
2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Mechanisms of Behavioral Contagion: An Approximate Bayesian Approach

Christian C. Luhmann
Department of Psychology

Institute for Advanced Computational Science
Stony Brook University
Stony Brook, NY 11794

Email: christian.luhmann@stonybrook.edu

Brian Yang
Stony Brook University

Stony Brook, NY 11794
Email: wconnection@gmail.com

Abstract—Researchers have proposed that contagion processes
govern how information and behavior itself spreads through
social networks. Empirical evidence for such contagion often
makes unjustified, but implicit assumptions about the mecha-
nisms underlying contagion. Here, we present an approximate
Bayesian method that uses empirical data to draw inferences
about the underlying mechanisms. We provide initial validation
of our approach in three simulation experiments, each investi-
gating how a real-world factor (e.g., noise) impacts inferential
accuracy.

1. Introduction

Social influence has long been known to be a pow-
erful factor shaping people’s behavior [1], [2], [3], [4],
but researchers have recently suggested that these sorts of
mechanisms may give rise to cascades of behavioral change:
the notion that behaviors can spread like biological diseases
[5], [6]. Behavioral contagion can be advantageous in the
case of adaptive behaviors (e.g., vaccination, healthy eating,
exercising) but detrimental in the case of maladaptive behav-
iors (e.g., smoking, needle-sharing, bullying). An accurate
understanding of behavioral contagion is critical because it
represents a potent tool for policymakers, permitting predic-
tion and control of the social transmission of behavior, both
adaptive and maladaptive [7].

Because social influence is inherently unobservable, re-
searchers often make assumptions about the underlying
mechanisms and use data to estimate parameters accord-
ingly. These mechanistic assumptions, however, are rarely
made explicit or justified. Such work often relates an indi-
vidual’s behavior to the behavior of that individual’s peers.
For example, studies of contagion often conclude that each
additional peer engaging in some behavior (e.g., smoking)
incurs some risk for adopting some behavior. Such con-
clusions are only sensible if the underlying mechanisms
are simple, epidemiological-style processes. For example,
imagine that individuals only adopt a behavior after a critical
mass (of unknown size) of their peers have already adopted
the behavior. If this is the case, the probability of adop-
tion “per adopting peer” is nonsensical and highlights the
potential difficulty of interpreting peer effects.

1.1. Contribution

The current article describes an analytic method for
explicitly evaluating assumptions about the mechanisms that
underlie large-scale patterns of behavior. We then validate
our method by conducting simulation experiments designed
to explore a variety of real-world circumstances (e.g., noise).
Overall, we find that our method is both successful and
reasonably robust. Our method has several specific bene-
fits, including the ability to draw inferences about cross-
sectional data and the ability to evaluate arbitrary models of
behavioral adoption.

2. Our Method

We take an approximate Bayesian computation (ABC),
or likelihood-free, approach [8], [9]. ABC begins by sam-
pling parameter values from a prior distribution, P (θ),
feeding the sampled values into a generative model, m, and
generating a synthetic data set, D̂ = m(θ). The synthetic
data set, D̂, is then compared to the observed data set,
D. If the two are sufficiently similar, sim(D̂,D) < ε, the
corresponding parameter values, θ, contribute to the approx-
imation of the posterior, P (θ|D). Because data sets often
occupy a high-dimensional space, ABC approaches typically
compare summary statistics computed for each data set
rather than directly comparing the data sets themselves: e.g.,
sim

(
γ(D̂), γ(D)

)
. Instead of selecting ε and sim(), we

use a classifier to tailor these components in a data-driven
manner.

2.1. Models of Behavioral Contagion

Canonical models of both simple and complex contagion
were taken from [6]. The simple contagion model, what
[6] refers to as the independent cascade model, operates
much like standard epidemiological models of disease trans-
mission. Each edge in the network is associated with a
transmission probability. When an active node (e.g., A)
shares an edge with an inactive node (e.g., B), node A
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infects node B with the transmission probability, ptransmit,
associated with their shared edge.

