many of its
concepts like the Skip-Gram technique from word2vec [2], a
popular word embedding technique used for NLP applications.
The word2vec is a predictive model that learns embeddings by
trying to minimize the loss of predicting a word given another
word. There are other popular techniques, like GloVe [3] and
Gaussian embeddings [4] in the NLP domain which follow a
different approach for learning word embeddings. Using ideas
from the node2vec approach, we research these techniques and
examine their portability to graphs.

B. Motivation and problem definition

The Global Vectors for Word Representation (GloVe) is
another popular word embedding technique which uses linear
arithmetic methods and fundamental statistical properties of a
text corpus for preserving semantic relationships between the
words. Unlike word2vec, GloVe is transparent and uses global
co-occurrence statistics which are fundamental to finding
analogies amongst words. Compared to word2vec the model
can be easily parallelized and is computationally inexpensive.

The primary objective of this work is to port the GloVe
algorithm to generate node embeddings of a graph. We call our
method GloVeNoR (Global Vectors for Node Representations).
Moreover, we solve the community detection problem by
reducing it to a clustering problem, where the nodes of a graph
are represented as vectors. We use the k-means clustering
algorithm for that purpose. To evaluate the formed clusters
(communities) we use two metrics: the modularity score used
on the formed communities of the graph, and the silhouette
score applied to the clusters of data points (vectors) that
represent the graph nodes.

This paper is organized as follows. Section II provides some
terminology. In Section III we describe four popular node
embedding techniques. Section IV briefly discusses the GloVe
algorithm and we introduce GloVeNoR with the implementa-
tion details. Section V details the datasets of the experiments
and the results. The final Section VI concludes and discusses
the interpretation of results.IEEE/ACM ASONAM 2020, December 7-10, 2020
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Fig. 1: An example of a random walk

II. TERMINOLOGY

Let us start with some terms and notations we will use. A
graph is formally defined as a 𝐺 = (𝑉,𝐸), where 𝑉 is the
set of vertices and 𝐸 is the set of edges. A graph can be
represented using an adjacency matrix or adjacency lists.
Random Walk: A random walk is a stochastic process that
describes a path consisting of successive random steps on
a state space. For example, a random walk on an integer
number line will contain a sequence of numbers with an equal
probability of moving to the left or right by 1 unit. A random
walk can also be considered as a Markov chain. A random
walk [5] starting at vertex 𝑣𝑖 is denoted by 𝑊𝑣𝑖

. The length
of the walk 𝛾 is a hyperparameter. A state at any time in
a random walk is given by random variables 𝑊𝑣1

𝑖
,𝑊𝑣2

𝑖
. . ..

These variables represent the stochastic probability of selecting
a vertex to advance the walk. The vertices are chosen randomly
such that 𝑊𝑣𝑘+1

𝑖
is selected from the neighbors of 𝑊𝑣𝑘

𝑖
.

Figure 1 shows an example of a random walk which starts
at node 3 and has a length of 6.
Second order random walk: A random walk with two
additional parameters used to interpolate its behavior between
Depth First Search (DFS) and Breadth First Search (BFS)
and control the revisit frequency of a given node. The first
parameter 𝑝 is called the return parameter. It governs how
frequently we revisit a node in the walk. The second parameter
𝑞 is called the input parameter. It interpolates the behavior
of the walk between DFS and BFS. If 𝑞 < 1, the walk
behaves more like BFS. If 𝑞 > 1, the walk behaves more
like DFS. These two parameters are used to generate a search
bias, 𝛼, that is used to select the next node in the walk non-
uniformly. The walk starts at a random node 𝑢, and it generates
a sequence of nodes of length 𝑙.
Log-Bilinear model: In language modeling, a log-bilinear
model is a model that predicts the representation of a word
based on context words using linear combination and com-
putes the distribution of that word using similarity between
prediction and representation of other words.
Community Structure: Community structure in a graph can
be defined as groups of nodes, such that nodes within a
group have denser connections with each other and sparser
connections with nodes outside the group.

