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Abstract—Complex networks are a key analytical tool for
complex systems. However if one wants to apply this tool in
machine learning applications where the data is non-relational
data one must find an appropriate network embedding. The em-
bedding represents a network in a vector space, while preserving
information about network structure. In this paper, we propose
a simple network embedding technique that avoids the need
for graph kernels or convolutional networks, as have previously
been advocated. Our embedding is based on 3-node and 4-node
graphlet counts combined with some feature extraction based
on a Principal Component Analysis (PCA). We show that it is
competitive with some state-of-the-art methods on a downstream
classification task. We then show how to reduce the computational
effort in the method by transforming extraction into a feature
selection procedure. We claim that this selection procedure,
a generalisation of PCA, is more meaningful than a popular
alternative.

Index Terms—Complex Networks, Graphlets, Graph Classifi-
cation

I. INTRODUCTION

Complex networks are an established tool for analysis in
several scientific fields [1]. They can represent a complex
system by modelling local interactions between elements
within this system—for example, social relations among in-
dividuals [2], regulatory relations between genes [3], etc. The
analysis of such networks built on these local interactions
allows us to observe and understand phenomena at a larger
scale [4]–[6].

A recent development in analysis has been fuelled by the
observation that by representing networks as low-dimensional
vectors one can then apply efficient machine learning al-
gorithms [7]. Whilst most research has focused on finding
fixed-length vectors to represent nodes of a network [8]–
[10], techniques to embed the whole network as a unique
prescribed-length vector have also appeared which allow com-
parison between sets of networks, often as a step towards
classification [7], [11]–[13]. Reducing networks to these vector
forms often involves non-trivial tools and may require a large
amount of training data.
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Network embedding techniques share the desirable property
that networks that share many substructures are close in the
embedding space [12], [14]–[16]. This desirable property can
be related to motifs in complex networks [17]–[22]. Indeed,
it is well-known that induced subgraphs can have a functional
meaning and can explain phenomena within the network. For
instance, the sign-sensitive delay is closely related to a certain
type of feed-forward loop in pathways [23]; and in neuronal
networks, bifan motifs are known to cooperatively propagate
information within synapses [24].

Strictly speaking motifs are small subgraphs (3 to 7 nodes)
that appear significantly more often in a network of interest
than in random networks sharing common properties. It has
been shown that networks from a common field (e.g. pathways,
neuronal networks, food webs, social networks, etc.) show
similarities in 3- and 4-node motif distributions (also called
significance profile or subgraph ratio profile (SRP)) [18]. The
classical way to find motifs is to compute the number of
occurrences of subgraphs in a sequence of explicitly gener-
ated random graphs and to compare these numbers with the
number of occurrences of these subgraphs in the real-world
network [17]–[19]. This technique cannot be applied to very
large networks, as both generating the random graphs and
counting the motif occurrences can be hugely expensive and
time consuming. Moreover, there is no consensus as to the type
of model that should be used to generate random graphs [13],
[25], [26].

In this study, we propose a simple supervised technique for
directed network embedding, based the distribution of k-node
induced subgraphs, with k = 3, 4. By avoiding a comparison
with random models it is much cheaper than classical SRP
methods and despite its underlying simplicity it is highly
effective as a tool for graph classification.

We summarise our contribution as follows. We propose a
simple network embedding based on 3- and 4-node graphlets
combined with dimension reduction procedure that is compet-
itive with state-of-the-art methods on a downstream classifica-
tion task. We propose a supervised feature selection procedure
that allows one to focus on a handful of graphlets. This simple
procedure is shown to outperform more complex widely-used
feature selection technique. And we provide empirical evi-
dence to support the claim that our supervised feature selectionIEEE/ACM ASONAM 2020, December 7-10, 2020
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TABLE I
NUMBER OF NODES (n) AND EDGES (m) OF THE NETWORKS.

Food Webs Elec. Circ. Disc. Struct. Soc. Net.
n m n m n m n m

min 51 113 54 71 50 53 51 114
max 214 5,643 24097 52344 237 285 82168 870161
mean 104.4 1023 3358.9 6006.7 75.92 94.46 6430 48371

procedure can be used as an unsupervised tool, too. We also
provide a new dataset for graph classification containing larger
networks than is typical. Comprehensive details of this dataset
can be found in [27]. In summary, we have extracted networks
from four different fields, 70 representing food webs, 52
networks corresponding to electronic circuits, 195 discourse
structure networks and 81 social networks. Summary statistics
are provided in Table I.