In the complex contagion model, what [6] refers to as
a linear threshold model, each node is associated with an
idiosyncratic activation threshold, θ. These thresholds some-
times refer to the number of neighbors that must be active
(absolute thresholds), but other times refer to the proportion
of neighbors that must be active (proportional thresholds).
In either case, once the number of active neighbors meets or
exceeds a node’s threshold, that node becomes active. In the
current study, we will explore both absolute and proportional
complex contagion processes.

2.2. Inference

Given some observed data, D, and a set of mod-
els m1,m2, . . .mM we wish to estimate P (mi|D) ∼
P (D|θ,mi)P (θ|mi)P (mi)∀i ∈ [1...M ]. More specifi-
cally, we wish to perform model selection on the basis
of P (mi|D). One natural way to think about Bayesian
model selection is as inference over a hierarchical “meta-
model” [10] . In such an approach, specific contagion
models (such as those outlined above) are nested within
a larger model which has a single, categorical parameter,
i indexing the constituent models. When i = 1, the meta-
model is equivalent to model m1. When i = 2, the meta-
model is equivalent to model m2. We then generate synthetic
data sets D̂i∀i (i.e., for each constituent model) and find
argmax

i
sim

(
γ(D̂), γ(D)

)
. We do so by training a classi-

fier to distinguish among the synthetic data sets generated by
each generative model (i.e., γ(D̂i)∀i), and interpreting the
output of the trained classifier (i.e., the predicted class) when
applied to the observed data as P (mi|D). This approach
alleviates the need to explicitly provide components required
in the standard ABC approach, such as distance measures,
sim(), and tolerances, ε. Instead, we allow the classifier
to optimize both the similarity function and the decision
boundary.

2.3. Networks

To ensure results are applicable to a variety of real-
world social network structures, we will simulate the various
contagion processes on both scale-free [11], [12] and small-
world networks [13]. These particular types of networks
reflect important characteristics of real-world social net-
works (e.g., degree distribution, average path lengths, and
clustering). All networks were constructed so as to have
an average degree of four and to have 1,024 nodes (except
in the first experiment which investigated the influence of
network size).

2.4. Simulation Details

For each individual simulation, a fresh network was
generated. A small number of nodes was then made ac-
tive, seeding the subsequent contagion processes. Seeding

involved activating a single, randomly selected node, as well
as all of that node’s neighbors. After seeding, each of the
three contagion processes under consideration (i.e., simple,
absolute complex, and proportional complex) were initiated,
each contagion process using the same exact network and
the same exact initial conditions (i.e., identical seed nodes).
All contagion processes were halted once at least 50% of
the network’s nodes were active. This stopping condition
prevents trivial features like global adoption rate from being
used to infer the underlying contagion type. We ultimately
generated 1000 data sets for each combination of contagion
type and network.

2.5. Summary Statistics

Like traditional ABC methods, it is critical that the
statistics used to summarize the data sets (i.e., γ above) be
diagnostic of the parameter(s) of interest (here, the indicator
variable representing which model generated the observed
data).

1) Degree of each node
2) Number of each node’s neighbors that are active
3) Proportion of each node’s neighbors that are active
4) Number of triangles each node is involved in
5) Betweenness centrality of each node
6) Closeness centrality of each node
7) Harmonic centrality of each node
8) Eigenvector centrality of each node
9) Katz centrality of each node

10) Number of cliques each node is involved in
11) Density of the subgraph active/inactive nodes

In total, we used 22 separate statistics to summarize
each data set: the mean values of 1-11 for active nodes and
the mean values of 1-11 for inactive nodes. The summary
statistics were then standardized and used as features in the
classification scheme described below.

Note that many of these features will, in general, be
strongly correlated. Though not entirely desirable, there
are several reasons to not be overly concerned with such
correlations. First, our intention at this stage was to be
expository rather than to optimize performance. Second,
we evaluate our method by comparing out-of-sample pre-
dictions to ground truth parameter estimates, meaning that
redundant predictors are not a particular threat. Finally, we
use regularization in our classifier (see below), which should
both help to alleviate overfitting and help to minimize other
undesirable consequences of dependent features. We expect
that future work will find a variety of modifications that pro-
vide substantial improvements to computational efficiency,
including a more thoughtfully curated set of features.