Modularity (community) score [6]: Modularity is the
difference between the probability of an edge present in a

community 𝑖 and the probability of a random edge to be
present in 𝑖. Mathematically, it is expressed as:

𝑄 =
𝑘∑︁

𝑖=1

𝑒𝑖𝑖 − 𝑎2𝑖

where,
𝑒𝑖𝑖 = Fraction of edges present in community 𝑖, 𝑎𝑖 = Fraction
of edges that have one end in community 𝑖, and 𝑘 = number
of communities
Silhouette (clustering) score: The silhouette value is a mea-
sure of how similar a data point is to its own cluster when
compared to other clusters. It has a range from −1 to +1,
where higher values indicate better clustering. Negative values
demonstrate that data points have been assigned to the wrong
cluster.

III. RELATED WORK

Let us briefly describe four state-of-the-art techniques used
for computing node embeddings in a graph: node2vec, Deep-
Walk, DNGR, and Core2Vec. It also discusses the methods
that these techniques use for extracting relationships between
the nodes of a graph.
DeepWalk [7] uses deep neural networks for computing
node embeddings. The main contribution is the use of DL
in the domain of network analysis for the first time. The
algorithm is efficient, scalable, and parallelizable. It introduces
the idea of using random walks to capture the relationships
between nodes of a graph. It is based on the hypothesis that a
substantial number of such random walks starting at different
nodes can successfully capture the community structure of the
network. We will use that method to compare it against our
approach. Additionally, the generation of these random walks
can be parallelized with different walks exploring different
sections of the graphs at the same time. They are flexible to
accommodate any changes in the graph because only the walks
containing changed sections have to be modified. This makes
the approach scalable.

Although DeepWalk is much better than conventional al-
gorithms, the techniques it employs for information extraction
have certain shortcomings. For instance, random walks sample
the next node from the given neighbors uniformly, and to
distinguish them we call them first order. However, some
neighbors might be better probable candidates for advancing
the walk. Next we discuss the node2vec algorithm, which uses
a different technique to solve this problem.
node2vec [1] Similar to DeepWalk it employs the method
of local search for extracting neighborhoods and generating
sequences from the graph nodes. It introduces second order
random walks for exploring node neighborhoods. This tech-
nique is very similar to the first order random walks but it is
more flexible and provides controls so that the walk behavior
can be biased. This is the other method we will compare
against our method. The walk starts at a random node 𝑢, and
it generates a sequence of nodes of length 𝑙. Let’s say the walk
was at node 𝑡 and it selected node 𝑣 as the next node and is
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currently at node 𝑣. There are 3 choices for the next node:
𝑥1, 𝑥2, 𝑥3. The probability of choosing the next node, 𝑐𝑖, is
given by the following equation:

𝑃
(︀
𝑐𝑖 = 𝑥|𝑐𝑖−1 = 𝑣

)︀
=

{︃
𝜋𝑣𝑥/𝑍 𝑖𝑓(𝑣, 𝑥) ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where:
𝜋𝑣𝑥: unnormalized transition probability between v and x
𝑍: normalizing constant
There are problems with using the normalized edge weight

as transition probability. So a search bias 𝛼 is used which is
given by:

𝛼𝑝𝑞 =

⎧⎪⎨⎪⎩
1/𝑝 𝑑𝑡𝑥 = 0

1 𝑑𝑡𝑥 = 1

1/𝑞 𝑑𝑡𝑥 = 2

where:
t: node preceding 𝑣
Figure 2 shows how the search bias is computed using these

2 parameters using the above equation:

Fig. 2: Search bias 𝛼 [1]