II. RELATED WORK

The purpose of this study is to build network embeddings
which are well-designed for a downstream classification task,
which is the purpose of several existing techniques [7].
Broadly speaking, these techniques can be divided into three
families, namely extensions of node embeddings, graph kernel
methods, and graph neural networks.

Node embedding techniques aim to find embeddings for the
nodes of one (or several) network(s) that are consistent with
some similarity measure. For instance, one may want to con-
sider nodes to be similar if they share an edge, neighbourhood
or structural role and the chosen measure leads to a number
of different embedding tools [8]–[10], [28]–[31]. Node embed-
dings can be used to induce network embeddings, for example
using a weighted sum [7]. However, network representations
based on postprocessing of learnt node embeddings may not
be as effective as directly learnt network representations [12].

Rather than explicitly providing an embedding, graph ker-
nels offer a direct method of measuring network similarity
that can be interpreted in functional analysis terms [11], [15].
Methods differ in the means of capturing similarity [14], [15],
[32] but we believe the technique closest to ours is [33], where
the structure of networks is captured by computing the k-
node graphlet occurrences (for k ∈ {3, 4, 5}), and where the
embedding is explicitly provided. Key differences with our
study are that the embeddings are not concatenated for the
different values of k, and no feature reduction procedure is
applied.

Automated machine learning methods can prove competitive
with those based on handcrafted features. For instance, using
spectral graph theory [16], Weisfeiler-Lehman kernels [9],
[34], or grid-based node ordering [35], [36], a Convolutional
Neural Network (CNN) can be adapted to a graph setting.
Attention mechanisms have also been adapted to create Graph
Attention Layers (GATs) [37]. These graph layers are naturally
defined to provide one output per node, but can be used for
graph classification by adding an aggregation or a pooling
layer at the end of the neural network [38].

As for graph kernels, network embeddings often emerge as
a side effect by processing the output prior to its synthesis
for a given learning task (e.g. the label of the network for a
classification task). To circumvent the common of dependence
on the downstream learning task, the authors of graph2vec
use task-agnostic embeddings [12], extending the idea behind
the neural embedding doc2vec from natural language pro-
cessing.

Finally, we mention gl2vec [13] which builds a network
embedding by computing its 3-node SRP using a random
model which preserves only the number of nodes and edges
from the given network thereby reducing much of the com-
putational cost of enumerating graphlets. While we share a
focus on graphlets in our algorithm, we do not use a random
model for comparison. Another fundamental difference is that
gl2vec only uses 3-node graphlets and does not perform
feature reduction. By performing such a reduction in combi-
nation with an enumeration of 4-node graphlets, our method
outperforms gl2vec.

III. PROBLEM FORMULATION

To formulate our problem we provide some definitions
to be used throughout the paper. Networks are assumed to
be directed, unweighted without self-loops. The set of all
such networks is denoted by G. The network with nodes
V = {v1, . . . , vn} and edges E = {(u, v) ∈ V × V, u 6= v} is
denoted G = (V,E). Given an integer k and the set

Gk = {G = (V,E) ∈ G : |V | = k and G is connected},

we will denote by k-node graphlets the set of non-isomorphic
graphs in Gk.

We denote by φk the function that counts the number of
occurrences of induced k-node graphlets in a network, that is
φk : G → Rmk+ with mk the number k-node graphlets and the
ith coordinate of φk(G) is the number of occurrences of the
ith k-node graphlet in G.

Given vectors v1 ∈ Rn1 , . . . ,vp ∈ Rnp , we use the
term “concatenation” to mean the direct sum denoted by
p⊕
i=1

vi. This can also be written (vT1 , . . . ,v
T
p )T ∈ RN with

N =

p∑
i=1

ni.

The aim of our study is to find an embedding of networks
that fits with the classification task corresponding to labelling
a network with the field it is extracted from. In the context of
this study, a network embedding is a function f : G → Rd.
Formally, we have a dataset D = {(Gi ∈ G, `i ∈ L))}i∈I ,
where L is the set of the labels (in our case, discrete labels
corresponding to the field). The aim of a classification task is
to find a function g : G → L called a classifier such that for
(most) i ∈ I, g(Gi) = `i.