2.6. Classification Scheme

To distinguish among the data sets generated by the
different transmission models, we employed regularized
multinomial logistic regression. We specifically used a one-
against-all classification scheme, with each regression model
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tasked with distinguishing one of the three classes from
the remaining two classes. More sophisticated classification
methods (e.g., support vector machines) were investigated,
but they did not improve performance and do not offer
disciplinary analysts the straightforward interpretability of
logistic regression. Classification performance was evaluated
using a stratified 5-fold cross-validation scheme.

2.7. Priors

Of all the model parameters, we are primarily interested
in a single parameter: the model index parameter i. In the
current illustration, we have no particular prior beliefs and
thus sample i uniformly. Thus, we stratified data, ensuring
that the training and testing sets each included an equal
number of data sets for each of the three models under
consideration.

The simple contagion model requires specifying pinfect
for each edge in the network. The complex contagion model
(both absolute and proportional) requires specifying an ac-
tivation threshold for each node in the network. Here again,
we are agnostic regarding parameters values and specified
pinfect ∼ U(.5, 1) and θ ∼ U(0, 0.5µdeg), where µdeg

was the average degree of nodes in the network under
study. We would have opted for even wider ranges (e.g.,
pinfect ∼ U(0, 1) or θ ∼ U(0, 1µdeg)), but such ranges
yield degenerate data sets with high probability (e.g., diffu-
sions cannot be propagated by nodes with pinfect = 0 or
θ = 0). Such degeneracy dramatically increases the com-
putational demands (many simulations will yield data sets
that are immediately thrown out). Thus, these distributions
represent a compromise between our true agnostisism and
practical concerns.

3. Network Size

We begin our investigation into practical factors by
exploring how the size of the network might constrain
classification performance. In actual practice, researchers
may not be able to choose how large their data set is
for a variety of practical reasons. However, by providing
information about the relationship between network size and
performance, researchers using our method should be able
to determine, a priori, whether the particular network(s) they
wish to make inferences about are problematically small.

We generated both scale-free and small-world networks
of various sizes (25 - 5625 nodes). For each combination
of network type and size, we generated 3,000 separate data
sets, 1,000 for each of the three types of contagion (e.g., sim-
ple, absolute complex, proportional complex). Classification
performance was assessed using five-fold cross-validation
as described above. In each of the five folds, 2,400 of the
data sets were used for training and 600 were used to test
predictive performance. The data was again stratified such
that the subset used for testing contained exactly 200 data
sets generated by each of the three types of contagion.

Figure 1. Results from our manipulation of network size. We used two
types of networks and nine sizes. The dashed horizontal line represents
chance-level performance. Note that the x-axis is logarithmic.

3.1. Results

Results (Figure 1) illustrate that classification perfor-
mance was well above chance for all network sizes, was
greater than 90% for networks with at least 256 nodes, and
steadily increased with network size. In addition, perfor-
mance was uniformly better in in the scale-free networks
than in the small-world networks. This difference may be
due to the heterogeneity of scale-free networks [14], though
future work is needed to explore this possibility. The current
results suggest that our method can provide accurate insights
for networks of even modest size (e.g., those collected using
more laborious sociometric methods).

4. Adoption

We next investigated how classification performance was
related to global levels of adoption (sometimes referred to as
saturation). In the simulations described above, all contagion
processes were halted once the proportion of active nodes
surpassed 50%. In the real world, however, behaviors of
interest will vary widely in how pervasive they are: obesity
is relatively common whereas use of a new recreational
narcotic may be relatively rare. In a real-world application
of our method, we envision researchers constraining their
simulations such that they ultimately yield levels of adoption
that mirror those seen in their empirically-observed data
set. For this reason, level of adoption, like network size,
is unlikely to be a parameter researchers tweak to improve
performance. However, the results of this investigation will
speak to how effective our method may be in a given
application.

We generated both scale-free and small-world networks,
each with 1,024 nodes. As the previous simulation’s re-
sults illustrate, this network size is large enough to support
successful inference, but small enough to be relevant in a
wide variety of applications. We simulated the three dif-
ferent types of contagion (e.g., simple, absolute complex,
proportional complex), halting these processes at different
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Figure 2. Results from our manipulation of adoption level. The dashed
horizontal line represents chance-level performance. Note that the x-axis is
logarithmic.

points. For each combination of network type and saturation
threshold, we generated 3,000 separate data sets, 1,000 for
each of the three types contagion. Classification performance
was again assessed using stratified five-fold cross-validation.