It is evident that neighborhood exploration strategy plays
the most important role in the quality of generated embed-
dings. Both DeepWalk and node2vec operate on the premise
that searching local neighborhoods is enough for extracting
relationships amongst nodes. However, next we describes a
method that relies on global statistics for information extrac-
tion.
DNGR [8] (Deep neural networks for learning graph repre-
sentations) explores different approaches other than sampling
and provides a way for capture structural information more ac-
curately for directed graphs. It explores alternative approaches
for learning representations based on matrix factorization
techniques. DNGR uses a special type of neural network
called autoencoders [9]. DNGR model uses the random surfer
technique instead of random walks for extracting the relation-
ships amongst the nodes. This technique generates a node co-
occurrence matrix.
Core2Vec [10] uses a onion-like structure to design a flexible
biased random-walk procedure which finds nodes from similar
cores as candidates for walk progression. Similar to our
approach the intuition of GloVe to utilize global statistics of
a network to derive semantic relationships.
GVNR Global Vectors for Node Representation) [11] is a
model for creating node representations that is based on the
GloVe algorithm similar to ours. The difference with our

approach is that the they don’t use second order random
walks to construct the corpus and their approach considers
co-occurrence as well as non co-occurrence into account. Ad-
ditionally, the extension GVNR-t is presented that incorporates
the text that nodes might have. In our approach we only
consider the structural properties of the nodes in the graph
and assume that we have no text for the nodes.
Graph convolution-based approaches aggregate information
from a node’s neighborhood to create an embedding for that
node. Some examples of such approaches: Graph Convolu-
tional Networks (GCN) [12], the improved Fast GCN [13],
and GraphSAGE [14]. For a unified framework see [15].
The advantage of graph convolution-based approaches is that
they utilize node features or attributes in order to generate
embeddings. In the networks we use in our experiments node
attributes are not present, and therefore we will not use them
in our comparison.

IV. GLOVENOR FOR NODE EMBEDDINGS

GloVe [3] was originally developed in 2014 for computing
vector representations of words as a part of Stanford NLP
research. GloVe is a global, unsupervised log-bilinear regres-
sion model that takes into account both, the local context
window similarity and global context similarity for computing
the embeddings. The intuition behind GloVe is that global
word-word co-occurrence statistics can potentially reveal in-
formation about word similarities. As a result, GloVe word
embeddings excel at tasks like finding words with similar
meaning (nearest neighbors). This is ideal for community de-
tection problems as communities can be viewed as a collection
of nodes which are semantically similar to each other.

A. GloVe for word embeddings

Techniques like skip-gram and context window used in
word2vec have a disadvantage of not learning from global
statistics. Core2Vec [16] also supports this hypothesis and uses
the global core-periphery structure to find similar nodes. As
a result, word repetitions and bigger patterns might not be
learned with these methods. The way GloVe considers global
statistics is by building a word-word co-occurrence matrix.
The Algorithm then maximizes the probability of given context
word appearing within a window of another word called as the
main or center word. The objective of the model is a weighted
least squares function. The model also uses a weight function
to deal with outliers and co-occurrences that are seen very
rarely. Algorithm 1 describes the steps of GloVe algorithm.

The cost function for the model is given as:

𝐽 =
𝑉∑︁

𝑖,𝑗=1

𝑓
(︀
𝑋𝑖𝑗)

(︀
𝑤𝑇

𝑖 · 𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − 𝑙𝑜𝑔𝑋𝑖𝑗)
2

where: 𝑖 = main word, 𝑗 = context word, 𝑤𝑖 = main word
vector, 𝑤𝑗 = context word vector,𝑋 = co-occurrence matrix,
𝑏𝑖, 𝑏𝑗 = bias vectors, 𝑉 = vocabulary size, 𝑓

(︀
𝑋𝑖𝑗) = weight

function.
The weight function that was empirically found to be

effective is:
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Algorithm 1: GloVe algorithm for word embed-
dings [3]

1 function GloVe(C, w):
Input : 𝐶: text corpus,

𝑤: context window length,
𝑑: vector dimensions

Output: 𝑉 : word vectors
2 voc = buildVocab(C);
3 M = buildCooccur(C, voc);
4 V = initRandomVectors(d)
5 trainModel(M, V)
6 return V;

𝑓
(︀
𝑋𝑖𝑗

)︀
=

{︃
(𝑥/𝑥𝑚𝑎𝑥)