In the following, we will perform a supervised clustering for
which the dataset D = {(Gi ∈ G, `i ∈ L))}i∈I is partitioned
into a training set and a test set. The indices of elements in
the training and test sets will be denoted by S ⊂ I and T ⊂ I
respectively.
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As the focus of our work is on the embedding we will
consider the classifier separately, that is we extend g so that
g : Rd → L whereby the whole classification process is then
given by g(f(G)). Furthermore, we will use simple classifiers.
For instance, we will make a great use of

g(x) = arg min
`∈L

‖x− x`‖2 (III.1)

where x` =
1

|{i ∈ S s.t. `i = `}|
∑

i∈S:`i=`

f(Gi).

IV. NAIVE EMBEDDING AND CLASSIFICATION TASK

Our aim is to find an embedding of networks based on 3-
node and 4-node graphlet counts. We start by considering a
naive embedding f : G → RM , with M = m3 + m4 = 212,
such that, ∀G ∈ G:

f(G) =

⊕
k=3,4

αk(G)φk(G)√ ∑
k=3,4

αk(G)2φk(G)Tφk(G)
(IV.1)

where αk(G) are positive real numbers used to mitigate the
order of magnitude difference between φ3(G) and φ4(G). We

use αk(G) =
mk

k

(
k

n

)−1

, which is proportional to the ratio

between the number of k-node graphlets and the maximum
number of such graphlets that can occur in a network of n
nodes. The normalisation of f(G) makes comparison between
networks more straightforward.

As the dimension of the embedding produced by f is high
(higher than the number of networks in the training set),
we combine the classifier with a feature extraction procedure
based on PCA, by following the steps proposed in [39]. That is,
we compute a matrix Ũ containing the leading eigenvectors
of the covariance matrix of the training set, and we use Ũ
to get the shifted projections of samples from both training
and test sets onto a lower dimension space whose directions
are the principal directions provided by Ũ. Then we apply
the classifier from (III.1) to these embeddings. The complete
process are provided in Algorithms 1 and 2, where ep ∈ Rp
is a vector of ones.

Algorithm 1: Naive Classification

Input: G ∈ G, Ũk ∈ RM×k, x ∈ RM ,
C = {(ci, `i) ∈ Rk × L, i = 1, . . . , |L|}

Output: `∗ ∈ L the predicted class of G
1 begin
2 compute φ3(G), φ4(G), α3(G), α4(G)
3 x← f(G) according to (IV.1)
4 c← (Ũk)T × (x− x)
5 (c∗, `∗) = arg min

(ci,`i)∈C
‖c− ci‖2

6 return `∗

Algorithm 2: Preprocessing of Algorithm 1
Input: A training set {(Gσ, `σ) ∈ G × L, ∀σ ∈ S},

an integer k < M
Output: x ∈ RM , Ũk ∈ RM×k,

C = {(ci, `i) ∈ Rk × L, i = 1, . . . , |L|}
1 begin
2 for σ ∈ S do
3 compute φ3(Gσ), φ4(Gσ), α3(Gσ), α4(Gσ)
4 xσ ← f(Gσ) according to (IV.1)

5 x← 1
|S|
∑
σ∈S

xσ

6 apply PCA on X =
[
xσ1

. . . xσ|S|
]T

to obtain
U ∈ RM×M

7 Ũk ← U×
[
Ik
0

]
; C← (X− e|S| × xT )× Ũk

8 C ← ∅
9 for ` ∈ L do

10 c` ← 1
|{σ∈S:`σ=`}|

∑
σ∈S:`σ=l

cσ

11 C ← C ∪ {(c`, `)}

12 return x, Ũk, C

TABLE II
QUALITY MEASUREMENT OF EMBEDDINGS.