4.1. Results

Classification performance steadily increased with the
proportion of active nodes (Figure 2). Performance ranged
from approximately 55% at the lowest levels of adoption
(0.5%) to approximately 95% correct once approximately
33% of nodes were active. Accuracy of approximately 75%
was achieved when only 5% of nodes were active. Per-
formance did not seem to depend strongly on the network
types. These results suggest that levels of adoption strongly
impact classification accuracy, but that information can be
extracted from even modest levels of adoption.

5. Noise

The simulations, summary statistics, and classification
scheme were identical to the investigations reported above.
All simulations were halted once 50% of nodes became
active. After the simulations were complete, but before
calculating the summary statistics, noise was added to each
data set. Specifically, we flipped a biased coin for each node
in the network. With probability pnoise, the state of the node
was flipped (i.e., an active nodes modified to be inactive
or an inactive node modified to be active). We explored a
range of values pnoise, providing insight into how robust
our method is to contamination (e.g., measurement error).

5.1. Results

Classification performance steadily decreased as the
amount of added noise increased (Figure 3). At low levels of
noise, classification accuracy was at levels reported above,
steadily decreasing to chance levels of performance (i.e.,
33%) once 50% of nodes were in the “incorrect” state.

Figure 3. Results from our manipulation of noise. The dashed horizontal
line represents chance-level performance.

As with the network size experiment (but unlike adoption
rate), performance was uniformly superior when making
inferences about scale-free networks.

6. Conclusion

We have presented an Approximate Bayesian method
for making inferences about the mechanisms of behavioral
transmission that underlie empirically observed data sets.
Our method is based on traditional approximate Bayesian
methods [8], [9], [15], but uses classification methods to
automatically make decisions about certain aspects of the
procedure (e.g., data set similarity).

To evaluate our method, we have conducted several
simulation studies. Specifically, we investigated how various
practical constraints might limit the performance of our
method. These constraints included the size of the network,
the level of adoption (saturation), and the presence of noise.
Each of these factors qualified the inferential accuracy of
our method. For example, larger networks yielded better
performance (nearly perfect in our largest networks), though
performance for small networks was still above chance.
Networks in which many individuals have adopted the target
behavior were also yielded more accurate inference. Finally,
contaminating the data sets with random noise hurt inferen-
tial accuracy (as expected), but our methods were robust
to substantial adulteration. These results demonstrate how
real-world factors impact inferential accuracy and highlight
how researchers would evaluate accuracy in their particular
application before ever applying it to their own data.

Our method can be applied in cases where analysts
possess a) social network information and b) node-level
adoption information bot of which are cross-sectional. An-
alysts would then implement candidate models of social
contagion based on knowledge of the application domain.
These candidate models would be used to generate simulate
contagion on the empirically observed network. This simu-
lated data would be used to train and validate a classifier.
If performance was satisfactory, the trained classifier would
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be applied to the empirically observed network, providing
inference about the most likely generative mechanisms.

The method described here is presented as a contrast to
the conventional practice of analyzing social network data
with often implicit assumptions about the mechanisms of so-
cial contagion. Our method may seem to be exclusively data-
driven, but the description of how to applying our method
should make it clear that our method can only adjudicate
among provided, candidate mechanisms. Analysts cannot
simply provide data and ask, “what sorts of mechanism
generated this data?” Our method certainly uses data to
answer important analytic questions, but those questions do
need to be formulated in sensible ways.

Our method has several obvious benefits. First, our
method permits unsatisfactory classification accuracy to be
detected before it is applied to empirical data. Second,
our method provides information about how details of the
generative model(s) shape network-level patterns. For ex-
ample, social scientists can inspect the coefficients in the
regression model to reveal which network-level summary
statistics are diagnostic of any particular contagion mech-
anism. Finally, our method is thoroughly Bayesian and
thus comprises all the benefits (and drawbacks) of standard
Bayesian approaches. Priors are reflected in the parameter
sampling scheme. It is assumed that domain experts could
supply relevant guidance regarding prior beliefs. Of course,
uninformative prior distributions can be used instead (as was
done in the current experiments).
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