𝛼 𝑥 < 𝑥𝑚𝑎𝑥

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

B. Proposed Method - GloVeNoR

In our approach, that we call GloVe for Node Representation
(GloVeNoR), we use second order random walks due to the
flexibility of the neighborhood exploration. We wanted the
sampling behavior of the random walks to be approximated
between DFS and BFS so the value of 𝑝 and 𝑞 are set to 1.
Algorithm 2 provides an outline of the proposed GloVeNoR
model. The procedure on line 2 iterates over all the nodes of
the input graph 𝐺, and generates 𝑘 random walks of length 𝑙
per node. Parameter 𝑤 is for the co-occurrence matrix and 𝑑
is the dimensions of the output vectors.

Algorithm 2: GloVeNoR for Graphs

1 Procedure GloVeNoR(𝐺,𝑤, 𝑑, 𝑙, 𝑘, 𝑝, 𝑞, 𝑖):
Input : 𝐺: input graph, 𝑤: context window length, 𝑑:

vector dimensions, 𝑙: length of random walks,
𝑘: number of walks per node, 𝑝: input
parameter, 𝑞 return parameter, 𝑖: number of
training iterations

Output: 𝑉 : node vectors
2 corpus = generate2RandomWalks(G, k, p, q, l)
3 M = buildCooccur(corpus, w);
4 V = initRandomVectors(d)
5 trainModel(M, V, i) return V;

The generated corpus is used by the co-occurrence matrix
generator procedure on line 3. The co-occurrence matrix
generator is the gist of the GloVeNoR model. In contrast to [1]
and [8], it captures the global co-occurrence statistics for all
the nodes. For every node 𝑖 in a walk, the procedure iterates
over all the nodes, 𝑗, in a window of size 𝑤 from 𝑖, and updates
the [𝑖, 𝑗]𝑡ℎ entry of 𝑀 with the reciprocal of distance between
𝑖 and 𝑗. Intuitively, the value for a pair of nodes 𝑖 and 𝑗 in 𝑀
is higher for the nodes co-occurring frequently in the corpus.
The output of this procedure is a |𝑉 | × |𝑉 | matrix 𝑀 , where
|𝑉 | is the number of nodes.

In the next step, vectors of dimension 𝑑 are initialized
by the procedure on line 5. These vectors are initialized
from a random distribution and optimized to obtain the final
embeddings. The procedure on line 4 implements the objective
function of GloVe and optimizes it using Gradient Descent
for 𝑖 iterations. This step generates the final node embedding
matrix 𝑉 . The size of 𝑉 is |𝑉 | × 𝑑 and every row of 𝑉
represents a vector corresponding to a node in the graph.

Figure 3 shows the workflow used for creating the node
embeddings. A toy example of the process is given in the
Appendix VI-A.

Fig. 3: GloVeNoR Workflow

V. IMPLEMENTATION AND EXPERIMENTS

We discuss the experiments performed on different real-
world data sets and compare our method against two other
methods, the DeepWalk and the node2vec, since both also
use random walks for the node embeddings. The experiments
primarily focus on three different hyper-parameters, the length
of random walks (𝑙), the context window (𝑤), and the vector
dimensionality (𝑑). Since we do not have any ground truth,
we use the silhouette score and the modularity score as our
quality metrics.

A. Implementation Details

We use igraph and NetworkX for reading and performing
operations on graph files. We use numpy for computing
the co-occurrence matrix. The following list summarizes the
implemented modules, as can be seen also in Figure 4:

1) Takes a graph file in GML format as input and generates
a csv file containing random walks as the output (cor-
pus). A random walk is a sequence of comma-separated
node ids from the graph.

2) Takes this corpus of random walks as inputs, parsed it
and generates an 𝑛 · 𝑛 co-occurrence matrix.

3) Implement the GloVeNoR model. Takes the co-
occurrence file as input, trains the GloVeNoR model
using Stochastic Gradient Descent, and creates an output
file which contains the vectors for the graph nodes.
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Fig. 4: GloVeNoR Phases

4) Use of utility scripts which perform the clustering oper-
ation on these vectors, and compute the DeepWalk and
node2vec embeddings for evaluation.