Precisiom Recall F1-score
mean std mean std mean std

fw 9.50 2.6 10 0.3 9.74 1.4
our elec 10.0 0.3 9.00 9.0 9.45 5.0
method disc 9.88 0.8 9.95 0.3 9.91 0.4

soc 10 0.2 9.63 2.1 9.81 1.1
fw 9.76 2.5 8.65 5.3 9.16 3.3

gl2vec elec 9.26 8.5 6.84 11.2 7.79 8.2
disc 9.89 0.7 10 0 9.94 0.4
soc 8.98 3.2 10 0 9.46 1.8
fw 9.51 3.6 9.73 3.1 9.61 2.6

graph elec 10 0 9.80 3.6 9.90 1.9
2vec disc 9.90 0.7 10 0 9.95 0.3

soc 9.80 2.3 9.30 3.9 9.54 2.4

A. Numerical Experiments

In order to assess the accuracy of the method presented
in Algorithm 1, we have applied it to recover the labels of
the networks in our dataset. The training set S is built by
randomly selecting NB = 40 networks from each class/field.
Thus, |S| = |L| × NB . The remaining form the test set T ,
on which Algorithm 1 is applied1. We set the number of
principal axes to keep to be k = 11—justification is detailed
in [27]. To compute φ3 and φ4 in (IV.1), we have used
acc-Motif [40]2.

We compare the quality of our embeddings with those
obtained by gl2vec and graph2vec, using the imple-
mentations from [41] and [42] respectively. Several sets of

1500 pairs of sets (S, T ) were built by randomly selecting NB networks
from each class. We present the mean and standard deviation of the results.

2version 2.2, available at http://www.ft.unicamp.br/docentes/meira/
accmotifs/
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parameters have been tested for graph2vec, and the results
presented here are the most accurate we obtained, achieved
with a depth of 1 for Weisfeiler-Lehman (WL) kernel, and
a dimension of 64 for the embeddings. Precise settings and
parameter choices for these algorithms are detailed in [27].
The results of the classifier of (III.1) applied to these three
different embeddings are provided in Table II. The labels
fw, elec, disc and soc relate to respectively the food web,
electronic circuit, discourse structure and social relationship
benchmarks. For convenience of presentation, the means and
standard deviations have been multiplied respectively by 10−1

and 10−2 in the table.
We observe that all embedding techniques return consistent

clusters for each class. With the exception of electronic circuit
networks embedded via gl2vec, all F1-score are above 0.9.
We remark that graph2vec outperforms gl2vec as well as
our method on the discourse structure networks (for which the
gain is slight as all methods achieve very good F1-score for
this benchmark), and on electronic circuits (where the gain
is indeed quite substantial). On the other hand, our method
significantly outperforms gl2vec and graph2vec on food
webs and social networks. We observe that these last two
classes are less well defined in the sense that they are built
from observations.

B. Runtime

In this section, we briefly discuss the runtimes of the
different methods. All the experiments were conducted on a
laptop with 32GB RAM and a Core i5 vPro 8th Generation
as a processor.

In the case of our method, the most time-consuming part is
the calls to acc-Motif to compute the graphlet distributions,
which takes around 15min. However, our calls to acc-Motif
are done sequentially, and a parallelisation could greatly boost
it, since the maximum time for one call is 116s3.

As a matter of comparison, the computation of the SRPs in
gl2vec takes about 3min. It is worth to say that, as a random
model for computing the SRPs, we have chosen the only one
that does not require to explicitly build random networks,
as otherwise the runtimes were prohibitive (we stopped the
execution after 30min).

Finally, computing the embedding with graph2vec lasts
2min: 1min for building the node features, and 1min to
compute the 64-dimension embeddings via a WL-kernel of
dimension 1. We remark that, for deeper WL-kernels (1 being
the smallest possible value), the runtimes naturally increase
(80s for a depth of 2, 100s for a depth of 3).

The training part of our method, that consist in extracting the
dominant eigenvectors of the covariance matrix of the training
set, takes less than 4s to be executed for 500 iterations. For
the 3 methods, the classification part is neglectable (between
1s and 2s for the 500 iterations, graph2vec being the slowest
as the dimension of embeddings are higher).

3For computing the 4-node graphlet distribution of a 53K node network.

V. GRAPHLET SELECTION

We have established that it is possible to build a naive graph
embedding based on graphlet counting coupled with feature
extraction that provides accurate graph classification. This sim-
ple method is competitive with recently proposed embedding
techniques that outperform classical state of the art methods
in the specific downstream task of graph classification.