As an application we solve the community detection prob-
lem by reducing it to a clustering problem on the node em-
beddings. Figure 5 shows the use of the generated embeddings
for finding communities in the graph.

Fig. 5: GloVeNoR Applications

Let us now descibe the various datasets.

B. Zachary’s Karate Club dataset

The Zachary’s Karate Club dataset [17] is a famous network
dataset curated by Wayne W. Zachary. This dataset has 34
nodes representing members. There is an edge (total 78)
between two members if they interact socially outside the
club. An interesting fact about this data set is that there was
a conflict between the instructor and the administrator which
led the latter starting his own club. Thus, the users (nodes)
were split into two clubs.

Table I summarizes the observations for different values of
the hyperparameters. We used k-means clustering to generate
the communities from the embeddings. The 𝑘 value (number
of clusters) is varied from 2 to 8 and the one that produces
the maximum modularity is chosen. It can be clearly seen that
GloVeNoR has the best modularity values among all methods,
with a s 0.4197 score. It outperforms the modularity score
using the Girvan Newman Algorithm [6] which is 0.4013, and
the Louvain Algorithm [18] which is 0.4188 for this dataset.
The number of communities that achieves the best modularity
is with 𝑘 = 6.

Another interesting observation is that the model tends to
find the local minimum quickly if the size of the context
window is closer to or greater than the diameter of the graph.
Thus intuitively, we can use this as the window size for further
experiments. Moreover, one can see that the walk length is not
affecting the results. In most cases, GloVeNoR lags behind

TABLE I: Zachary’s Karate Club: Various parameters, walk
length 𝑙, vector dimensions 𝑑, window size 𝑤

𝑙 GloVeNoR
(Silhouette score,

DeepWalk
(Silhouette score,

node2vec
(Silhouette score,

modularity) modularity) modularity)
10 0.3940, 0.4197 0.3947, 0.2287 0.3859, 0.2043
20 0.4189, 0.4197 0.6301, -0.0210 0.4105, 0.2043
30 0.4098, 0.4197 0.5375, -0.0670 0.4117, 0.1674
𝑑

2 0.5720, 0.3600 0.6715, -0.0670 0.6980, 0.1634
4 0.5475, 0.4197 0.5662, -0.0891 0.5949, 0.1674
6 0.4180, 0.4197 0.5353, -0.1180 0.4664, 0.1674
𝑤

5 0.3986, 0.4197 0.5363, -0.0670 0.3939, 0.2043
6 0.4307, 0.4197 0.5416, -0.0545 0.3856, 0.2043
7 0.4392, 0.4197 0.5418, -0.0545 0.3821, 0.1674

Fig. 6: Walk length vs Modularity and Silhouette score

in the silhouette score especially compared to DeepWalk.
However, since our primary target is to community detection,
a good modularity score is desirable.

The information in the tables is graphically shown in the
following visualizations in Figures 6, 7, 8, and 9.

The observations about the hyperparameters from the
Zachary’s Karate Club dataset can be used as the basis for
experimentation on the other datasets.

C. Harry Potter Dataset

The Harry Potter dataset [19] contains 178 nodes and 2, 453
edges. Each node represents a character in the Harry Potter
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Fig. 7: Number of communities vs Modularity and silhouette
score

Fig. 8: Vector dimension vs Modularity and Silhouette score

Fig. 9: Context window vs Modularity and Silhouette score

universe. Two nodes have an edge between them if they have
some logical connection to each other in the books and the
diameter of the network is 3.

TABLE II: Harry Potter dataset: Various parameters, walk
length 𝑙, vector dimensions 𝑑, window size 𝑤

𝑙 GloVeNoR
(Silhouette score,
modularity)

DeepWalk
(Silhouette score,
modularity)

node2vec
(Silhouette score,
modularity)

10 0.3940, 0.2039 0.3941, 0.0022 0.1825, 0.0012
20 0.2249, 0.1910 0.3972, 0.0022 0.3016, 0.0095
30 0.2242, 0.2114 0.3941, 0.0022 0.3102, 0.00431
𝑑

2 0.4997, 0.2033 0.5986, 0.0029 0.5325, 0.0121
4 0.4223, 0.2018 0.5986, 0.00574 0.466, 0.0047
6 0.3653, 0.2109 0.4967, 0.0071 0.3797, 0.0097
𝑤

3 0.212, 0.2137 0.3686, 0.0008 0.283, 0.0109
4 0.2531, 0.2083 0.3830, 0.0025 0.2996, 0.0013
5 0.2630, 0.2137 0.3953, 0.0037 0.3089, 0.0037

Table II summarizes the experiments performed on the
Harry Potter dataset. We ran the k-means clustering with
values of 𝑘 from 2 to 20. The results are in agreement with the
experiments performed on the Zachary’s Karate Club dataset.
GloVeNoR has the best modularity score of all the three
methods. The length of walks does not have a significant effect
on the modularity. The modularity value stabilizes to a good
value when the window size is close to the diameter of the
graph. Additionally, the silhouette score values generated by
GloVeNoR are comparable to the ones produced by node2vec.
However, DeepWalk has the best silhouette score overall.

D. Facebook Dataset

The Facebook dataset [20] contains 4, 039 nodes and
88, 234 edges. A node in this dataset represents a Facebook
user and an edge joins two users that are friends on Face-
book. This dataset was collected by surveying users using
an application on Facebook. All the user information is
randomized, replaced and anonymized to protect the privacy
of the participants. We use the observations from our previous
experiments and keep the window size for the co-occurrence
matrix generation equal to 8 which is equal to the diameter
of the network. We also keep the walk length to 10 which
is slightly greater than the diameter and should be enough
to cover the farthest vertices of the graph. The dimension of
the embeddings is set to 10. The number of random walks
per node is 385. The same values were used for all the three
methods while performing the experiments. The second col-
umn of the Table III summarizes the observations. GloVeNoR
outperforms all the other methods in the modularity score by a
significant margin. The silhouette score value for GloVeNoR is
comparable to node2vec but lags far behind that of DeepWalk.

E. Wikivote dataset

The Wikivote dataset [21] contains 7, 115 nodes and
100, 762 edges. The diameter of the network is 7. Wikipedia
conducts elections to promote a user to administrator status.
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A node in this network represents a wikipedia user and an
edge between node 𝑖 and 𝑗 indicates that user 𝑖 voted for
user 𝑗 in any election. The graph contains wikipedia voting
data until 2008. Similar to the Facebook dataset, we keep
the hyperparameter values close to our observations from the
previous results: the length of the walks is 8, the window size
is 7, the dimensionality of the vectors is 10 and the number
of random walks per node is 218.

The third column of Table III summarizes the results of
our experiments. The results are consistent with our previous
experiments. GloVeNoR produces the best modularity scores
of all. However, one difference here is that the silhouette score
for GloVeNoR is much lower than that of DeepWalk and
node2vec.

F. Astro dataset

The Astro dataset [22] is a co-authorship network of papers
published on the topic of astrophysics from arXiv. A node
represents an author. There is an undirected edge between two
nodes, 𝑖 and 𝑗, if they have co-authored a paper. The dataset
contains 18, 772 nodes and 198, 110 edges. The diameter
of the network is 14. For the parameters: the walk length
of is 30, the window size is 14, the dimensionality of the
embeddings is 10, and the number of random walks per node
is 12. Observations from the fourth column of Table III are in
agreement with the results from previous datasets. GloVeNoR
consistently produces better modularity values and DeepWalk
has the best silhouette score.