Nevertheless, the naive procedure presented in Algorithm 1
is suboptimal. Indeed, it relies on an expensive count of all 3-
node and 4-node graphlets for each network which we believe
is unnecessary. Furthermore, the construction of the projection
matrix Ũk in Algorithm 1 strongly depends on the training
set. To avoid these drawbacks, we propose to perform feature
selection instead of feature extraction so that we can avoid
both the full computation of graphlets as well as the projection
using Ũk.

We build our procedure for feature selection by drawing par-
allels with some basic principles of PCA. We briefly describe
our ideas below. Detailed explanations can be found in [27].
First note that given a dataset X =

[
x1 . . . xn

]T ∈ Rn×M ,
in which each row is a sample, and where x is the centre of
gravity (i.e. the average sample), the projection in PCA can be
thought of in terms of optimisation in that for a given value
of q, Ũq solves

argmax
U∈RM×q

IU(X) = 1
n

n∑
i=1

‖yi − y‖22

with yi = UUT (xi − x) + x,

and y = 1
n

n∑
i=1

yi

subject to UT ×U = Iq,

(V.1)

where IU(X), called the inertia, measures the deviation from
the mean of the projections of the rows of X into the affine
space that is the translation of the vector space with basis
U that passes through x. We can also cast the matrix of
these projections Y, with rows yTi , as the minimiser of an
approximation error problem.

Our aim is to build a feature selection procedure—that is
to pick k vectors from the canonical basis—following similar
principles to PCA. We assume that we know Y ∈ Rn×M that
solves (V.1). We design our feature selection procedure as a
maximisation of an inertia problem. To be precise, we find
Ẽk ∈ RM×k that solves

Qk :



argmax
E∈RM×k

IE(Y) = 1
n

n∑
i=1

‖zi − z‖22

with zi = EET (yi − y) + y,

and z = 1
n

n∑
i=1

zi

subject to E =
[
eσ1 . . . eσk ,

]
(V.2)

where ej is the jth column of the identity matrix.
As for PCA, Ẽk defines the basis of an affine space

in which projections of rows of Y also minimise the ap-
proximation error. Furthermore, Qk+1 can be written as
Ê =

[
Ẽk eσk+1

]
. The proofs of these assertions are fairly

long and can be found in [27]. A consequence is that, as for
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PCA in which each column of U adds one eigenvalue of the
covariance matrix of X to the inertia IU(X), it is possible to
write the global inertia IẼk(Y) as the sum of the individual
contributions to the inertia from each canonical axis. This
enables us to derive a score that assesses the significance of a
canonical axis, given the q first principal axes.

Definition 1. The expression level of the ith canonical axis
within the q first principal axes is defined to be

γ(i) =
1

q∑
s=1

λs

q∑
t=1

λtut(i)
2. (V.3)

The measure γ(i) gives an indication of the significance of

the ith canonical axis, and is normalised so that
k∑
i=1

γ(i) = 1. It

allows one to derive a feature selection procedure for networks
in the test set: knowing the q principal axes of the training set,
one can choose the k canonical axes with the highest γ-score
to embed the networks from the test set. We arrive at a set
Γ ⊂ {1, . . . ,M}, |Γ| = k, of indicators of the best canonical
axes to keep.

To derive our embedding function, we separate indicators
of 3-node graphlets and 4-node graphlets, that is we build
Γ3 ⊂ {1, . . . ,m3} and Γ4 ⊂ {1, . . . ,m4} such that Γ3 ∪
(Γ4 + m3) = Γ (with Γ4 + m3 = {σi + m3, σi ∈ Γ4}. Our
embedding function is

h(G) =

⊕
t=3,4

αt(G)ψt(G,Γt)√ ∑
t=3,4

αt(G)2ψt(G,Γt)Tψt(G,Γt)
, (V.4)

with αt(G) as defined in (IV.1), and

ψt(G,Γt) = Pt × φt(G),

with

Pt ∈ R|Γt|×mt s.t. Pt(i, j) =

{
1 if Γt(i) = j,

0 otherwise.

Although in the previous equation, we assume that we extract
the selected features from the whole 3-and 4-node graphlet
decomposition, it is actually possible to compute only the
number of occurrences of the graphlets in Γ, which may be
computationally cheaper—see [43] for a discussion on the
different methods to decompose a network partially or entirely
into motifs, and their complexity.

The γ-measure we defined above allows one to simplify
the classification algorithm presented in Section IV. Below we
propose Algorithm 3, an adaptation of Algorithm 1 based on
this γ-measure, and Algorithm 4, which is the preprocessing
of Algorithm 3.

A. Numerical Experiments

We test the enhanced Algorithms 4 and 3 on our dataset
as before. That is, by randomly selecting NB networks from
each field to build the training set S and use the remaining
networks as test set T . Again, we perform 500 realisations and

Algorithm 3: Classification with Feature Selection
Input: G ∈ G,

Γ3 ⊂ {1, . . . ,m3}, Γ4 ⊂ {1, . . . ,m4},
C = {(zi, `i) ∈ Rk × L, i = 1, . . . , |L|}

Output: `∗ ∈ L the predicted class of G
1 begin
2 compute ψ3(G,Γ3), ψ4(G,Γ4), α3(G), α4(G)
3 z← h(G) according to (V.4)
4 (z∗, `∗) = arg min

(zi,`i)∈C
‖z− zi‖2

5 return `∗

Algorithm 4: Preprocessing of Algorithm 3
Input: A training set {(Gσ, `σ) ∈ G × L, ∀σ ∈ S},

two integers k, q < M
Output: C = {(zi, `i) ∈ Rk × L, i = 1, . . . , |L|},

Γ3 ⊂ {1, . . . ,m3}, Γ4 ⊂ {1, . . . ,m4}
1 begin
2 for σ ∈ S do
3 compute φ3(Gσ), φ4(Gσ), α3(Gσ), α4(Gσ)
4 xσ ← f(Gσ) according to (IV.1)

5 x← 1
|S|
∑
σ∈S

xσ

6 apply PCA on X =
[
xσ1 . . . xσ|S|

]T
to obtain

the q ppal. axes U ∈ RM×q
7 Γ← 0k×1, Λ← 0k×1

8 for t = 1, . . . ,M do
9 if γ(t) > min(Λ) then

10 i∗ ← arg min
i=1,...,k

(Λ(i))

11 Λ(i∗)← γ(t)
12 Γ(i∗)← t

13 Γ3 ← {t ∈ Γ : t ≤ m3}
14 Γ4 ← {t−m3,∀t ∈ Γ : t > m3}
15 for σ ∈ S do
16 zσ ← h(Gσ) according to (V.4)

17 C ← ∅
18 for ` ∈ L do
19 z` ← 1

|{σ∈S:`σ=`}|
∑

σ∈S:`σ=l

zσ

20 C ← C ∪ {(z`, `)}

21 return Γ3, Γ4, C

we present the mean results and their standard deviation. We
fix the number of principal axes used to q = 11 as previously.

To measure the consistency of the γ-scores of graphlets over
the 500 training sets we plot the error bar of the 20 graphlets
with highest average γ-score in the top plot of Fig. 1. The
vertical bars indicate a range of plus or minus one standard
deviation around the average of each γ-score of a graphlet.
Identifiers of graphlets are provided on the x-axis. Details
about these identifiers are given [27].
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Fig. 1. Left: The 20 graphlets with the highest average γ-score. Right: The
30 graphlets with the highest score returned by Random Forest.

TABLE III
QUALITY MEASUREMENT OF THE EMBEDDINGS CLASSIFIED BY (III.1).

Precision Recall F1-score
mean std mean std mean std

fw 9.50 2.7 9.78 2.6 9.64 1.9
our elec 9.44 6.3 8.86 8.4 9.11 5.8
method disc 9.86 0.8 9.95 0.3 9.90 0.4

soc 10 0 9.61 2.5 9.80 1.3
fw 9.17 4.0 8.74 6.7 8.93 4.0

RF feat. elec 4.30 12.3 7.77 18.2 5.46 12.8
select. disc 9.70 2.2 9.77 3.7 9.73 2.4

soc 8.16 9.5 6.08 13.0 6.91 11.0

One can see that graphlet 3-12 (namely ) has by far
the highest score, accounting for almost a quarter of the inertia
in the space of the q principal axes. There is a noticeable drop
in the curve between the ninth and tenth scores and so we
have chosen to keep only the 9 graphlets with highest average
γ-score.