TABLE III: Method Comparison on each dataset, 𝑑 = 10

Comparison
(Silhouette, mod-
ularity)

Facebook
𝑤 = 8,
𝑙 = 10

Wikivote
𝑤 = 7,
𝑙 = 10

Astro
𝑤 = 14,
𝑙 = 30

GloVeNoR 0.1945,
0.665

0.1005,
0.3585

0.0953,
0.5320

DeepWalk 0.5716,
0.2785

0.8164,
0.0011

0.7488,
0.0134

node2vec 0.2725,
0.3297

0.759,
0.0015

0.1662,
0.4825

VI. CONCLUSION

We propose the GloVeNoR model to generate node embed-
dings for graphs, and we evaluate the quality of the generated
embeddings on the task of community detection. We conduct
experiments on five different network datasets. We conclude
that GloVeNoR consistently produced better modularity scores
than node2vec and DeepWalk, both of these methods also
use random walks, on all the datasets. GloVeNoR produces
similar silhouette scores as that of node2vec, although Deep-
Walk produces the best silhouette scores of all. We target
three hyperparameters in our experiments: length of walks,
dimensionality of embeddings, and window size. We observed
that the length of walks did not have a substantial effect on
the modularity, and the silhouette scores if the value is close
to or greater than the diameter of the graph. We also observed
that the modularity value stabilized if the window size is

equal to or greater than the diameter. Another interesting
observation is that the GloVeNoR model trained quickly for
higher dimensions.
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Fig. 10: A sample Erdős-Renyi graph with 10 nodes and 30
edges

A. An example of GloVeNoR

Here we illustrate a sample execution of the algorithm on
an example graph. In Figure 10 we have a random Erdős-
Renyi graph with 𝑝 = 1/2 (note that this is different than our
𝑝 in the random walk). It is an unweighted, undirected graph
with 10 nodes and 30 edges. The first step of the algorithm it
to generate the random walks corpus. We used the values for
number of walks per node, 𝑘 = 1 and length of a walk, 𝑙 = 5.
A sample of the output of this step is as follows: 0, 8, 2, 3, 5
1, 7, 4, 2, 3

2, 3, 5, 9, 8

3, 0, 8, 1, 7

4, 0, 7, 1, 0

5, 3, 2, 4, 7

6, 8, 0, 3, 4

7, 0, 8, 3, 4

8, 3, 0, 1, 6

9, 5, 2, 4, 7

The next step generates the co-occurrence matrix using this
corpus. We used a window size 𝑤 = 1 for the above corpus.
The generated co-occurrence matrix is given by:

0.0 2.0 0.0 3.0 1.0 0.0 0.0 2.0 4.0 0.0
2.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 1.0 0.0
0.0 0.0 0.0 4.0 3.0 1.0 0.0 0.0 1.0 0.0
3.0 0.0 4.0 0.0 2.0 3.0 0.0 0.0 2.0 0.0
1.0 0.0 3.0 2.0 0.0 0.0 0.0 3.0 0.0 0.0
0.0 0.0 1.0 3.0 0.0 0.0 0.0 0.0 0.0 2.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
2.0 3.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0
4.0 1.0 1.0 2.0 0.0 0.0 1.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 1.0 0.0

After obtaining the co-occurrence matrix, a random vector
of 𝑑 dimensions is initialized for every node. These vectors
are optimized in the final step using the co-occurrence matrix
and the cost function. The final step trains the GloVeNoR
model using the co-occurrence matrix. This step generates 𝑑-
dimensional embeddings of the graph nodes. For the above
example, the dimensionality, 𝑑, of the embeddings is 2. The
generated vectors are given by:

Fig. 11: Generated communities

0.00032430148178421857 0.7938853234927894
0.47120730004410316 0.07747351511500729
0.6995203607385199 0.22675897204604747
0.40398774088300593 0.3402914202062996
0.3684166382730359 −0.0466443816755288

−0.09899558914305986 0.3546439090539501
0.32795573825915464 0.32323114306831036
0.3240960932604696 0.21676116252743483

−0.15893379881151024 0.7265621806582748
0.30177281552368374 0.3173293382685133

These vectors are clustered using the k-means clustering
algorithm. The generated clusters are communities in the
graph. In the above example, we are using a k value of 2.
The generated communities are shown in Figure 11.
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