The accuracy of the classifier produced by Algorithm 3 with
feature selection using (V.4) is demonstrated in Table III. As
a comparison, we have built input subsets Γ3 and Γ4 using a
feature selection based on random forests (RF) [44] and then
applied Algorithm 3, as detailed in [27]. This implementation
allows one to get a score of importance for each feature
after having trained the RF model, which is the average Gini
importance over all trees. For a fair comparison, we have kept
the 9 graphlets with highest Gini importance.

Results are presented in Table III. As before, the displayed
mean and standard deviation values have been scaled to ease
presentation. It is clear that selecting features based on γ-
score provides far better results than using RF based feature
selection. Our new method is significantly better both in terms
of precision and recall, for every label. Moreover, we can see
in the bottom plot of Fig. 1, that the shape of the curve of
Gini importance over graphlets is much less sharp at the cut-
off point than the γ-score curve.

Finally, by comparing Tables II and III, we observe that
Algorithm 3 produces similar results to Algorithm 1 at lower
cost. The conclusions of the previous section remain true: our
new method is more accurate than gl2vec and graph2vec
in uncovering food webs, and social networks. The results for
the rhetorical discourse benchmark are still high (F1-score =
0.99). With feature selection, there is a noticeable decrease of
accuracy in identifying electronic circuits. Nevertheless, even

with this decrease it remains significantly more accurate than
gl2vec (F1-score = 0.779).

VI. TOWARDS UNSUPERVISED CLUSTERING

In the previous section, we proposed a network embed-
ding based on 3-node and 4-node graphlets decomposition,
followed by a feature selection procedure built on a training
set of networks. We demonstrated that this method is very
efficient in terms of network classification. We predict that
the graphlets we identified in Section V-A should also be
able to discriminate other classes of networks. That is, our
selection of the 9 graphlets with highest average γ-score (see
Figure 1) may be a good choice to perform feature selection
in an unsupervised fashion.

To support this claim we have applied the embedding
given in (V.4), with Γ3 = {3-12,3-6,3-74,3-14,3-36,3-78} and
Γ4 = {4-2184,4-76,4-14} to the whole dataset supplemented
with 60 directed networks built using the graph generator
from [45]. This generator builds random modular networks
with features observed in real-world networks (such as a
heterogeneous distributions of node degrees and community
sizes described by power laws). Several parameters need to
be set up and we have built the networks with a mixture of
bespoke and default values, which we describe in [27].

To uncover the network clusters, we have applied the
unsupervised clustering algorithm from [46], which requires
no prior knowledge of the number of clusters. This algorithm
needs the dataset to be in an affinity matrix style4. To do
this here we have used the affinity matrix of our embedded
networks xi, i ∈ I built with (V.4). The affinity matrix of a
set of points {xi ∈ Rp, i = 1, . . . , n} being the symmetric
matrix with zeros on the diagonal and

A(i, j) = exp

(
−‖xi − xj‖2

2σ2

)
,

elsewhere. The affinity matrix strongly depends on the choice
of the Gaussian parameter σ. We follow the prescription
in [47] to take into account both density and dimension of
the dataset. We have then sparsified the affinity matrix by
removing all the entries below a certain threshold (here 0.5,
which removes 65% nonzero entries). Moreover, as shown
in Fig. 2, the affinity between network embeddings is not
homogeneous through the different clusters, and we have thus
applied another sparsification for each network by removing
all its affinities except those of its 20 closest neighbours. This
results in a nonsymmetric matrix that the algorithm from [46]
is able to handle.

The unsupervised clustering method applied to both sparsi-
fied matrices gives consistent results. For the first, it finds the
5 targeted clusters with a few errors of assignation. For the
second method, it finds 10 clusters, but these clusters are actual
partitionings of the initial classes, and by merging together
the clusters that belong to a same class (as highlighted by the

4That is, a dataset containing n samples has to be represented by a matrix
A ∈ Rn×n where A(i, j) expresses the proximity (or affinity) between
sample i and sample j.
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Fig. 2. Affinity matrix of the dataset, and its two sparsifications.

TABLE IV
TOP: CONFUSION MATRICES OF THE RESULTING CLUSTERING. LEFT:

USING THE THRESHOLD SPARSIFICATION. RIGHT: USING THE CLOSEST
NEIGHBOUR SPARSIFICATION. BOTTOM: RESULTING SCORES.

1 2 3 4 5
fw 70
elec 6 46
disc 1 192 2
soc 1 75 5
lfr 60

1 2 3 4 5 6 7 8 9 10
fw 70
elec 4 2 46
disc 52 26 56 59 1 1
soc 40 38 1 1 1
lfr 10 50

Prec. Rec. F1-score
fw 9.72 10 9.86
elec 10 8.85 9.39
disc 9.70 9.85 9.77
soc 10 9.26 9.62
lfr 89.6 10 9.45

Prec. Rec. F1-score
fw 9.72 10 9.86
elec 10 8.85 9.39
disc 9.70 9.90 9.80
soc 10 9.63 9.81
lfr 9.52 10 9.76

column colours in Table IV), the accuracy of the method is
equal or higher than the first sparsification, for every class. The
confusion matrices of the resulting clusterings are shown in
Table IV, as well as the resulting scores in terms of precision,
recall and F1-score.

These preliminary results strongly suggest that the 9
graphlets that discriminate between the 4 classes of networks
in our numerical experiments from Section V-A are also able
to discriminate other classes of networks. Nevertheless, these
are early-stage experiments and this hypothesis needs to be
tested on other classes of real-world networks to get a better
feel for the extent to which these graphlets are sufficient to
discriminate between classes.

VII. CONCLUSIONS

We have proposed two supervised procedures for network
embedding based on 3-node and 4-node graphlet decomposi-
tion. These procedures have been shown to provide extremely
accurate results in a downstream classification task. The whole
process is based on very simple tools such as PCA, and is yet
competitive with state-of-the-art methods. In contrast to most
existing methods for classifying or comparing networks based
on graphlet decomposition [13], [18], we avoid an evaluation
of the graphlet distribution on random models. Of particular
note is that our feature selection method selects only a few
graphlets (9 out of a possible 212), which means we can avoid
computing all graphlets for the networks in the test set. Our
bespoke feature selection has properties similar to those of
PCA, and we have shown that this procedure outperforms a
well-established selection feature method.

TABLE V
ALGORITHM 1 APPLIED ON MUTAG DATASET.

mutagenic Precision Recall F1-score
effect mean std mean std mean std

our no 9.24 2.1 8.55 3.2 8.88 1.8
method yes 5.82 5.2 7.38 7.9 6.49 4.8
graph no 8.83 2.2 8.60 4.2 8.70 2.2
2vec yes 5.33 6.7 5.77 9.7 5.49 6.2
gl2 no 9.33 2.5 9.11 3.9 9.21 1.8
vec yes 7.06 7.4 7.55 9.9 7.23 5.2

Finally, we have provided some early-stage empirical ex-
periments that suggest that the graphlets selected by our
feature selection procedure in the numerical experiments are
actually able to discriminate other kinds of networks apart
from those classes on which these graphlets have been learnt.
We infer that these graphlets are sufficient to discriminate
among wider classes of networks, and should enable one to
derive unsupervised methods for network embedding based on
just these few graphlets.

Our future work will be to extend these experiments to
understand the full potential (as well as the limitations) of
these graphlets to characterise fields of networks in order to
design unsupervised techniques for network embedding.

Another aspect we would like to investigate is any gain of
accuracy that may be brought by larger graphlets. Here we
have limited ourselves to 3-node and 4-node graphlets, which
was sufficient to accurately discriminate our networks through
the numerical experiments, but our study and algorithms
can be generalised to more complex graphlet decomposition
straightforwardly.

Finally, our method can be applied to other applications of
network classification, and non-directed networks as well. As
a matter of illustration, we report in Table V the results of the
classifier presented in Algorithm 1, applied on the MUTAG
dataset [48]. This classic benchmark contains 188 networks
representing chemical compounds that one aims to classify
onto compounds having a mutagenic effect on a bacteria,
and compounds that have not. Once again, we compare our
method to graph2vec5 and gl2vec, and observe that we are
competitive. Interestingly enough, this is gl2vec that provides
the best results, probably because the small size of networks
(17 nodes in average) allows the 3-node graphlet distribution
to closely fits with network structures.

Tables and Figures from this paper can be reproduced
by using the Matlab code and dataset at http://github.com/
luleg/DiscriminantMotifs, where networks used to conduct our
experiments can also be found.
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